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Abstract

We introduce a novel framework for classification with a rejection
option that consists of simultaneously learning two functions: a classifier
along with a rejection function. We present a full theoretical analy-
sis of this framework including new data-dependent learning bounds
in terms of the Rademacher complexities of the classifier and rejection
families as well as consistency and calibration results. These theoreti-
cal guarantees guide us in designing new algorithms that can exploit
different kernel-based hypothesis sets for the classifier and rejection
functions. We compare our general framework with the special case
of confidence-based rejection for which we also devise alternative loss
functions and algorithms. We report the results of several experi-
ments showing that our kernel-based algorithms can yield a notable
improvement over the best existing confidence-based rejection algorithm.
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1 Introduction

We consider a flexible binary classification scenario where the learner is given
the option to reject an instance instead of predicting its label, thereby incur-
ring some pre-specified cost, typically less than that of a random prediction.
While classification with a rejection option has received little attention in the
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past, it is in fact a scenario of great significance that frequently arises in appli-
cations. Incorrect predictions can be costly, especially in applications such as
medical diagnosis and bioinformatics [Hamid et al., 2017]. In comparison, the
cost of abstaining from prediction, which may be that of additional medical
tests, or that of routing a call to a customer representative in a spoken-dialog
system, is often more acceptable. From a learning perspective, abstaining from
fitting systematic outliers can also result in a more accurate predictor. Accu-
rate algorithms for learning with rejection can further be useful to developing
solutions for other learning problems such as active learning [Chaudhuri and
Zhang, 2014].

Various problems related to the scenario of learning with a rejection option
have been studied in the past. The trade-off between error rate and rejection
rate was first studied by Chow [1957, 1970] who also provided an analysis of the
Bayes optimal decision for this setting. Later, several publications studied an
optimal rejection rule based on the ROC curve and a subset of the training data
[Fumera et al., 2000, Pereira and Pires, 2005, Tortorella, 2001], while others
used rejection options or punting to reduce misclassification rate [Bounsiar
et al., 2007, Fumera and Roli, 2002, Landgrebe et al., 2005, Melvin et al., 2008,
Pietraszek, 2005], though with no theoretical analysis or guarantee.

More generally, few studies have presented general error bounds in this
area, but some have given risk bounds for specific scenarios. Freund et al.
[2004] studied an ensemble method and presented an algorithm that predicts
with a weighted average of the hypotheses while abstaining on some examples
without incurring a cost. Herbei and Wegkamp [2005] considered classification
with a rejection option that incurs a cost and provided bounds for these ternary
functions.

One of the most influential works in this area has been that of Bartlett and
Wegkamp [2008] who studied a natural discontinuous loss function taking into
account the cost of a rejection. They used consistency results to define a convex
and continuous Double Hinge Loss (DHL) surrogate loss upper-bounding that
rejection loss, which they also used to derive an algorithm. A series of follow-
up articles further extended this publication, including Yuan and Wegkamp
[2011] which used the same convex surrogate while focusing on the l1 penalty.
Grandvalet et al. [2008] derived a convex surrogate based on Bartlett and
Wegkamp [2008] that aims at estimating conditional probabilities only in the
vicinity of the threshold points of the optimal decision rule. They also provided
some preliminary experimental results comparing the DHL algorithm and their
variant with a naive rejection algorithm. Under the same rejection rule, Yuan
and Wegkamp [2010] studied the infinite sample consistency for classification
with a reject option. While in this work, we focus solely on binary classification,
several works analyzed the learning with rejection framework in the multi-class
classification setting focusing on different specific aspects: confidence-based
predictors [Ni et al., 2019], a cross-entropy based loss function [Mozannar and
Sontag, 2020a], and a one-vs-all classifier [Verma and Nalisnic, 2022].
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Using a different approach based on active learning, El-Yaniv and Wiener
[2010] studied the trade-off between the coverage and accuracy of classifiers
and, in a subsequent paper El-Yaniv and Wiener [2011] provided a strategy to
learn a certain type of selective classification, which they define as weakly opti-
mal, that has diminishing rejection rate under some Bernstein-type conditions.
Finally, several papers have discussed learning with rejection in the multi-class
setting [Capitaine and Frelicot., 2010, Dubuisson and Masson, 1993, Tax and
Duin, 2008], reinforcement learning [Littman et al., 2008], and in online learn-
ing [Zhang and Chaudhuri, 2016]. Several other papers that were published
during the review process of our submission are closely aligned with our main
topic [Cao et al., 2022, Mao et al., 2023a,b,c, Mohri et al., 2023, Mozannar
and Sontag, 2020b, Mozannar et al., 2023, Narasimhan et al., 2023]. However,
due to publications constraints, a detailed discussion of these papers will be
deferred to our future work.

There are also several learning scenarios tangentially related to the rejec-
tion scenario we consider, though they are distinct and hence require a very
different approach. Sequential learning with budget constraints is a related
framework that admits two stages: first a classifier is learned, next the classifier
is fixed and a rejection function is learned [Trapeznikov and Saligrama, 2013,
Wang et al., 2014]. Since it assumes a fixed predictor and only admits the rejec-
tion function as an argument, the corresponding loss function is quite different
from ours. Another somewhat similar approach is that of cost-sensitive learn-
ing where a class-dependent cost can be used [Elkan, 2001]. One could think
of adopting that framework here to account for the different costs for rejection
and incorrect prediction. However, the cost-sensitive framework assumes a dis-
tribution over the classes or labels, which, here, would be the set {−1, 1, r},
with r the rejection symbol. But, r is not a class and there is no natural distri-
bution over that set in our scenario. For further discussion on this connection
to cost-sensitive learning, please see Appendix C.

In this paper, we introduce a novel framework for classification with a rejec-
tion option that consists of simultaneously learning a pair of functions (h, r):
a predictor h along with a rejection function r, each selected from a different
hypothesis set. This is a more general framework than that the special case of
confidence-based rejection studied by Bartlett and Wegkamp [2008] and oth-
ers, where the rejection function is constrained to be a thresholded function of
the predictor’s scores. Our novel framework opens up a new perspective on the
problem of learning with rejection for which we present a full theoretical analy-
sis, including new data-dependent learning bounds in terms of the Rademacher
complexities of the classifier and rejection families, as well as consistency and
calibration results. We derive convex surrogates for this framework that are
realizable (H,R)-consistent. These guarantees in turn guide the design of a
variety of algorithms for learning with rejection. We describe in depth two dif-
ferent types of algorithms: the first type uses kernel-based hypothesis classes,
the second type confidence-based rejection functions. We report the results of
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experiments comparing the performance of these algorithms and that of the
DHL algorithm.

The paper is organized as follows. Section 2 introduces our novel learn-
ing framework and contrasts it with that of Bartlett and Wegkamp [2008].
Section 3 provides generalization guarantees for learning with rejection. It also
analyzes two convex surrogates of the loss along with consistency results and
provides margin-based learning guarantees. In Section 4, we present an algo-
rithm with kernel-based hypothesis sets derived from our learning bounds. In
Section 5, we further examine the special case of confidence-based rejection
by analyzing various algorithmic alternatives. Lastly, we report the results of
several experiments comparing the performance of our algorithms with that of
DHL (Section 6).

2 Learning problem

Let X denote the input space. We assume as in standard supervised learn-
ing that training and test points are drawn i.i.d. according to some fixed yet
unknown distribution D over X × {−1,+1}. We present a new general model
for learning with rejection, which includes the confidence-based models as a
special case.

The learning scenario we consider is that of binary classification with rejec-
tion. Let r denote the rejection symbol. For any given instance x ∈ X , the
learner has the option of abstaining or rejecting that instance and returning
the symbol r, or assigning to it a label ŷ ∈ {−1,+1}. If the learner rejects an
instance, it incurs some loss c(x) ∈ [0, 1]; if it does not reject but assigns an
incorrect label, it incurs a cost of one; otherwise, it suffers no loss. Thus, the
learner’s output is a pair (h, r) where h : X → R is the hypothesis used for
predicting a label for points not rejected using sgn(h) and where r : X → R is
a function determining the points x ∈ X to be rejected according to r(x) ≤ 0.

The problem is distinct from a standard multi-class classification problem
since no point is inherently labeled with r. Its natural loss function L is defined
by

L(h, r, x, y) = 1y 6=sgn(h(x))1r(x)>0 + c(x)1r(x)≤0, (1)

where sgn(h(x)) = 1h(x)≥0−1h(x)<0 or, equivalently, sgn(h(x)) = +1 if h(x) ≥
0 and sgn(h(x)) = −1 if h(x) < 0. This loss holds for any pair of functions (h, r)
and labeled sample (x, y) ∈ X × {−1,+1}, thus extending the loss function
considered by Bartlett and Wegkamp [2008]. In what follows, we assume for
simplicity that c is a constant function, though part of our analysis is applicable
to the general case. Observe that for c ≥ 1

2 , on average, there is no incentive
for rejection since a random guess can never incur an expected cost of more
than 1

2 . For biased distributions, one may further limit c to the fraction of the
smallest class. For c = 0, we obtain a trivial solution by rejecting all points,
so we restrict c to the case of c ∈

]
0, 1

2

[
.

Let H and R denote two families of functions mapping X to R. The learning
problem consists of using a labeled sample S = ((x1, y1), . . . , (xm, ym)) drawn
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h∗(x) = η(x)− 1
2 and

r∗(x) = |h∗(x)| −
(

1
2 − c

)
.

⌘(x)

x

h⇤(x)>0
r⇤(x)<0

c

Fig. 1 Mathematical expression and illustration of the optimal classification and rejection
function for the Bayes solution. Note, as c increases, the rejection region shrinks.

i.i.d. from Dm to determine a pair (h, r) ∈ H × R with a small expected
rejection loss R(h, r)

R(h, r) = E
(x,y)∼D

[
1y 6=sgn(h(x))1r(x)>0 + c1r(x)≤0

]
. (2)

We denote by R̂S(h, r) the empirical loss of a pair (h, r) ∈ H×R over the sam-
ple S and use (x, y) ∼ S to denote the draw of (x, y) according to the empirical

distribution defined by S: R̂S(h, r) = E(x,y)∼S
[
1y 6=sgn(h(x))1r(x)>0 + c1r(x)≤0

]
.

2.1 Confidence-based rejection model

Learning with rejection based on two independent yet jointly learned functions
h and r introduces a completely novel approach to this subject. However, our
new framework encompasses much of the previous work on this problem, e.g.
[Bartlett and Wegkamp, 2008], is a special case where rejection is based on the
magnitude of the value of the predictor h, that is x ∈ X is rejected if |h(x)| ≤ γ
for some γ ≥ 0. Thus, r is implicitly defined in the terms of the predictor h by
r(x) = |h(x)| − γ.

This specific choice of the rejection function r is natural when considering
the Bayes solution (h∗, r∗) of the learning problem, that is the one where the
distribution D is known. Indeed, for any x ∈ X , let η(x) be defined by η(x) =
P [Y =+1|x]. For a standard binary classification problem, it is known that the
predictor h∗ defined for any x ∈ X by h∗(x) = η(x)− 1

2 is optimal. For any x ∈
X , the misclassification loss of h∗ is E

[
1y 6=sgn(h∗(x))

∣∣x] = min{η(x), 1− η(x)}.
The optimal rejection r∗ should therefore be defined such that r∗(x) ≤ 0,
meaning x is rejected, if and only if

min{η(x), 1− η(x)} ≥ c⇔1−max{η(x), 1− η(x)} ≥ c
⇔max{η(x), 1− η(x)} ≤ 1− c
⇔max{η(x)− 1

2 ,
1
2 − η(x)} ≤ 1

2 − c
⇔ |h∗(x)| ≤ 1

2 − c.

Thus, we can choose h∗ and r∗ as in Figure 1, which also provides an illustra-
tion of confidence-based rejection. However, when predictors are selected out
of a limited subset H of all measurable functions over X , requiring the rejec-
tion function r to be defined as r(x) = |h(x)| − γ, for some h ∈ H, can be
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Fig. 2 The best predictor h is defined by the threshold θ: h(x) = x − θ. For c < 1
2

, the
region defined by X ≤ η should be rejected. Note that the corresponding rejection function
r defined by r(x) = x− η cannot be defined as |h(x)| ≤ γ for some γ > 0.

too restrictive. Consider, for example, the case where H is a family of linear
functions. Figure 2 shows a simple case in dimension one where the optimal
rejection region cannot be defined simply as a function of the best predictor h.
The model for learning with rejection that we describe where a pair (h, r) is
selected is more general. In the next section, we study the problem of learning
such a pair.

