
Natural Language Engineering 1 (1): 000–000 c© 1995 Cambridge University Press 1

On Some Applications of Finite-State Automata

Theory to Natural Language Processing

Mehryar Mohri
AT&T Bell Laboratories

600 Mountain Avenue

Murray Hill, NJ 07974, USA

E-mail: mohri@research.att.com

(Received June 1995; Revised July 1996†+)

Abstract

We describe new applications of the theory of automata to natural language processing: the represen-
tation of very large scale dictionaries and the indexation of natural language texts. They are based on
new algorithms that we introduce and describe in detail. In particular, we give pseudocodes for the de-
terminization of string to string transducers, the deterministic union of p-subsequential string to string
transducers, and the indexation by automata. We report several experiments illustrating the applications.

1 Introduction

The theory of automata provides efficient and convenient tools for the representation of linguistic

phenomena. Natural language processing can even be considered as one of the major fields of

application of this theory (Perrin 1993). The use of finite-state machines has already been shown

to be successful in various areas of computational linguistics: lexical analysis (Silberztein 1993),

morphology and phonology (Koskenniemi 1985; Karttunen et al. 1992; Kaplan and Kay 1994;

Mohri and Sproat 1996), local syntax (Roche 1993a; Mohri 1994d), syntax (Woods 1970; Roche

1993a; Mohri 1993; Pereira and Wright 1991), text-to-speech synthesis (Sproat 1995), speech

recognition (Pereira et al. 1994; Mohri et al. 1996).

We here report new successful results of this theory in the following two applications: the

representation or compilation of large scale dictionaries and the indexation of natural language

texts. We have devised new algorithms that can be used as the bases for these applications. We

describe in detail these new algorithms and indicate the various steps of the construction of the

finite-state machines in practice, as well as the results of several experiments.

† This work was done while the author was an associate professor of computer science and computational
linguistics at the Institut Gaspard Monge-LADL in Paris, France.

2 M. Mohri

For the dictionary compilation experiments we carried out, we used the latest versions of the

very large scale dictionaries of LADL (Laboratoire d’Automatique Documentaire et Linguistique)

available in 1994. These versions of the dictionaries contain many more distinguishing morpho-

logical codes than older ones. We indicate how this affects the results. The experiments show the

usefulness of p-subsequential transducers and their minimization in the representation of large

scale dictionaries. We also experimented for the first time the compilation of the dictionary of

compound words of French (DELACF) as well as that of all inflected words (simple and frozen).

This allowed us to check the soundness of our programs for very large finite-state machines.

We also performed several experiments of indexation of natural language texts using trans-

ducers or automata. We mainly tested our programs on French corpora but the conclusions of

our experiments are likely to apply to many other languages. Although the use of automata and

transducers in indexation still needs to be optimized, experiments show it to be very promising.

It also allows one to combine indexation with other text processing operations in a flexible way

using classical operations such as composition of transducers.

In all these experiments, we used a large set of programs (more than 15,000 lines of code)

written in C that can be used to perform efficiently many operations on automata and trans-

ducers including determinization, minimization, union, intersection, compaction, and other more

complex or specific tasks. In the following, we constantly refer to these tools.

2 Compilation of large scale dictionaries into finite-state machines

Large dictionaries can be compiled into finite automata with distinct final states. We recall the

principle of that method, the construction in practice, and the results of our experiments with

large dictionaries. We then describe new methods for compiling dictionaries into p-subsequential

transducers, indicate the results of our experiments using that method, and compare them with

those obtained with automata. Notice that the methods described here both assume that the

dictionaries are given as a large list of strings and not as a set of rules as considered by Kaplan

and Kay (1994) for instance.