3 Theoretical analysis

We first give a generalization bound for the problem of learning with our
rejection loss function as well as consistency results. Next, to devise efficient
learning algorithms, we give general convex upper bounds on the rejection loss.
For several of these convex surrogate losses, we prove margin-based guarantees
that we subsequently use to define our learning algorithms (Section 4).

3.1 Generalization bound

Theorem 1 Let H and R be families of functions taking values in {−1,+1}. Then,
for any δ > 0, with probability at least 1 − δ over the draw of a sample S of size m
from D, the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ R̂S(h, r) + Rm(H) + (1 + c)Rm(R) +

√
log 1

δ

2m
.

Proof Let LH,R be the family of functions LH,R = {(x, y) 7→ L(h, r, x, y), h ∈
H, r ∈ R}. Since the loss function L takes values in [0, 1], by the general Rademacher
complexity bound [Koltchinskii and Panchenko, 2002], with probability at least 1−δ,

the following holds for all (h, r) ∈ H×R: R(h, r) ≤ R̂S(h, r)+2Rm(LH,R)+

√
log 1/δ

2m .
Now, the Rademacher complexity can be bounded as follows:

Rm(LH,R) = E
σ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

σi1yih(xi)≤01r(xi)>0+σic 1r(xi)≤0

]

≤ E
σ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

σi1h(xi)6=yi1r(xi)=+1

]

+ cE
σ

[
sup
r∈R

1

m

m∑
i=1

σi1r(xi)=−1

]
.

By Lemma 2 (below), the Rademacher complexity of products of indicator functions
can be bounded by the sum of the Rademacher complexities of each indicator function
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class, thus,

E
σ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

σi1h(xi)6=yi1r(xi)=+1

]

≤ E
σ

[
sup
h∈H

1

m

m∑
i=1

σi1h(xi) 6=yi

]
+ E
σ

[
sup
r∈R

1

m

m∑
i=1

σi1r(xi)=+1

]
.

The proof can be completed by using the known fact that the Rademacher complexity
of indicator functions based on a family of functions taking values in {−1,+1} is
equal to one half the Rademacher complexity of that family. �

To derive an explicit bound in terms of H and R in Theorem 1, we make
use of the following lemma relating the Rademacher complexity of a product of
two (or more) families of functions to the sum of the Rademacher complexity
of each family, whose proof can be found in DeSalvo et al. [2015].

Lemma 2 Let F1 and F2 be two families of functions mapping X to [−1,+1]. Let
F = {f1f2 : f1 ∈ F1, f2 ∈ F2}. Then, the empirical Rademacher complexities of F

for any sample S of size m are bounded: R̂S (F) ≤ 2
(
R̂S (F1) + R̂S (F2)

)
.

The theorem gives generalization guarantees for learning with a family of
predictors H and rejection function R mapping to {−1,+1}. For such families,
it suggests to select the pair (h, r) to minimize the right-hand side. As with the

zero-one loss, minimizing R̂S(h, r) is computationally hard for most families of
functions. Thus, in the next section, we study convex upper bounds that lead
to more efficient optimization problems, while admitting favorable learning
guarantees as well as consistency results.

3.2 Convex surrogate losses

We first present general convex upper bounds on the rejection loss. Let u 7→
Φ(−u) and u 7→ Ψ(−u) be convex functions upper-bounding 1u≤0. Since for

any a, b ∈ R, max(a, b) = a+b+|b−a|
2 ≥ a+b

2 , the following inequalities hold with
α > 0 and β > 0:

L(h, r, x, y) = 1y 6=sgn(h(x))1r(x)>0 + c 1r(x)≤0

≤ 1yh(x)≤01r(x)>0 + c 1r(x)≤0

= max
(
1yh(x)≤01−r(x)<0, c 1r(x)≤0

)
≤ max

(
1max(yh(x),−r(x))≤0, c 1r(x)≤0

)
≤ max

(
1 yh(x)−r(x)

2 ≤0
, c 1r(x)≤0

)
≤ max

(
1
α
yh(x)−r(x)

2 ≤0
, c 1βr(x)≤0

)
≤ max

(
Φ
(
α
2 (r(x)− yh(x))

)
, cΨ (−βr(x))

)
(3)
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Fig. 3 From the left, the figures show the rejection loss L, the convex surrogate loss LMH,
and the convex surrogate loss LPH as a function of yh(x) and r(x), for the cost value c = 0.4.
The convex surrogates have a steeper left surface reflecting the rejection loss’s penalty of
incorrectly classifying a point while their gentler right surface of the surrogates reflects the
lower cost c of abstaining. Also, the figures clearly show that the surrogate loss LPH is an
upper bound on LMH.

≤ Φ
(
α
2 (r(x)− yh(x))

)
+ cΨ(−βr(x)). (4)

Since Φ and Ψ are convex, their composition with an affine function of h
and r is also a convex function of h and r. Since the maximum of two convex
functions is convex, the right-hand side of (3) is a convex function of h and
r. Similarly, the right-hand side of (4) is a convex function of h and r. In the
specific case where the Hinge loss is used for both u 7→ Φ(−u) and u 7→ Ψ(−u),
we obtain the following two convex upper bounds, Max Hinge (MH) and Plus
Hinge (PH), also illustrated in Figure 3:

LMH(h, r, x, y) = max
(
1 + α

2 (r(x)− yh(x)) , c (1− βr(x)) , 0
)

LPH(h, r, x, y) = max
(
1 + α

2 (r(x)− yh(x)), 0
)

+ max (c (1− βr(x)), 0) .

3.3 Consistency results

In this section, we present a series of theoretical results related to the con-
sistency of the convex surrogate loss, LMH. We first show that this convex
surrogate is calibrated and then we show that the excess risk of the rejec-
tion loss can be bounded by the excess risk of the surrogate loss. See
Appendix A for the proofs of these theorems. We also prove a general realizable
(H,R)-consistency theorem that holds for both of our surrogate losses.

3.3.1 Calibration

Below, we show that the constants α > 0 and β > 0 in the definition of the
surrogate loss can be chosen so that the surrogate loss is calibrated with respect
to the Bayes solution. Let (h∗M, r

∗
M) be a pair attaining the infimum of the

expected surrogate loss E(x,y) [LMH(h, r, x, y)] over all measurable functions.
Recall from Section 2, the Bayes classifier is denoted by (h∗, r∗). The theorem
shows that for α = 1 and β = 1

1−2c , the loss LMH is calibrated, that is the sign
of (h∗M, r

∗
M) matches the sign of (h∗, r∗).
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Theorem 3 Let (h∗M, r
∗
M) denote a pair attaining the infimum of the expected sur-

rogate loss, E(x,y) [LMH(h∗M, r
∗
M, x, y)] = inf(h,r)∈meas E(x,y) [LMH(h, r, x, y)]. Then,

for β = 1
1−2c and α = 1,

1. the surrogate loss LMH is calibrated with respect to the Bayes classifier:
sign(h∗) = sign(h∗M) and sign(r∗) = sign(r∗M);

2. furthermore, the following equality holds for the infima over pairs of
measurable functions:

inf
(h,r)

E
(x,y)∼D

[LMH(h, r, x, y)] = (3− 2c) inf
(h,r)

E
(x,y)∼D

[L(h, r, x, y)] .

The theorem implies that the classification and rejection regions charac-
terized by (h∗, r∗) and (h∗M , r

∗
M ) are equal, that is minimizing the expected

surrogate loss results in the same type of classification and rejection of the
input space as minimizing the expected rejection loss. It also shows that the
minimum value of the expected surrogate loss can be scaled by 3−2c to match
the minimum value of the expected rejection loss.

3.3.2 Excess risk bound

Here, we show an upper bound on the excess risk of the rejection loss in
terms of the excess risk of the surrogate loss. Let R∗ denote the Bayes
rejection loss, that is R∗ = inf(h,r) E(x,y)∼D[L(h, r, x, y)], where the infi-
mum is taken over all measurable functions and similarly let R∗M denote
inf(h,r) E(x,y)∼D[LMH(h, r, x, y)].

Theorem 4 Let RM (h, r) = E(x,y)∼D[LMH(h, r, x, y)] denote the expected surrogate
loss of a pair (h, r). Then, the excess risk of (h, r) is upper bounded by its surrogate
excess error as follows:

R(h, r)−R∗ ≤ 1

(1− c)(1− 2c)

(
RM (h, r)−R∗M

)
.

The theorem implies that if we can minimize the excess risk based on the
surrogate loss, then we are also minimizing the excess risk based on the rejec-
tion loss. Thus, in conjunction with the calibration results, these guarantees
indicate that the surrogate loss LMH admits several favorable properties that
precisely match the rejection loss’s behavior.

3.3.3 (H,R)-consistency

The standard notion of loss consistency does not take into account the
hypothesis set H used since it assumes an optimization carried out over
the set of all measurable functions. Long and Servedio [2013] proposed
instead a notion of H-consistency precisely meant to take the hypothesis
set used into consideration. They showed empirically that using loss func-
tions that are H-consistent can lead to significantly better performances
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than using a loss function known to be consistent. Here, we prove that
our surrogate losses are realizable (H,R)-consistent, a hypothesis-set-specific
notion of consistency under our framework. The realizable setting in learn-
ing with rejection means that there exists a function that never rejects and
correctly classifies all points. A loss l is realizable (H,R)-consistent if for
any distribution D over X × Y and any ε > 0, there exists δ > 0 such
that if

∣∣E(x,y)∼D [l(h, r, x, y)]− inf(h,r)∈(H,R) E(x,y)∼D[l(h, r, x, y)]
∣∣ ≤ δ, then

E(x,y)∼D[L(h, r, x, y)] ≤ ε.

Theorem 5 Let (u, v) 7→ Φ(−u,−v) be a non-increasing function upper-bounding
(u, v) 7→ 1u≤01v>0 + c1v≤0 such that for any fixed v, limu→+∞ Φ(−u,−v) = 0 and
for any fixed v, u 7→ Φ(−u,−v) is bounded over R+. Let (H,R) be pair of families of
functions mapping X to R where H is closed under multiplication by a positive scalar
(H is a cone). Then, the loss function (h, r, x, y) 7→ Φ(−yh(x),−r(x)) is realizable
(H,R)-consistent.

Proof Let D be a distribution for which (h∗, r∗) ∈ (H,R) achieves zero error, thus
yh∗(x) > 0 and r∗(x) > 0 for all x in the support of D. Fix ε > 0 and assume

that
∣∣∣E [Φ(− yh(x),−r(x)

)]
− inf(h,r)∈(H,R) E

[
Φ
(
− yh(x),−r(x)

)]∣∣∣ ≤ ε for some

(h, r) ∈ (H,R). Then, since 1y 6=sgn(h(x))1r(x)>0 + c1r(x)≤0 ≤ 1yh(x)≤01r(x)>0 +
c1r(x)≤0 ≤ Φ(−yh(x),−r(x)) and since µh∗ is in H for any µ > 0, the following
holds for any µ > 0:

E [L(h, r, x, y)] ≤ E [Φ (−yh(x),−r(x))]

≤ E
[
Φ
(
−µyh∗(x),−r∗(x)

)]
+ ε

≤ E
[
Φ
(
−µyh∗(x),−r∗(x)

)
|r∗(x) > 0

]
P[r∗(x) > 0] + ε.

Now, u 7→ Φ(−µyh∗(x),−r∗(x)) is bounded for yh∗(x) > 0 and r∗(x) > 0;
since we have that limµ→+∞ Φ(−µyh∗(x),−r∗(x)) = 0, by Lebesgue’s domi-
nated convergence theorem limµ→+∞ E [Φ(−µyh∗(x),−r∗(x))|r∗(x) > 0] = 0. Thus,
E[L(h, r, x, y)] ≤ ε for all ε > 0, which concludes the proof. �

The conditions of the theorem hold in particular for the exponential and
the logistic functions as well as hinge-type losses. Thus, the theorem shows that
the general convex surrogate losses we defined are realizable (H,R)-consistent
when the functions Φ or Ψ are exponential or logistic functions.

3.4 Margin bounds

In this section, we give margin-based learning guarantees for the loss function
LMH. Since LPH is a simple upper bound on LMH, its margin-based learning
bound can be derived similarly. In fact, the same technique can be used to
derive margin-based guarantees for the subsequent convex surrogate loss func-
tions we present. For any ρ, ρ′ > 0, the margin-loss associated to LMH is given
by

Lρ,ρ
′

MH(h, r, x, y) =
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max
(

max
(

1 + α
2

(
r(x)
ρ′ −

yh(x)
ρ

)
, 0
)
,max

(
c
(

1− β r(x)
ρ′

)
, 0
))

.

The theorem enables us to derive margin-based learning guarantees. The proof
requires dealing with this max-based surrogate loss, which is a non-standard
derivation.

Theorem 6 Let H and R be families of functions mapping X to R. Then, for any
δ > 0, with probability at least 1− δ over the draw of a sample S of size m from D,
the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ E
(x,y)∼S

[LMH(h, r, x, y)] + αRm(H) + (2βc+ α)Rm(R) +

√
log 1

δ

2m
.

Proof Let LMH,H,R be the family of functions defined by LH,R = {(x, y) 7→
min (LMH(h, r, x, y), 1) , h ∈ H, r ∈ R}. Since min(LMH, 1) is bounded by one, by the
general Rademacher complexity generalization bound [Koltchinskii and Panchenko,
2002], with probability at least 1−δ over the draw of a sample S, the following holds:

R(h, r) ≤ E
(x,y)∼D

[min(LMH(h, r, x, y), 1)]

≤ E
(x,y)∼S

[min(LMH(h, r, x, y), 1)] + 2Rm(LMH,H,R) +

√
log 1

δ
2m

≤ E
(x,y)∼S

[LMH(h, r, x, y)] + 2Rm(LMH,H,R) +

√
log 1

δ
2m

.

Observe that we can express LMH as follows:

max
(
max

(
1 + α

2 (r(x)− yh(x)), 0
)
,max (c (1− βr(x)), 0)

)
.

Therefore, since for any a, b ∈ R, min (max(a, b), 1) = max (min(a, 1),min(b, 1)), we
can rewrite min(LMH, 1) as:

max
(
min

(
max

(
1 + α

2 (r(x)− yh(x)) , 0
)
, 1
)
,min (max (c (1− βr(x)) , 0) , 1)

)
≤ min

(
max

(
1 + α

2 (r(x)− yh(x)), 0
)
, 1
)

+ min (max (c (1− βr(x)), 0) , 1) .

Since it holds that u 7→ min
(
max

(
1 + αu

2 , 0
)
, 1
)

is α
2 -Lipschitz and also that

u 7→ min (max(c (1− βu), 0), 1) is cβ-Lipschitz, by Talagrand’s contraction lemma
[Ledoux and Talagrand, 1991],

Rm
(
LMH,H,R

)
≤ α

2 Rm ({(x, y) 7→ r(x)− yh(x)}) + βcRm ({(x, y) 7→ r(x)})
≤ α

2 (Rm(R) + Rm(H)) + βcRm(R)

= α
2 Rm(H) +

(
βc+ α

2

)
Rm(R),

which completes the proof. �

The following corollary is then a direct consequence of the theorem above.
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Corollary 7 Let H and R be families of functions mapping X to R. Fix ρ, ρ′ > 0.
Then, for any δ > 0, with probability at least 1− δ over the draw of an i.i.d. sample
S of size m from D, the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ E
(x,y)∼S

[
Lρ,ρ

′

MH(h, r, x, y)
]

+
α

ρ
Rm(H) +

2βc+ α

ρ′
Rm(R) +

√
log 1

δ

2m
.

Then, via Koltchinskii and Panchenko [2002], the bound of Corollary 7
can be shown to hold uniformly for all ρ, ρ′ ∈ (0, 1), at the price of a term

in O

(√
log log 1/ρ

m +
√

log log 1/ρ′

m

)
. This corollary will be used to derive our

algorithms that learn the pair (h, r) from two kernel-based function classes.

3.5 Confidence-based rejection learning bounds

In this section, we present a learning guarantee for a natural class of confidence-
based rejection algorithms based on a two-stage procedure. In the first stage,
these algorithms learn a predictor h0 by using a standard classification algo-
rithm (i.e. SVMs, Adaboost etc.). Then, in the second stage, a threshold γ ≥ 0
is chosen from a family of thresholds Γ such that it minimizes the confidence-
based rejection loss L(h, rγ , x, y) where rγ(x) = |h(x)|−γ. The theorem below
bounds the generalization error of the pair (h0, rγ) for all possible γ ∈ Γ where
γmin and γmax denote the minimum and maximum γ values in the Γ set.

Theorem 8 For any δ > 0, with probability at least 1− δ, the following holds for all
γ ∈ Γ

R (h0, rγ) ≤ R̂S (h0, rγ) +
γmax − γmin√

m
+

√
log 1

δ

2m
(5)

where rγ = |h0| − γ.

Proof By standard generalization bounds for Rademacher complexity [Mohri et al.,
2012], for any δ > 0, with probability at least 1− δ, the following holds for all γ ∈ Γ:

R (h0, rγ) ≤ R̂S (h0, rγ) + 2Rm (Γ) +

√
log 1

δ

2m
.

The empirical Rademacher complexity of Γ can be expressed as follows:

R̂S(Γ) = E
σ

[
sup
γ∈Γ

1

m

m∑
i=1

σiγ

]

= E
σ

[
sup
γ∈Γ

γ

m

m∑
i=1

σi

∣∣∣∣∣
m∑
i=1

σi ≥ 0

]
+ E
σ

[
sup
γ∈Γ
− γ
m

m∑
i=1

σi

∣∣∣∣∣
m∑
i=1

σi < 0

]

=
γmax − γmin

2m
E
σ

[
|
m∑
i=1

σi|

]
.
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Thus, using Jensen’s inequality, it can be upper-bounded as follows:

R̂S(Γ) ≤ γmax − γmin

2m

√√√√E
σ

[
|
m∑
i=1

σi|2
]

=
γmax − γmin

2m

√√√√E
σ

[
m∑
i=1

σ2
i

]
≤ γmax − γmin

2
√
m

.

We then obtain the result of the theorem by taking the expectation of the empirical
Rademacher complexity over all samples of size m drawn according to D and using
it to bound Rm(Γ) in the generalization bound above. �

The theorem justifies the second-stage of these algorithms whenever γmax−
γmin is bounded and shows that the generalization guarantee is independent
of the number of threshold values used. In other words, numerous thresholds
values can be used without affecting learnability, but note that as the number
of threshold values increases it will become computationally expensive to find
the best threshold.

4 Algorithms for kernel-based hypotheses

In this section, we devise new algorithms for learning with a rejection option
when H and R are kernel-based hypotheses. We use Corollary 7 to guide the
optimization problems for our algorithms.

Let H and R be hypotheses sets defined in terms of PSD kernels K and
K ′ over X :

H = {x→ w ·Φ(x) : ‖w‖ ≤ Λ} and R = {x→ u ·Φ′(x) : ‖u‖ ≤ Λ′},

where Φ is the feature mapping associated to K and Φ′ the feature mapping
associated to K ′ and where Λ,Λ′ ≥ 0 are hyperparameters. One key advantage
of this formulation is that different kernels can be used to define H and R,
thereby providing a greater flexibility for the learning algorithm. In particular,
the confidence-based models can be captured by an appropriate choice of Φ′.
That is whenever K ′ is a second degree-kernel, the area where the rejection
function r ∈ R abstains must be an ellipsoid. In this space of functions, there
then exists a degenerate ellipsoid (i.e. two parallels lines) that corresponds
to a rejection region characterized by the confidence-based rejection function,
r(x) = |h(x)| − γ.

Corollary 9 Let H and R be the hypothesis spaces as defined above. Then, for any
δ > 0, with probability at least 1− δ over the draw of a sample S of size m from D,
the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ E
(x,y)∼S

[
Lρ,ρ

′

MH(h, r, x, y)
]

+ α

√
(κΛ/ρ)2

m

+ (2βc+ α)

√
(κ′Λ′/ρ′)2

m
+

√
log 1

δ

2m

where κ2 = supx∈X K(x, x) and κ′2 = supx∈X K
′(x, x).
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Proof By standard kernel-based bounds on Rademacher complexity [Mohri et al.,

2012], we have that Rm(H) ≤ Λ

√
Tr[K]
m ≤

√
(κΛ)2

m and similarly Rm(R) ≤

Λ′
√

Tr[K′]
m ≤

√
(κ′Λ′)2

m . Applying this bounds to Corollary 7 completes the proof.
�

This learning bound guides directly the definition of our first algorithm
based on the LMH (see Appendix D for details) resulting in the following
optimization:

min
w,u,ξ

λ

2
‖w‖2 +

λ′

2
‖u‖2 +

m∑
i=1

ξi

subject to ξi ≥ c
(
1− β

(
u ·Φ′(xi) + b′

))
,

ξi ≥ 1 +
α

2

(
u ·Φ′(xi) + b′ − yiw ·Φ(xi)− b

)
, ξi ≥ 0, i ∈ [1,m]

where λ, λ′ ≥ 0 are parameters and b and b′ are explicit offsets for the linear
functions h and r. Similarly, we use the learning bound to derive an algorithm
based on the loss LPH with the following primal optimization problem:

min
w,u,ξ,ξ′

λ

2
‖w‖2 +

λ′

2
‖u‖2 +

m∑
i=1

ξi +

m∑
i=1

ξ′i

subject to ξ′i ≥ c(1− β(u ·Φ′(xi) + b′)),

ξi ≥ 1 +
α

2
(u ·Φ′(xi) + b′ − yi(w ·Φ(xi) + b)), ξi ≥ 0,

ξ′i ≥ 0, i ∈ [1,m].

The dual formulations are given in Appendix D. We have implemented and
tested the dual of both algorithms, which we will refer to as CHR algorithms
(short for convex algorithms using H and R families). Both the primal and
dual optimization are standard QP problems whose solution can be readily
found via both general-purpose and specialized QP solvers. The flexibility of
the kernel choice and the QP formulation for both primal and dual are key
advantages of the CHR algorithms. In Section 6 we report experimental results
with these algorithms as well as the details of our implementation.

5 Confidence-based rejection algorithms

In this section, we explore different algorithms based on the confidence-based
rejection model (Section 2.1). We thus consider a rejection function r(x) =
|h(x)| − γ that abstains on points classified with confidence less than a given
threshold γ.

The most standard algorithm in this setting is the DHL algorithm, which is
based on a double hinge loss a hinge-type convex surrogate that has favorable
consistency properties. The double hinge loss, LDHinge, is an upper bound of
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Fig. 4 Convex surrogates for confidence-based algorithms for γ ∈ [0, 1 − c]. The figures
show the double hinge loss, hinge loss, and rejection loss for γ = 0.6 (left) and γ = 0.3
(right) for cost value c = 0.4. The hinge loss is clearly the tighter convex upper bound of
the rejection loss.
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Fig. 5 Convex surrogate for confidence-based algorithms for γ ∈ [0, 1]. The left figure has
threshold γ = 1 while the right figure has threshold γ = 0.3 for cost value c = 0.4.

the rejection loss only when 0 ≤ γ ≤ 1 − c (see Figure 4), making DHL
algorithm only valid for these restricted γ values. Moreover, it is important
to note that the hinge loss is in fact a tighter convex upper bound than the
double hinge loss for these possible values of γ. We have Lγ(h) ≤ LHinge(h) ≤
LDHinge(h) where Lγ(h) = 1yh(x)≤01|h(x)|>γ +c(x)1|h(x)|≤γ is the rejection loss
in this setting. Thus, a natural alternative to the DHL algorithm is simply
minimizing the hinge loss. The DHL solves a QCQP optimization problem
while the natural alternative solve a standard SVM-type dual. See Appendix E
for the primal and dual formulations.

The aforementioned confidence based algorithms only apply for γ ∈ [0, 1−
c]. Here, we present an algorithm that upper bounds the rejection error for all
values of γ ∈ [0, 1] since a robust surrogate should majorate the rejection loss,
Lγ , for all its possible values. This surrogate is a loss function passing through
point (1, c) given by

L1 = max(1− y(1− c)(w ·Φ(x)), 0), (6)
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CHR Classification for c=0.25
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DHL Classification for c=0.25

Fig. 6 The left figure illustrates the synthetic data, the middle figure shows how CHR
classified the test points, and the right figure shows how DHL classified the same set of
points with green denoting rejection.

see Figure 5 for the plot of this function. The main advantage of this loss is
that it holds for all values of γ ∈ [0, 1] giving a greater flexibility in choosing
the width of the rejection region. Based on this loss, the optimization problem
is a QCQP and for the primal and dual formulation, see Appendix E.

6 Experiments

In this section, we present the results of several experiments comparing our
CHR algorithms with the confidence-based algorithms. All algorithms were
implemented using CVX [CVX Research, 2012]. For the experiments below,
the cost of the rejection ranged over c ∈ {0.05, 0.1, . . . , 0.5}. The regulariza-
tion parameters λ, λ′ for the CHR algorithms varied over λ, λ′ ∈ {10i : i =
−5, . . . , 5} and the threshold γ for confidence-based algorithms ranged over
γ ∈ {0.08, 0.16, . . . , 0.96}. For each data set, we performed standard 5-fold
cross-validation. We randomly divided the data into training, validation and
test set in the ratio 3:1:1. We then repeated the experiments five times where
each time we used a different random partition.

We first ran initial experiments testing the confidence-based algorithms.
While the alternative algorithms we described in Section 5 are based on tighter
surrogate losses for the rejection loss than that of DHL, empirical evidence
suggests that DHL outperforms these alternatives (see Appendix E). Further-
more, we ran experiments comparing the two CHR algorithms which show
that on average the CHR with LMH performs slightly better than the CHR
with LPH (see Appendix F). Thus, in this section we report the results of sev-
eral experiments comparing the best of each type of algorithm: CHR based on
LMH and the DHL algorithm.

We first tested DHL and CHR based on LMH on a synthetic data which we
generated by uniformly sampling one thousand points in the unit square such
that the points above the y = −x+ 1 are labeled positive, between y = −x+ 1
and y = −x+ 0.5 are labeled negative, and below y = −x+ 0.5 are randomly
assigned a label (see Figure 6). For this set of experiments, we used polynomial
kernels of degree d ∈ {1, 2, 3} for both algorithms. Figure 6 clearly shows how
CHR finds the best possible rejection region, meaning the region where we
randomly assigned a label, while DHL is unable attain this region since the
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Table 1 Results for the synthetic data as a function of cost c. The last three columns
are the degree of the polynomial kernels used by the classifier function for DHL and CHR
and by the rejection function for CHR.

Cost Rejection loss Rejection loss Classifier deg. Classifier deg. Rejector deg.
DHL CHR DHL CHR CHR

0.05 0.154 ± 0.146 0.026 ± 0.002 1 3 2
0.1 0.103 ± 0.011 0.041 ± 0.011 1 2 3
0.15 0.113 ± 0.011 0.033 ± 0.004 1 2 3
0.2 0.130 ± 0.014 0.051 ± 0.016 1 2 3
0.25 0.145 ± 0.021 0.067 ± 0.011 1 2 3
0.3 0.188 ± 0.036 0.077 ± 0.013 1 2 3
0.35 0.248 ± 0.064 0.085 ± 0.017 3 2 3
0.4 0.323 ± 0.066 0.088 ± 0.013 3 2 3
0.45 0.382 ± 0.059 0.088 ± 0.014 3 2 1
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CHR Classification for c=0.2

Fig. 7 CHR classification for rejection cost of c = 0.05 and c = 0.2.

points that it chooses to reject are restricted between its positive and negative
labeled points.

For the parameters with the smallest rejection loss on the validation set,
we provide the average rejection loss on the test set in Table 1, which shows
that CHR substantially outperforms DHL. We also report the degree of the
polynomial kernels used by each algorithm. Figure 7 shows the effects of cost
c on CHR’s classification surface. As we increase the cost c, less points are
rejected as we would expect and moreover, the points that are rejected are
chosen in the correct region, that is points below y = −x+ 1

2 .
We then tested the algorithms on nine data sets from the UCI data repos-

itory, specifically australian, cod, skin, liver, banknote, haberman, pima,
monk, and transfusion. Table 2 shows the sample size and number of features
for each data set used in our experiments. For these experiments, we used poly-
nomial kernels of degree d ∈ {1, 2, 3} as well as Gaussian kernels with widths
in the set {1, 10, 100} for both algorithms.

For each fixed value of c, we chose the parameters with the smallest average
rejection loss on the validation set. For these parameter values, Table 3 shows
the corresponding rejection loss on the test set for the CHR algorithm based on
LMH and the DHL algorithm both with cost c = 0.25. The rejection loss results
of Table 3 show that the CHR algorithm yields a substantial improvement over
the DHL algorithm. These findings are statistically significant at the 1% level
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Table 2 Sample size and the number of features for each data set.

Data Sets Sample Size Feature

synthetic 1, 000 2
australian 690 14
liver 345 6
cod 369 8
skin 400 3
banknote 1, 372 4
haberman 306 3
pima 768 8
monk 124 6
transfusion 748 4

Table 3 Experimental results on the test set for the DHL algorithm and the CHRMH

algorithm for the fixed cost value c = 0.25.

Rejection Rejection Fraction Fraction Non-rejected Non-rejected Non-rejected
loss loss rejected rejected error error err (incr. thrh.)

Data DHL CHRMH DHL CHRMH DHL CHRMH DHL

cod 0.176± .030 0.098± .037 0.186± .055 0.024± .028 0.130± .043 0.092± .039 0.186± .033
skin 0.158± .041 0.043± .020 0.093± .033 0.052± .027 0.135± .037 0.030± .024 0.135± .041
bank 0.061± .022 0.030± .006 0.066± .016 0.036± .022 0.045± .018 0.021± .008 0.044± .016
haber 0.261± .033 0.211± .037 0.875± .132 0.439± .148 0.043± .027 0.102± .048 0.252± .110
pima 0.241± .025 0.171± .017 0.055± .007 0.700± .055 0.227± .025 0.043± .023 0.112± .060
australian 0.115± .026 0.111± .021 0.136± .008 0.172± .024 0.081± .025 0.068± .023 0.349± .100
liver 0.236± .040 0.248± .005 0.397± .047 0.980± .019 0.136± .044 0.003± .006 0.292± .120
monk 0.326± .061 0.242± .016 0.184± .134 0.776± .300 0.280± .063 0.048± .072 0.144± .101
transfusion 0.240± .034 0.176± .026 0.748± .303 0.420± .120 0.053± .053 0.071± .045 0.134± .111

or higher with one-sided paired t–test for all data sets except for the liver

and australian data sets.
Table 3 also includes the fraction of rejected points and the standard clas-

sification error on non-rejected points. We can see from the table that the
fraction of points that are rejected depends primarily on the dataset and on
the algorithm. For almost all datasets, the DHL algorithm predicts at a higher
rate the wrong label on non-rejected points compared to the CHR algorithm.
In order to level the playing field for the two algorithms, the right most column
of Table 3 was calculated as follows. First, we matched the fraction rejected
of the DHL algorithm with fraction rejected of the CHR algorithm by varying
the rejection threshold value, γ. Second, we recorded in the table the error on
the remaining non-rejected points. This then shows that the CHR algorithm
not only rejects the more difficult to classify sample points, but also obtains a
significantly better error rate on the remaining points.

We now provide a series of figures that highlight different properties of the
two algorithms for the UCI datasets. In Figure 8, we show the rejection loss
as a function of the cost for six of our data sets. These plots demonstrate that
the difference in accuracy between the two algorithms holds consistently for
almost all values of c across all the data sets. Figure 9 shows that, as we would
except, that the confidence-based algorithm only rejects on the boundary of the
surface while the CHR algorithm does not restrict its rejection regions to only
areas of low confidence for the skin dataset. Figure 10 shows the conditional
probabilities over the test set of the CHR algorithm and the DHL algorithm
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Fig. 8 Average rejection loss on the test set as a function of cost c for the DHL algorithm
(blue line) and the CHR algorithm (red line) for six datasets. The first row shows the
synthetic, skin, and cod, the middle row shows the banknote, australian and pima,
and bottom row shows the monk, transfusion, and haberman.

Fig. 9 The left figure shows CHR’s classification of sample test points from the skin
dataset with respect to different feature vectors. The right figure shows their classification
by DHL and demonstrates how DHL rejects in areas of low confidence.

as a function of a feature vector for the australian data set. It indicates that
DHL does not reject nearly as much as CHR, yet the sum of the positive and
rejected points for the two algorithms is the almost the same (grey line).

In the appendix, we provide a series of tables that further analyze the
difference between the two algorithms. Tables F2 report the average rejection
loss with standard deviations on the test set of each algorithm for different cost
values across the data sets. Note that the rejection loss equals the associated
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Fig. 10 The figures show the conditional probabilities of the CHR algorithm (left) and
DHL algorithm (right) as a function of a feature vector for the australian test set.

cost when the algorithm rejects all the points (i.e. see DHL algorithm on
australian with c = 0.05). Tables F3 show the average fraction of the test
points rejected by each algorithm for different values of c across the data sets.
As the cost of rejection c increases, less points are rejected by both algorithms.
Tables F4 provide the classification error on the non-rejected points for all the
algorithms. For most values of c, the CHR algorithm classifies correctly the
non-rejected points at a higher rate than the DHL algorithm.

7 Conclusion

We presented a detailed study of the problem of learning with rejection, which
is a key question in a number of applications. We gave a general formulation
of the problem for which we provided a theoretical analysis, including gen-
eralization guarantees, the derivation of different convex surrogates that are
calibrated and consistent, and margin bounds that helped us devise new algo-
rithms. The empirical results we reported demonstrate the effectiveness of our
algorithms in several datasets. Our general formulation can further inspire the
design of other algorithms as well as new theoretical insights and studies, one
such a potential area being active learning. Furthermore, a natural extension
of our framework is to include a constraint on the maximum fraction of points
that can be rejected. Such an additional constraint will require new algorithms
and generalization bounds.
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Appendix A Consistency of convex surrogates

In this appendix, we derive two theorems about the consistency of the con-
vex surrogate, LMH. The first theorem shows that the convex surrogate is
calibrated with respect to the Bayes solution and the second theorem upper
bounds the excess risk of the rejection loss by the excess risk of the surrogate
loss. For both theorems, we will analyze the expected surrogate loss, which
can be written in terms of η(x):

E
(x,y)∼D

[LMH(h, r, x, y)] = E
x

[η(x)φ(−h(x), r(x)) + (1− η(x))φ(h(x), r(x))] ,

(A1)

where φ(−h(x), r(x)) = max
(

1 + 1
2 (r(x)− h(x)) , c

(
1− 1

1−2cr(x)
)
, 0
)

. For

simplicity, we also define

Lφ(η(x), h(x), r(x)) = η(x)φ(−h(x), r(x)) + (1− η(x))φ(h(x), r(x)). (A2)

The idea behind the proof of the first theorem below is to find the minimizer
of (u, v) 7→ Lφ(η(x), u, v) for any fixed x in order to then re-write it in terms
of the infimum of the expected rejection loss.

Theorem 3. Let (h∗M, r
∗
M) denote a pair attaining the infimum of the expected

surrogate loss, E(x,y)[LMH(h∗M, r
∗
M, x, y)] = inf(h,r)∈meas E(x,y)[LMH(h, r, x, y)].

Then, for β = 1
1−2c and α = 1,

1. the surrogate loss LMH is calibrated with respect to the Bayes classifier:
sign(h∗) = sign(h∗M) and sign(r∗) = sign(r∗M);

2. furthermore, the following equality holds for the infima over pairs of
measurable functions:

inf
(h,r)

E
(x,y)∼D

[LMH(h, r, x, y)] = (3− 2c) inf
(h,r)

E
(x,y)∼D

[L(h, r, x, y)].

Proof Since the infimum of the expected surrogate loss is over all measurable func-
tions, to determine (h∗M, r

∗
M) it suffices to find, for any fixed x the minimizer of

(u, v) 7→ Lφ(η(x), u, v). For a fixed x, minimizing Lφ(η(x), u, v) with respect to (u, v)
is equivalent to minimizing seven LPs. One can check that the optimal points of these
LPs are in the set (u, v) ∈ {(0, (2c − 2)(1 − 2c)), (3 − 2c, 1 − 2c), (−3 + 2c, 1 − 2c)}.
Evaluating Lφ(η(x), u, v) at these points, we find that

Lφ(η(x), 3− 2c, 1− 2c) = (3− 2c)(1− η(x))

Lφ(η(x),−3 + 2c, 1− 2c) = (3− 2c)η(x)

Lφ(η(x), 0, (2c− 2)(1− 2c)) = (3− 2c)c.

Thus, we can conclude that the minimum of Lφ(η(x), u, v) is attained at
(3 − 2c)[η(x)1η(x)<c + c1c≤η(x)≤1−c + (1 − η(x))1η(x)>1−c], which completes
the proof. Below, for completeness, we show how to solve three of these LPs
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where Lφ(η(x), h, r) = 0, Lφ(η(x), h, r) = c
(

1− 1
1−2cr

)
, and Lφ(η(x), h, r) =

η(x)
(
1 + 1

2 (r − h)
)

+ (1− η(x))
(
1 + 1

2 (r + h)
)

.

1. For Lφ(η(x), h, r) = 0, we have the following optimization problem

min
(h,r)

0

subject to: c

(
1− 1

1− 2c
r

)
≤ 0, 1 +

1

2
(r − h) ≤ 0, 1 +

1

2
(r + h) ≤ 0

Now the constraint c
(

1− 1
1−2cr

)
≤ 0 implies that r ≥ (1 − 2c)c > 0. If

we sum the remaining constraints 1 + 1
2 (r − h) ≤ 0, 1 + 1

2 (r + h) ≤ 0, they
imply that r ≤ −2. Thus, this LP is not feasible.

2. For Lφ(η(x), h, r) = c(1 − 1
1−2cr), we have the following optimization

problem

min
(h,r)

c

(
1− 1

1− 2c
r

)
subject to: c

(
1− 1

1− 2c
r

)
≥ 0, 1 +

1

2
(r − h) ≤ c

(
1− 1

1− 2c
r

)
,

1 +
1

2
(r + h) ≤ c

(
1− 1

1− 2c
r

)
Summing the last two constraints and solving for r, we have that r ≤
2(c− 1)(1− 2c) ≤ 0. Since this optimization problem, we want to maximize
r, we can conclude that r∗M = 2(c− 1)(1− 2c) and that h∗M = 0.

3. For Lφ(η(x), h, r) = η(x)(1 + 1
2 (r− h)) + (1− η(x))(1 + 1

2 (r+ h)), we have
the following problem

min
(h,r)

η(x)

(
1 +

1

2
(r − h)

)
+ (1− η(x))

(
1 +

1

2
(r + h)

)
subject to: 1 +

1

2
(r − h) ≥ 0, 1 +

1

2
(r − h) ≥ c

(
1− 1

1− 2c
r

)
,

1 +
1

2
(r + h) ≥ 0, 1 +

1

2
(r + h) ≥ c

(
1− 1

1− 2c
r

)
,

By simplifying the constraints, we can see that the feasibility region of the
optimization problem has to be between the lines 2+r ≥ h and h ≥ −(2+r)

and between 2(1−c)+ 1
1−2cr ≥ h and h ≥ −

(
2(1− c) + 1

1−2cr
)

. Notice that

−(2+r) = r+2 at r = −2 and that −
(

2(1− c) + 1
1−2cr

)
= 2(1−c)+ 1

1−2cr

at r = 2(c − 1)(1 − 2c). Since −2 ≤ 2(c − 1)(1 − 2c) for 0 < c < 0.5, we
have that −2 is not in the feasibility region of the optimization problem.
Thus one of the optimality points is at r = 2(c − 1)(1 − 2c) and h = 0.
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We also have that 2 + r = 2(1 − c) + 1
1−2cr at the point r = 1 − 2c

and h = 3 − 2c. Similarly, −(2 + r) = −
(

2(1− c) + 1
1−2cr

)
at the point

r = 1− 2c and h = −(3− 2c). Thus all the optimality points are in the set
(h, r) ∈ {(0, 2(c− 1)(1− 2c)), (3− 2c, 1− 2c), (−(3− 2c), 1− 2c)}

�

We now provide a proof of the excess risk bound of our convex surrogate.
It consists of analyzing three cases when L∗(η(x)) = c, L∗(η(x)) = η(x), and
L∗(η(x)) = 1 − η(x) and then using the calibration results of the previous
theorem.

Theorem 4. Let RM (h, r) = E(x,y)∼D[LMH(h, r, x, y)] denote the expected
surrogate loss of a pair (h, r). Then, the excess risk of (h, r) is upper bounded
by its surrogate excess error as follows:

R(h, r)−R∗ ≤ 1

(1− c)(1− 2c)
(RM (h, r)−R∗M ) .

Proof Conditioning on the label y and using the fact that the infimum is over all
measurable functions, we can switch the infimum and expectation as follows:

R(h, r)−R(h∗, r∗) =E
x

[
(η(x)− L∗(η(x)))1sgn(h) 6=1,r>0

+ (1− η(x)− L∗(η(x)))1sgn(h) 6=−1,r>0 + (c− L∗(η(x)))1r≤0

]
(A3)

where L∗(η(x)) = η(x)1η(x)<c + c1c≤η(x)≤1−c + (1 − η(x))1η(x)>1−c. We can thus
focus on minimizing the components inside the expectation for a fixed x. From the
calibration theorem, we have that L∗φ(η(x)) = (3 − 2c)L∗(η(x)). Since L∗(η(x))
admits three values, we can consider the following three cases: L∗(η(x)) = c,
L∗(η(x)) = η(x), and L∗(η(x)) = 1 − η(x). Below, we describe one such case, but
the remaining can be analyzed by a similar reasoning. When c ≤ η(x) ≤ 1 − c,
we have that L∗(η(x)) = c and so r∗ ≤ 0. Since by the calibration theorem,
sign(r∗) = sign(r∗M ), we have that r∗M ≤ 0 as well as Lφ∗(η(x)) = (3− 2c)c. Under
this case, the Equation A3 can be written as R(h, r) − R(h∗, r∗) = Ex

(
(η(x) −

c)1sgn(h)6=1,r>0 + (1− η(x)− c)1sgn(h) 6=−1,r>0

)
. Note that these indicator functions

on the right hand side are mutually exclusive, thus we can just show that each com-
ponent is bounded. Since for the value of η(x) and c that satisfy c ≤ η(x) ≤ 1− c, we
have (η(x)−c)1sgn(h) 6=1,r>0 ≤ (η(x)−c)1h<0,r>0 and (1−η(x)−c)1sgn(h)6=−1,r>0 ≤
(1− η(x)− c)1h≥0,r>0. Thus, for the first component, we want to show that

(η(x)− c)1h<0,r>0 ≤
1

(1− c)(1− 2c)

(
Lφ(η(x), h, r)− (3− 2c)c

)
1h<0,r>0

and for the second component, we want to show that

(1− η(x)− c)1h≥0,r>0 ≤
1

(1− c)(1− 2c)

(
Lφ(η(x), h, r)− (3− 2c)c

)
1h≥0,r>0.

We will prove that the bound holds for each component if there exists a constant
κ > 0 such that inequality 1− 2c ≤ κ

(
1− (3− 2c)c

)
holds. Since 1−2c

1−(3−2c)c
= 1

1−c ,
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we can easily conclude that κ := 1
1−c . Now since 1

(1−c)(1−2c)
≥ 1

1−c , we have the

inequality of the theorem under this case.
Focusing on the second component, we proceed by first finding the minimum

of the Lφ(η(x), h, r)1h≥0,r>0 and then show that the inequality is satisfied. The
optimality points of minimizing Lφ(η(x), h, r)1h≥0,r>0 are (h, r) ∈ {(3 − 2c, 1 −
2c), (0, 0), (2(1 − c), 0), (0, 1 − 2c)}. Evaluating Lφ at these optimal points, we have

that Lφ(η(x), 3 − 2c, 1 − 2c) = (3 − 2c)(1 − η(x)), Lφ(η(x), 0, 1 − 2c) = 3
2 − c,

Lφ(η(x), 0, 0) = 1, and Lφ(η(x), 2(1 − c), 0) = 1 + (1 − 2η(x))(1 − c). Now since

(3− 2c)(1− η(x)) ≥ 1 + (1− 2η(x))(1− c) for c ≤ η(x) ≤ 1− c and since 3
2 − c > 1

for c < 1
2 , we can exclude (2(1− c), 0) and (0, 1− 2c). Thus, depending on the sign

of η(x), the minimum is attained at Lφ(η(x), 0, 0) = 1 or at Lφ(η(x), 0, 1 − 2c) =
1 + (1− 2η(x))(1− c). For Lφ(η(x), 0, 1− 2c) = 1 + (1− 2η(x))(1− c), the inequality
1−η(x)−c ≤ 1+(1−2η(x))(1−c)−(3−2c)c holds for all c ≤ η(x) ≤ 1−c. While for
Lφ(η(x), 0, 0) = 1, since c ≤ η(x), we have that 1−η(x)−c ≤ 1−2c ≤ κ

(
1−(3−2c)c

)
holds.

Now for the first component, we again proceed by first finding the minimum of
the Lφ(η(x), h, r)1h<0,r>0 and then by showing the inequality is satisfied. By similar
reasoning as the calibration theorem, we have that the optimality points are (h, r) ∈
{(−(3−2c), 1−2c), (0, 0), (−2(1−2c), 0), (0, 1−2c)}. Evaluating Lφ at these points,

we have that Lφ(η(x),−(3− 2c), 1− 2c) = (3− 2c)η(x), Lφ(η(x), 0, 1− 2c) = 3
2 − c,

Lφ(η(x), 0, 0) = 1, and Lφ(η(x),−2(1−c), 0) = η(x)(2−c)+(1−η(x))c. By the similar
reasoning as above, we can again exclude the points (−(3−2c), 1−2c) and (0, 1−2c).
Depending on the sign of η(x), the minimum is attained at Lφ(η(x), 0, 0) = 1 or at
Lφ(η(x),−2(1−c), 0) = η(x)(2−c)+(1−η(x))c. For all c ≤ η(x) ≤ 1−c, we have that
the inequality η(x)− c ≤ η(x)(2− c) + (1− η(x))c holds. Now for Lφ(η(x), 0, 0) = 1,
we have that η(x)− c ≤ 1− 2c ≤ κ

(
1− (3− 2c)c

)
. �

Appendix B Alternative convex surrogate
functions

Alternative convex surrogate functions can be found using a concave lower
bound formula described here. Let u 7→ Φ(u) and u 7→ Ψ(u) be strictly increas-
ing concave functions lower bounding 1u>0. Then, the following inequalities
hold:

L(h, r, x, y)

≤ 1yh(x)≤01r(x)>0 + c 1r(x)≤0

=
(
1− 1yh(x)>0

)
1r(x)>0 + c 1r(x)≤0

= 1r(x)>0 − 1yh(x)>01r(x)>0 + c 1r(x)≤0

=
(
1− 1r(x)≤0

)
− 1yh(x)>01r(x)>0 + c 1r(x)≤0

= 1− (1− c)1r(x)≤0 − 1yh(x)>01r(x)>0

= 1− (1− c)1r(x)≤0 − 1min(yh(x),r(x))>0

≤ 1− (1− c)Φ(−r(x))−Ψ(min(yh(x), r(x)))

= 1− (1− c)Φ(−r(x))−min(Ψ(yh(x)),Ψ(r(x))). (B4)
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The last term of right - hand side of (B4) defines a convex function of h and
r since the minimum of two concave functions is concave.

Appendix C Connections to cost-sensitive
learning

In this section, we draw connections between the cost-sensitive learning
framework and learning with rejection.

The standard cost-sensitive algorithms and theory are designed for
unknown distributions; however, in our setting, there is some prior information
about the distribution since the rejection label has measure zero, a fact that
should be exploited to derive a finer analysis. Moreover, using cost-sensitive
algorithms for the rejection setting might not produce any interesting solu-
tion since they would treat rejection as any other label and since it is unclear
how they would perform with a label for which there is no training data
[Beygelzimer et al., 2008, 2005, Lin, 2014]. To elaborate on this, we first intro-
duce a natural model for multi-class classification with rejection which can
be viewed as an instance of cost-sensitive models and discuss its properties.
The hypothesis set commonly adopted in multi-class classification is that of
scoring functions: a scoring function h(·, y) : X → R is learned for each class
y ∈ Y and the class predicted for x ∈ X is the one with the highest score,
that is argmaxy∈Y h(x, y). This is also the hypothesis set adopted in the more
complex multi-class classification scenario of structured prediction where mis-
classification is cost-sensitive: the loss L(y, y′) of predicting y′ ∈ Y instead of
the correct class y ∈ Y depends on the pair (y, y′).

This suggests a natural model for multi-class classification with rejection.
As in the standard multi-class case, we can introduce a scoring function for
rejection r(x) = h(x, r), where r is the rejection symbol. The label predicted,
which is either a regular class label or the label r with the semantics of
rejection, is the one with the highest score:

h(x) = argmax
y∈Y∪{r}

h(x, y).

Thus, the rejection function r is implicitly defined by r(x) = maxy∈Y h(x, y)−
h(x, r) and the rejection loss can be expressed by

L(h, r, x, y) = 1h(x,y)≤maxy′ 6=y h(x,y′)1h(x,r)<maxy∈Y h(x,y) + c1h(x,r)≥maxy∈Y h(x,y).

This loss can be upper bounded by the convex surrogate

LSH(h, r, x, y) = max
(

0, 1−[h(x, y)−max
y′ 6=y

h(x, y′)], c
(
1−[h(x, y)−h(x, r)]

))
,
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which is closely related to the loss function used in StructSVM. Using LSH and
linear functions h(x, y) = wy ·Φ(x) for each class y ∈ Y ∪ {r} with a norm-
2 regularization leads to an algorithm defined by the following optimization
problem

min
W,wr,ξ

λ

2

k∑
l=1

wl
2 +

λ′

2
wr

2 +

m∑
i=1

ξi

subject to: ξi ≥ c(1−wyi · Φ(xi) +wr · Φ(xi)),

ξi ≥ 1−wyi · Φ(xi) +wl · Φ(xi),

ξi ≥ 0, i ∈ [1,m],∀l ∈ Y − {yi},

where W = (w1, . . . ,wk) and ξ = (ξ1, . . . , ξm).
In principle, one can use the theory and learning bounds from struc-

tured prediction to derive the optimization problem above, but in the absence
of rejection labels in the data, there is no incentive for the rejection scor-
ing function to be large. More precisely, suppose that the dataset has only
positive features so that Φ(xi) has only positive elements. Now, consider-
ing the constraints of the optimization problem, wr appears only in ξ ≥
c(1 −wyi · Φ(xi) +wr · Φ(xi)) and as a consequence of Φ(xi) being positive,
these constraints will push wr to be negative. Combining this with the fact
that the objective is to minimize wr

2, the optimization problem will find a
solution such that wr is small and negative. One may also see this directly by
looking at the KKT conditions for wr of the optimization problem. Thus, for
positive Φ(xi) the score for the rejection label will be a small negative number
while scores of the other class-labels could be positive. This implies that this
method is likely not abstain very often. Thus, while very natural, this cost-
sensitive formulation does not lead to a useful algorithm in this scenario. One
may seek to modify the objective function to promote larger values for the
scoring functions but our attempts typically led to non-convex functions and
the absence of an r label in the training sample remained a problem.

There are existing cost-sensitive algorithms that can be used in the rejec-
tion setting [Beygelzimer et al., 2008, 2005, Lin, 2014], which are based on
reductions stemming from the work of Langford and Beygelzimer [2005]. How-
ever, their guarantees are based on relating the difference of the generalization
error and the Bayes optimal error of the cost sensitive problem to that of
reduced binary problem by paying a multiplication factor that usually depends
on the quality of the reduction, which results in a quantity that is not easy to
compare to. Furthermore, as argued by Tu and Lin [2010], these algorithms
can be quite complicated both in terms of their encoding structure and their
algorithmic procedure since they reduce the cost-sensitive problem first to a
weighted binary classification, that is then converted into a binary classifica-
tion problem via the Costing algorithm of Zadrozny et al. [2003], and which in
turn is solved by a standard algorithm for binary classification. Note that the
convex surrogate loss approach described in the previous paragraph is closer
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in nature to the cost-sensitive work of Tu and Lin [2010], but their algorithm
does not apply to the rejection setting.

The analysis of calibration in Ramaswamy and Agarwal [2016] is not help-
ful for the analysis of learning with rejections since the main point of their
paper is consistency guarantees and analysing a notion they introduce, convex
calibration dimension of the loss matrix, which chracterizes when it is possi-
ble to design a convex surrogate that is calibrated. Instead, we would need
guarantees and an analysis for the convex surrogate, LMH, and our main con-
cern is not consistency. Additionally, the size of our loss matrix as defined
in Ramaswamy and Agarwal [2016] is small, thus the analysis of the dimen-
sionality is not relevant and in fact their bound for the rejection loss is not
tight.

Appendix D Algorithms with kernel-based
hypotheses

In this section, we provide further details related to the algorithms with kernel-
based hypothesis.

D.1 Optimization problems

We derive the optimization problem first for loss LMH and then for loss LPH.
We find that both the primal and dual optimization problems for LMH and
LPH are QPs.

Firstly, by the generalization of the Corollary 9 to a uniform bound over
ρ, ρ′ ∈ (0, 1) and by picking Λ = 1 and Λ′ = 1, we have that, for any δ > 0,
with probability at least 1 − δ, the following holds for all ρ, ρ′ ∈ (0, 1), H =
{x→ w · Φ(x) : ‖w‖ ≤ 1} and R = {x→ u · Φ′(x) : ‖u‖ ≤ 1}:

R(h, r) ≤ 1

m

m∑
i=1

max
(

1 + α
2

(
u·Φ′(xi)

ρ′ − yw·Φ(xi)
ρ

)
, c
(

1− βu·Φ′(xi)
ρ′

)
, 0
)

+ α

√
(κ/ρ)2

m + (2βc+ α)

√
(κ′/ρ′)2

m + C(ρ, ρ′,m, δ),

where C(ρ, ρ′,m, δ) =

√
log 1

δ

2m +
√

log log 1/ρ
m +

√
log log 1/ρ′

m . Secondly, under

binary classification, the functions h/ρ and r/ρ admit the same generalization
error as h and r for any ρ ∈ (0, 1) and ρ′ ∈ (0, 1). Thus, with probability at
least 1 − δ, the following holds for all ρ ∈ (0, 1), ρ′ ∈ (0, 1), h ∈ H = {x →
w · Φ(x) : ‖w‖ ≤ 1

ρ} and r ∈ R = {x→ u · Φ′(x) : ‖u‖ ≤ 1
ρ′ }

R(h, r) ≤ 1

m

m∑
i=1

max
(

1 +
α

2

(
u · Φ′(xi)− yw · Φ(xi)

)
, c
(
1− βu · Φ′(xi)

)
, 0
)
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+ α

√
(κ/ρ)2

m
+ (2βc+ α)

√
(κ′/ρ′)2

m
+ C(ρ, ρ′,m, δ).

For any ρ ∈ (0, 1) and ρ′ ∈ (0, 1), the sum term on the right hand side depends
on w and u and so the bound leads to the following optimization problem

min
‖w‖2≤ 1

ρ2

‖u‖2≤ 1
ρ′2

1

m

m∑
i=1

max
(

1 +
α

2

(
u · Φ′(xi)− yw · Φ(xi)

)
, c
(
1− βu · Φ′(xi)

)
, 0
)
.

Lastly, we introduce slack variables ξi for i ∈ [1,m] along with Lagrange
multipliers λ ≥ 0 and λ′ ≥ 0 so that the primal optimization problem for LMH

is as follows:

min
w,u,ξ

λ

2
‖w‖2 +

λ′

2
‖u‖2 +

m∑
i=1

ξi

subject to ξi ≥ c
(
1− β(u · Φ′(xi) + b′)

)
,

ξi ≥ 1 +
α

2

(
u · Φ′(xi) + b′ − yi(w · Φ(xi) + b)

)
,

ξi ≥ 0, i ∈ [1,m],

where we explicitly mark both the offset b of classifier h(x) and offset b′ of
rejection function r(x). SinceK(xi, xj) = Φ(xi)·Φ(xj) andK ′(xi, xj) = Φ′(xi)·
Φ′(xj), the dual optimization problem is given by the following:

max
η,ζ

λλ′
m∑
i=1

ηi + λλ′c
m∑
i=1

ζi −
α2λ′

8

m∑
i,j=1

ηiηjyiyjK(xi, xj)

− λ

2

m∑
i,j=1

(αηi
2
− cβζi

)(αηj
2
− cβζj

)
K ′(xi, xj)

subject to

m∑
i=1

ηiyi = 0,

m∑
i=1

(αηi
2
− cβζi

)
= 0,

ηi ≥ 0, ζi ≥ 0, ηi + ζi ≤ 1, i ∈ [1,m].

By a similar reasoning as above, we derive the optimization problem for the
surrogate loss LPH. By introducing slack variables ξi for i ∈ [1,m] as well
as Lagrange multipliers λ ≥ 0 and λ′ ≥ 0, we have the following primal
optimization problem for LPH:

min
w,u,ξ,ξ′

λ

2
‖w‖2 +

λ′

2
‖u‖2 +

m∑
i=1

ξi +

m∑
i=1

ξ′i

subject to ξ′i ≥ c(1− β(u · Φ′(xi) + b′)),
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ξi ≥ 1 +
α

2
(u · Φ′(xi) + b′ − yi(w · Φ(xi) + b)),

ξi ≥ 0, ξ′i ≥ 0, i ∈ [1,m].

Since K(xi, xj) = Φ(xi) · Φ(xj) and K ′(xi, xj) = Φ′(xi) · Φ′(xj), the dual
optimization problem of LPH is given by the following:

max
η,ζ

λλ′
m∑
i=1

ηi + λλ′c
m∑
i=1

ζi −
α2λ′

8

m∑
i,j=1

ηiηjyiyjK(xi, xj)

− λ

2

m∑
i,j=1

(αηi
2
− cβζi

)(αηj
2
− cβζj

)
K ′(xi, xj)

subject to

m∑
i=1

ηiyi = 0,

m∑
i=1

(αηi
2
− cβζi

)
= 0,

0 ≤ ηi ≤ 1, 0 ≤ ζi ≤ 1, i ∈ [1,m].

Appendix E Confidence-based rejection
algorithms

In this section, we present the optimization problems studied in Section 5
and then report experimental results that compares these different confidence-
based rejection algorithms.

E.1 Optimization problems

We first consider the algorithms that hold for γ ∈ [0, 1−c]. The DHL algorithm
of Bartlett and Wegkamp [2008] solves the following optimization problem

min
α,ξ,β

m∑
i=1

ξi +
1− 2c

c
βi

subject to

m∑
i=1,j=1

αiαjK(xi, xj) ≤ (1− c)2, ξi ≥ 1− y
m∑
i=1

αiK(xi, x) ∧ ξi ≥ 0,

βi ≥ −y
m∑
i=1

αiK(xi, x) ∧ βi ≥ 0, i ∈ [1,m].

The optimization problem based on the hinge loss is given by

min
α,ξ

m∑
i=1

ξi

subject to

m∑
i=1,j=1

αiαjK(xi, xj) ≤ (1− c)2,
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ξi ≥ 1− y
m∑
i=1

αiK(xi, x) ∧ ξi ≥ 0, i ∈ [1,m],

and its dual formulation is as follows

max
α,η,ζ

m∑
i=1

αi +

m∑
i=1

ηi − ζr2

subject to 0 ≤ ζ, 0 ≤ αi, 0 ≤ ηi, 0 ≤ αi + ηi ≤ 1, i ∈ [1,m]
m∑
i=1

(αi + aηi)(αj + aηj)yiyjK(xi, xj) = (ζr)2

The above shows that the optimization problem solved by DHL is QCQP while
the optimization problem based on the hinge loss is a QP.

We now show the optimization problem based on the loss L1 that holds for
all γ ∈ [0, 1]:

min
α,ξ

m∑
i=1

ξi

subject to

m∑
i=1,j=1

αiαjK(xi, xj) ≤ 1,

ξi ≥ 0, ξi ≥ 1− y(1− c)
m∑
i=1

αiK(xi, x), i ∈ [1,m].

Its dual formulation is as follows

max
α,ζ

∑
i

αi − ζ(1− c)2

subject to
∑
i,j

αiαjyiyjK(xi, xj) = ζ2(1− c)2, 1 ≥ α ≥ 0, ζ ≥ 0, i ∈ [1,m]

where we note that this optimization problem is a QCQP.

E.2 Empirical comparison of confidence-based rejection
algorithms

We tested the confidence-based algorithms on four data sets from the UCI
repository: australian, cod, skin, and liver. Table E1 shows the average rejec-
tion loss along with the standard deviations for the Hinge loss, L1 loss, and
the DHL confidence-based algorithms across the four data sets for the nine
cost values c. These results show that the DHL algorithm outperforms the
Hinge and L1 algorithms across four data sets for most values of c. They were
obtained using standard 5-fold cross-validation: For each data set, we split
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Table E1 Average rejection loss along with the standard deviations for confidence-based
algorithms described in Section 5 across the four data sets for the nine cost values c.

australian australian australian liver liver liver

Cost Hinge Loss L1 Loss DHL Hinge L1 Loss DHL

0.05 0.147 ± 0.042 0.147 ± 0.042 0.112 ± 0.033 0.338 ± 0.146 0.313 ± 0.138 0.061 ± 0.014
0.1 0.149 ± 0.044 0.149 ± 0.044 0.120 ± 0.024 0.350 ± 0.119 0.262 ± 0.129 0.111 ± 0.024
0.15 0.150 ± 0.047 0.150 ± 0.047 0.128 ± 0.025 0.373 ± 0.087 0.297 ± 0.119 0.166 ± 0.022
0.2 0.148 ± 0.049 0.148 ± 0.049 0.130 ± 0.036 0.381 ± 0.066 0.289 ± 0.056 0.206 ± 0.017
0.25 0.148 ± 0.047 0.148 ± 0.047 0.134 ± 0.038 0.414 ± 0.063 0.346 ± 0.051 0.236 ± 0.040
0.3 0.151 ± 0.049 0.151 ± 0.049 0.137 ± 0.038 0.401 ± 0.035 0.374 ± 0.061 0.263 ± 0.042
0.35 0.149 ± 0.046 0.149 ± 0.046 0.141 ± 0.039 0.431 ± 0.022 0.402 ± 0.031 0.273 ± 0.041
0.4 0.148 ± 0.046 0.148 ± 0.046 0.148 ± 0.042 0.431 ± 0.022 0.431 ± 0.022 0.337 ± 0.048
0.45 0.150 ± 0.046 0.150 ± 0.046 0.150 ± 0.046 0.426 ± 0.026 0.426 ± 0.026 0.430 ± 0.017

cod cod cod skin skin skin

Cost Hinge Loss L1 Loss DHL Hinge L1 Loss DHL

0.05 0.192 ± 0.177 0.154 ± 0.084 0.044 ± 0.034 0.137 ± 0.077 0.083 ± 0.047 0.024 ± 0.016
0.1 0.191 ± 0.071 0.175 ± 0.085 0.077 ± 0.028 0.115 ± 0.044 0.110 ± 0.066 0.061 ± 0.031
0.15 0.235 ± 0.032 0.214 ± 0.064 0.123 ± 0.030 0.153 ± 0.063 0.111 ± 0.033 0.091 ± 0.031
0.2 0.268 ± 0.072 0.223 ± 0.046 0.175 ± 0.031 0.133 ± 0.045 0.168 ± 0.051 0.128 ± 0.036
0.25 0.263 ± 0.026 0.273 ± 0.050 0.204 ± 0.026 0.196 ± 0.053 0.221 ± 0.078 0.158 ± 0.041
0.3 0.273 ± 0.026 0.285 ± 0.035 0.230 ± 0.022 0.179 ± 0.058 0.209 ± 0.048 0.177 ± 0.044
0.35 0.274 ± 0.025 0.274 ± 0.025 0.259 ± 0.029 0.209 ± 0.151 0.213 ± 0.068 0.204 ± 0.056
0.4 0.276 ± 0.025 0.276 ± 0.025 0.273 ± 0.026 0.213 ± 0.068 0.195 ± 0.035 0.231 ± 0.067
0.45 0.276 ± 0.025 0.276 ± 0.025 0.276 ± 0.025 0.214 ± 0.068 0.202 ± 0.091 0.215 ± 0.066

the data randomly into training, test, and validation test in the ration 3:1:1.
We allowed the threshold γ to vary in {0.1, 0.2, . . . , 0.9} and the cost c values
range in c ∈ {0.05, 0.1 . . . , 0.45}. All the kernels are polynomial degree kernels
where the degree d is in {1, 2, 3} and unlike the experiments done in Section
6, we did not use Gaussian kernels for this initial set of experiments. For a
fixed cost value c, we find the combination of parameters (γ, d) with smallest
average rejection loss on the validation set and report the average rejection
loss for these parameters on the test set. Overall, these results show that DHL
outperforms the other algorithms on three out of four datasets for most of the
values of c. While the other algorithms are seemingly plausible alternatives, we
find through these preliminary results that the DHL is the superior algorithm
under this confidence based setting.

Appendix F Experiments comparing DHL
and CHR algorithms

In the following pages, we provide the results of the several experiments
described in Section 6. As a short summary, the CHR algorithm achieves a
better performance across all data sets for most values of cost c. Tables F2
shows the average rejection loss with standard deviations on the test set. The
CHRMH stands for the CHR algorithm based on LMH. Tables F3 reports the
average fraction of the test points rejected. Tables F4 provide the classification
error on the non-rejected points.

F.1 Experiments comparing CHR algorithms

In this section, we show the results of some initial experiments comparing the
two CHR Algorithms. Let CHRPH stand for the CHR algorithm based on LPH.
The experimental set-up is exactly the same as in Section 6 except that we just
used polynomial kernels of degree d ∈ {1, 2, 3}. Table F5 shows the average
rejection loss with standard deviations on the test set for both algorithms. We
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find that on average the CHRMH performs slightly better than the CHRPH as
is expected since the loss LPH is an upper bound of the loss LMH.
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Table F2 Average rejection loss along with the standard deviations on the test set for the
DHL algorithm and the CHRMH algorithm across different costs.

australian australian liver liver

Cost CHRMH DHL CHRMH DHL

0.05 0.041 ± 0.023 0.05 ± 0 0.055 ± 0.012 0.05 ± 0
0.1 0.049 ± 0.046 0.092 ± 0.02 0.100 ± 0.001 0.108 ± 0.019
0.15 0.060 ± 0.082 0.103 ± 0.022 0.151 ± 0.006 0.152 ± 0.018
0.2 0.075 ± 0.071 0.108 ± 0.024 0.197 ± 0.003 0.206 ± 0.017
0.25 0.111 ± 0.021 0.115 ± 0.026 0.248 ± 0.005 0.236 ± 0.04
0.3 0.114 ± 0.107 0.122 ± 0.025 0.299 ± 0.011 0.263 ± 0.042
0.35 0.128 ± 0.019 0.133 ± 0.023 0.322 ± 0.024 0.273 ± 0.041
0.4 0.116 ± 0.073 0.142 ± 0.023 0.343 ± 0.068 0.35 ± 0.039
0.45 0.140 ± 0.028 0.15 ± 0.046 0.343 ± 0.070 0.399 ± 0.031

cod cod skin skin

Cost CHRMH DHL CHRMH DHL

0.05 0.031 ± 0.009 0.036 ± 0.007 0.014 ± 0.004 0.024 ± 0.016
0.1 0.062 ± 0.017 0.061 ± 0.01 0.026 ± 0.008 0.05 ± 0.006
0.15 0.082 ± 0.023 0.081 ± 0.018 0.041 ± 0.016 0.086 ± 0.025
0.2 0.100 ± 0.024 0.096 ± 0.024 0.048 ± 0.021 0.128 ± 0.036
0.25 0.098 ± 0.037 0.176 ± 0.03 0.043 ± 0.020 0.158 ± 0.041
0.3 0.092 ± 0.029 0.23 ± 0.022 0.045 ± 0.019 0.177 ± 0.044
0.35 0.125 ± 0.049 0.259 ± 0.029 0.054 ± 0.017 0.204 ± 0.056
0.4 0.148 ± 0.043 0.273 ± 0.026 0.062 ± 0.024 0.231 ± 0.067
0.45 0.120 ± 0.021 0.276 ± 0.025 0.067 ± 0.024 0.213 ± 0.068

bank bank haber haber

Cost CHRMH DHL CHRMH DHL

0.05 0.015 ± 0.003 0.01 ± 0.006 0.050 ± 0.000 0.05 ± 0
0.1 0.024 ± 0.006 0.026 ± 0.012 0.100 ± 0.000 0.106 ± 0.008
0.15 0.025 ± 0.006 0.042 ± 0.02 0.149 ± 0.002 0.15 ± 0
0.2 0.028 ± 0.006 0.058 ± 0.02 0.189 ± 0.015 0.2 ± 0
0.25 0.030 ± 0.006 0.061 ± 0.022 0.211 ± 0.037 0.261 ± 0.033
0.3 0.028 ± 0.008 0.083 ± 0.025 0.224 ± 0.022 0.258 ± 0.025
0.35 0.028 ± 0.010 0.099 ± 0.028 0.231 ± 0.029 0.252 ± 0.015
0.4 0.027 ± 0.007 0.119 ± 0.028 0.240 ± 0.033 0.26 ± 0.021
0.45 0.029 ± 0.008 0.136 ± 0.027 0.250 ± 0.031 0.258 ± 0.022

pima pima

Cost CHRMH DHL

0.05 0.050 ± 0.000 0.052 ± 0.003
0.1 0.092 ± 0.006 0.094 ± 0.006
0.15 0.130 ± 0.009 0.14 ± 0.017
0.2 0.166 ± 0.011 0.197 ± 0.022
0.25 0.171 ± 0.017 0.241 ± 0.025
0.3 0.230 ± 0.011 0.25 ± 0.023
0.35 0.241 ± 0.024 0.25 ± 0.027
0.4 0.257 ± 0.024 0.255 ± 0.028
0.45 0.255 ± 0.030 0.26 ± 0.034
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Table F2 Average rejection loss along with the standard deviations on the test set for the
DHL algorithm and the CHRMH algorithm across different costs.

monk monk transfusion transfusion

Cost CHRMH DHL CHRMH DHL

0.05 0.064± 0.034 0.085± 0.079 0.049± 0.003 0.051± 0.002
0.1 0.103± 0.007 0.144± 0.083 0.096± 0.007 0.102± 0.015
0.15 0.142± 0.023 0.214± 0.131 0.130± 0.024 0.12± 0.03
0.2 0.197± 0.023 0.251± 0.098 0.155± 0.020 0.144± 0.041
0.25 0.242± 0.016 0.326± 0.061 0.176± 0.026 0.24± 0.034
0.3 0.244± 0.338 0.325± 0.085 0.190± 0.038 0.224± 0.05
0.35 0.308± 0.052 0.337± 0.056 0.190± 0.037 0.224± 0.05
0.4 0.242± 0.335 0.314± 0.107 0.203± 0.047 0.224± 0.05
0.45 0.256± 0.352 0.332± 0.105 0.216± 0.034 0.227± 0.047

synthetic synthetic

Cost CHRMH DHL

0.05 0.026 ± 0.002 0.154 ± 0.146
0.1 0.041 ± 0.011 0.103 ± 0.011
0.15 0.033 ± 0.004 0.113 ± 0.011
0.2 0.051 ± 0.016 0.13 ± 0.014
0.25 0.067 ± 0.011 0.145 ± 0.021
0.3 0.077 ± 0.013 0.188 ± 0.036
0.35 0.085 ± 0.017 0.248 ± 0.064
0.4 0.088 ± 0.013 0.323 ± 0.066
0.45 0.088 ± 0.014 0.382 ± 0.059
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Table F3 Average fraction of points rejected along with the standard deviations for the
DHL algorithm and the CHRMH algorithm across different costs.

australian australian liver liver

Cost CHRMH DHL CHRMH DHL

0.05 0.799 ± 0.446 1 ± 0 0.977 ± 0.022 1 ± 0
0.1 0.245 ± 0.284 0.258 ± 0.092 0.997 ± 0.006 0.968 ± 0.071
0.15 0.400 ± 0.548 0.165 ± 0.044 0.986 ± 0.014 0.919 ± 0.024
0.2 0.013 ± 0.016 0.143 ± 0.02 0.986 ± 0.014 0.887 ± 0.066
0.25 0.172 ± 0.024 0.136 ± 0.008 0.980 ± 0.019 0.397 ± 0.047
0.3 0.299 ± 0.275 0.106 ± 0.019 0.919 ± 0.030 0.142 ± 0.059
0.35 0.168 ± 0.029 0.097 ± 0.008 0.565 ± 0.310 0.142 ± 0.024
0.4 0.004 ± 0.010 0.072 ± 0.017 0.574 ± 0.511 0.128 ± 0.047
0.45 0.035 ± 0.078 0.004 ± 0.006 0.046 ± 0.012 0.029 ± 0.031

cod cod skin skin

Cost CHRMH DHL CHRMH DHL

0.05 0.511 ± 0.163 0.665 ± 0.054 0.280 ± 0.081 0.18 ± 0.044
0.1 0.570 ± 0.171 0.584 ± 0.054 0.260 ± 0.084 0.503 ± 0.062
0.15 0.527 ± 0.131 0.503 ± 0.063 0.260 ± 0.080 0.405 ± 0.074
0.2 0.297 ± 0.082 0.357 ± 0.049 0.102 ± 0.053 0.1 ± 0.025
0.25 0.024 ± 0.028 0.186 ± 0.055 0.052 ± 0.027 0.093 ± 0.033
0.3 0.038 ± 0.035 0.027 ± 0.021 0.050 ± 0.029 0.09 ± 0.051
0.35 0.124 ± 0.060 0.014 ± 0.01 0.062 ± 0.060 0.075 ± 0.051
0.4 0.154 ± 0.055 0 ± 0 0.067 ± 0.034 0.033 ± 0.011
0.45 0.003 ± 0.006 0 ± 0 0.065 ± 0.039 0 ± 0

bank bank haber haber

Cost CHRMH DHL CHRMH DHL

0.05 0.272 ± 0.031 0.071 ± 0.025 1.000 ± 0.000 1 ± 0
0.1 0.183 ± 0.035 0.094 ± 0.03 1.000 ± 0.000 0.99 ± 0.015
0.15 0.131 ± 0.041 0.106 ± 0.022 0.993 ± 0.015 1 ± 0
0.2 0.036 ± 0.015 0.105 ± 0.016 0.846 ± 0.211 1 ± 0
0.25 0.036 ± 0.022 0.066 ± 0.016 0.439 ± 0.148 0.875 ± 0.132
0.3 0.070 ± 0.024 0.058 ± 0.017 0.275 ± 0.120 0.007 ± 0.015
0.35 0.066 ± 0.031 0.053 ± 0.012 0.249 ± 0.088 0.092 ± 0.1
0.4 0.062 ± 0.022 0.048 ± 0.005 0.207 ± 0.158 0.01 ± 0.009
0.45 0.061 ± 0.022 0.052 ± 0.012 0.141 ± 0.081 0.013 ± 0.014

pima pima

Cost CHRMH DHL

0.05 1.000 ± 0.000 0.982 ± 0.012
0.1 0.762 ± 0.054 0.766 ± 0.04
0.15 0.709 ± 0.065 0.564 ± 0.105
0.2 0.700 ± 0.055 0.355 ± 0.03
0.25 0.643 ± 0.068 0.055 ± 0.007
0.3 0.469 ± 0.144 0.045 ± 0.02
0.35 0.049 ± 0.034 0.038 ± 0.024
0.4 0.056 ± 0.060 0.034 ± 0.014
0.45 0.010 ± 0.013 0.026 ± 0.009
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Table F3 Average fraction of points rejected along with the standard deviations for the
DHL algorithm and the CHRMH algorithm across different costs.

monk monk transfusion transfusion

Cost CHRMH DHL CHRMH DHL

0.05 0.960± 0.049 0.576± 0.108 0.917± 0.121 0.989± 0.014
0.1 0.952± 0.107 0.48± 0.075 0.943± 0.079 0.863± 0.174
0.15 0.896± 0.149 0.36± 0.117 0.753± 0.147 0.428± 0.04
0.2 0.944± 0.088 0.896± 0.211 0.597± 0.176 0.285± 0.027
0.25 0.776± 0.300 0.184± 0.134 0.420± 0.120 0.748± 0.303
0.3 0.040± 0.089 0.176± 0.1 0.381± 0.127 0± 0
0.35 0.240± 0.376 0.208± 0.077 0.177± 0.093 0± 0
0.4 0.024± 0.054 0.064± 0.022 0.168± 0.136 0± 0
0.45 0.072± 0.161 0.08± 0.049 0.127± 0.069 0.011± 0.024

synthetic synthetic

Cost CHRMH DHL

0.05 0.495 ± 0.039 0.888 ± 0.153
0.1 0.370 ± 0.078 0.26 ± 0.03
0.15 0.164 ± 0.017 0.237 ± 0.044
0.2 0.117 ± 0.027 0.238 ± 0.043
0.25 0.084 ± 0.027 0.228 ± 0.049
0.3 0.060 ± 0.020 0.208 ± 0.037
0.35 0.023 ± 0.025 0.1 ± 0.018
0.4 0.004 ± 0.009 0.077 ± 0.008
0.45 0.000 ± 0.000 0.065 ± 0.015
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Table F4 Average classification error on non-rejected points along with the standard
deviations for the DHL algorithm and the CHRMH algorithm across different costs.

australian australian liver liver

Cost CHRMH DHL CHRMH DHL

0.05 0.001 ± 0.003 0 ± 0 0.006 ± 0.013 0 ± 0
0.1 0.025 ± 0.026 0.067 ± 0.013 0.000 ± 0.000 0.012 ± 0.026
0.15 0.000 ± 0.000 0.078 ± 0.022 0.003 ± 0.006 0.014 ± 0.02
0.2 0.072 ± 0.069 0.08 ± 0.023 0.000 ± 0.000 0.029 ± 0.029
0.25 0.068 ± 0.023 0.081 ± 0.025 0.003 ± 0.006 0.136 ± 0.044
0.3 0.025 ± 0.027 0.09 ± 0.022 0.023 ± 0.017 0.22 ± 0.047
0.35 0.070 ± 0.020 0.099 ± 0.024 0.125 ± 0.113 0.223 ± 0.042
0.4 0.114 ± 0.071 0.113 ± 0.027 0.113 ± 0.144 0.299 ± 0.055
0.45 0.125 ± 0.043 0.148 ± 0.044 0.322 ± 0.065 0.386 ± 0.042

cod cod skin skin

Cost CHRMH DHL CHRMH DHL

0.05 0.005 ± 0.007 0.003 ± 0.006 0.000 ± 0.000 0.015 ± 0.016
0.1 0.005 ± 0.007 0.003 ± 0.006 0.000 ± 0.000 0 ± 0
0.15 0.003 ± 0.006 0.005 ± 0.012 0.003 ± 0.006 0.025 ± 0.031
0.2 0.041 ± 0.038 0.024 ± 0.024 0.028 ± 0.027 0.108 ± 0.034
0.25 0.092 ± 0.039 0.13 ± 0.043 0.030 ± 0.024 0.135 ± 0.037
0.3 0.081 ± 0.029 0.222 ± 0.023 0.030 ± 0.024 0.15 ± 0.035
0.35 0.081 ± 0.053 0.254 ± 0.028 0.033 ± 0.023 0.178 ± 0.045
0.4 0.086 ± 0.039 0.273 ± 0.026 0.035 ± 0.024 0.218 ± 0.063
0.45 0.119 ± 0.022 0.276 ± 0.025 0.037 ± 0.020 0.213 ± 0.068

bank bank haber haber

Cost CHRMH DHL CHRMH DHL

0.05 0.001 ± 0.003 0.007 ± 0.005 0.000 ± 0.000 0 ± 0
0.1 0.006 ± 0.006 0.017 ± 0.01 0.000 ± 0.000 0.007 ± 0.009
0.15 0.006 ± 0.002 0.026 ± 0.018 0.000 ± 0.000 0 ± 0
0.2 0.021 ± 0.004 0.037 ± 0.017 0.020 ± 0.027 0 ± 0
0.25 0.021 ± 0.008 0.045 ± 0.018 0.102 ± 0.048 0.043 ± 0.027
0.3 0.007 ± 0.003 0.066 ± 0.021 0.141 ± 0.039 0.256 ± 0.022
0.35 0.005 ± 0.003 0.08 ± 0.028 0.144 ± 0.032 0.22 ± 0.034
0.4 0.002 ± 0.003 0.1 ± 0.028 0.157 ± 0.068 0.256 ± 0.022
0.45 0.001 ± 0.002 0.112 ± 0.024 0.187 ± 0.043 0.252 ± 0.025

pima pima

Cost CHRMH DHL

0.05 0.000 ± 0.000 0.003 ± 0.004
0.1 0.016 ± 0.004 0.017 ± 0.007
0.15 0.023 ± 0.010 0.056 ± 0.031
0.2 0.026 ± 0.011 0.126 ± 0.026
0.25 0.043 ± 0.023 0.227 ± 0.025
0.3 0.090 ± 0.044 0.236 ± 0.021
0.35 0.223 ± 0.025 0.236 ± 0.024
0.4 0.235 ± 0.034 0.242 ± 0.029
0.45 0.251 ± 0.033 0.248 ± 0.036
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Table F4 Average classification error on non-rejected points along with the standard
deviations for the DHL algorithm and the CHRMH algorithm across different costs.

monk monk transfusion transfusion

Cost CHRMH DHL CHRMH DHL

0.05 0.016± 0.036 0.056± 0.083 0.003± 0.006 0.001± 0.003
0.1 0.008± 0.018 0.096± 0.088 0.001± 0.003 0.016± 0.032
0.15 0.008± 0.018 0.16± 0.147 0.017± 0.028 0.056± 0.035
0.2 0.008± 0.018 0.072± 0.14 0.036± 0.036 0.087± 0.046
0.25 0.048± 0.072 0.28± 0.063 0.071± 0.045 0.053± 0.053
0.3 0.232± 0.325 0.272± 0.095 0.076± 0.036 0.224± 0.05
0.35 0.224± 0.134 0.264± 0.061 0.128± 0.037 0.224± 0.05
0.4 0.232± 0.325 0.288± 0.115 0.136± 0.071 0.224± 0.05
0.45 0.224± 0.318 0.296± 0.092 0.159± 0.041 0.223± 0.052

synthetic synthetic

Cost CHRMH DHL

0.05 0.001 ± 0.002 0.11 ± 0.153
0.1 0.004 ± 0.005 0.077 ± 0.013
0.15 0.008 ± 0.004 0.077 ± 0.013
0.2 0.028 ± 0.016 0.082 ± 0.014
0.25 0.046 ± 0.011 0.088 ± 0.02
0.3 0.059 ± 0.011 0.126 ± 0.035
0.35 0.077 ± 0.023 0.213 ± 0.066
0.4 0.086 ± 0.014 0.292 ± 0.064
0.45 0.088 ± 0.014 0.353 ± 0.053
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Table F5 Average rejection loss along with the standard deviations on the test set the
CHRMH algorithm and the CHRPH algorithm across the seven data sets for the nine cost
values c using polynomial kernels.

australian australian liver liver
Cost CHRPH CHRMH CHRPH CHRMH

0.05 0.055 ± 0.010 0.011 ± 0.025 0.062 ± 0.010 0.054 ± 0.008
0.1 0.080 ± 0.016 0.046 ± 0.063 0.109 ± 0.011 0.109 ± 0.011
0.15 0.092 ± 0.019 0.032 ± 0.071 0.160 ± 0.011 0.151 ± 0.008
0.2 0.101 ± 0.019 0.070 ± 0.096 0.208 ± 0.011 0.202 ± 0.012
0.25 0.117 ± 0.026 0.088 ± 0.120 0.249 ± 0.013 0.260 ± 0.016
0.3 0.124 ± 0.022 0.083 ± 0.076 0.293 ± 0.019 0.301 ± 0.028
0.35 0.137 ± 0.024 0.135 ± 0.024 0.336 ± 0.036 0.333 ± 0.015
0.4 0.137 ± 0.034 0.129 ± 0.015 0.365 ± 0.069 0.359 ± 0.015
0.45 0.149 ± 0.037 0.082 ± 0.182 0.372 ± 0.079 0.401 ± 0.052

cod cod skin skin
Cost CHRPH CHRMH CHRPH CHRMH

0.05 0.043 ± 0.005 0.021 ± 0.048 0.013 ± 0.004 0.014 ± 0.004
0.1 0.083 ± 0.021 0.037 ± 0.083 0.026 ± 0.008 0.026 ± 0.008
0.15 0.141 ± 0.018 0.081 ± 0.014 0.036 ± 0.013 0.020 ± 0.029
0.2 0.132 ± 0.050 0.096 ± 0.132 0.045 ± 0.014 0.032 ± 0.045
0.25 0.159 ± 0.060 0.047 ± 0.106 0.041 ± 0.022 0.033 ± 0.048
0.3 0.191 ± 0.060 0.104 ± 0.142 0.057 ± 0.018 0.066 ± 0.091
0.35 0.241 ± 0.052 0.052 ± 0.117 0.062 ± 0.018 0.066 ± 0.019
0.4 0.227 ± 0.026 0.112 ± 0.157 0.064 ± 0.017 0.044 ± 0.052
0.45 0.222 ± 0.020 0.094 ± 0.134 0.070 ± 0.013 0.060 ± 0.028

banknote banknote haberman haberman
Cost CHRPH CHRMH CHRPH CHRMH

0.05 0.015 ± 0.003 0.009 ± 0.021 0.059 ± 0.008 0.059 ± 0.009
0.1 0.021 ± 0.004 0.021 ± 0.007 0.129 ± 0.032 0.108 ± 0.013
0.15 0.028 ± 0.010 0.030 ± 0.067 0.178 ± 0.058 0.178 ± 0.059
0.2 0.029 ± 0.004 0.023 ± 0.004 0.206 ± 0.006 0.214 ± 0.022
0.25 0.031 ± 0.007 0.025 ± 0.006 0.224 ± 0.026 0.244 ± 0.019
0.3 0.032 ± 0.009 0.029 ± 0.007 0.242 ± 0.028 0.232 ± 0.023
0.35 0.037 ± 0.010 0.036 ± 0.008 0.246 ± 0.034 0.246 ± 0.020
0.4 0.041 ± 0.013 0.032 ± 0.008 0.247 ± 0.020 0.250 ± 0.020
0.45 0.038 ± 0.013 0.030 ± 0.007 0.265 ± 0.024 0.259 ± 0.032

pima pima
Cost CHRPH CHRMH

0.05 0.064 ± 0.020 0.035 ± 0.032
0.1 0.106 ± 0.006 0.102 ± 0.003
0.15 0.178 ± 0.051 0.158 ± 0.013
0.2 0.203 ± 0.042 0.163 ± 0.091
0.25 0.230 ± 0.040 0.237 ± 0.030
0.3 0.235 ± 0.019 0.199 ± 0.113
0.35 0.270 ± 0.010 0.268 ± 0.020
0.4 0.258 ± 0.021 0.274 ± 0.020
0.45 0.250 ± 0.021 0.194 ± 0.267
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