2.1 Representation by finite automata

2.1.1 Principle

Large dictionaries can be efficiently represented by finite-state automata (Revuz 1991). Consider,

for instance, the dictionary of inflected words of English (EDELAF), (Karlsfeld 1991). Lines of

this dictionary are composed of an inflected form followed by its associated canonical form and

morphological indications. The following are two typical lines of this dictionary:

done,do.V3:PP

done,done.A0

The inflected form done can correspond to the past participle of the verb to do (first line) or

Automata Theory Applied to NLP 3

to the adjective done (second line). Inflected forms can be ambiguous, thus several canonical

forms might be associated with the same inflected form. The dictionary can be factorized and

put into a compact form in which canonical forms are computed from inflected forms by adding

or removing some of their final letters. The above lines can be compacted into the following:

done,2.V3:PP,0.A0

Once put in this form, with each inflected form of the dictionary is associated a single code

(here the code associated with done would be the string 2.V3:PP,0.A0). The dictionary can then

be represented by an automaton in which final states are provided with numbers referring to

these codes. Figure 1 gives an example of such an automaton. It represents some of the inflected

words of English.

0	 1	
d

2	

1

o

7	

i

3	
2

e

4	
n

8	
5d

6	
3

s

5	
4

1: 0.N28:s, 0.V3:INF
2: 0.N2:s:p
3: 2.V3:P3s, 1.N2:p
4: 2.V3:PP, 0.A0
5: 2o.V3:PRET

e

Fig. 1. Representation of dictionaries by automata.

The graph represented in Figure 1 is in fact a tree. It is generally impossible to store the

set of words of a large-scale dictionary in such a deterministic tree, since this would lead to a

blow-up. And, although efficient minimization algorithms for automata are available (Aho et al.

1974; Revuz 1991), one cannot apply them directly to a tree representing the whole dictionary.

Therefore, the construction of the final minimal automaton requires splitting the dictionary into

several smaller parts for which it is possible to construct a deterministic tree and therefore the

corresponding minimal automaton, and then use several operations of union of automata to get

the desired result.

2.1.2 Experiments

We have fully implemented and experimented this method by considering several among the

latest versions of the large dictionaries of LADL:

• the dictionary of simple inflected forms of French (FDELAF), (Courtois 1989),

• the dictionary of compound inflected forms of French (FDELAF), (Silberztein 1993),

• their union, the dictionary of all inflected forms of French (GDELAF),

• the dictionary of simple inflected forms of English (EDELAF), (Karlsfeld 1991),

4 M. Mohri

• the dictionary of simple inflected forms of Italian (IDELAF).

Table 1 gives the corresponding results.

Table 1 Representation by Automata.

DICTIONARIES Name FDELAF FDELACF GDELAF EDELAF IDELAF
French V.7 Compound General English Italian

Nb of lines 672,000 156,000 828,000 145,000 612,000
Initial size 21.2 Mb 5.6 Mb 27.9 Mb 3.6 Mb 20 Mb

AUTOMATA Nb of states 84,600 322,800 389,650 48,770 78,320
Nb of transitions 181,910 466,570 633,520 101,970 177,350
Size 2.4 Mb 7.6 Mb 10 Mb 1.2 Mb 2.3 Mb
Compacted size 818 Kb 1.88 Mb 2.70 Mb 447 Kb 806 Kb
Nb of codes 13,200 1,750 14,950 1,590 11,190
Size of codes 358 Kb 445 Kb 403 Kb 25 Kb 257 Kb
Total final size 1.2 Mb 1.9 Mb 3.1 Mb 470 Kb 1.1 Mb

TIME SPENT Constr. (CRAY) - 12h40 18h53 - -
Constr. (HP) 12’30 - - 4’55” 12’30
Constr. (NEXT) 1h18’ - - 17’ 1h20’
Look-up (HP) 90 w/ms 90 w/ms 90 w/ms 90 w/ms 90 w/ms

The first lines of the table indicate the number of lines of the initial files containing these

dictionaries as well as the corresponding sizes in bytes. Automata are in fact not sufficient to

represent these dictionaries since one also needs to store corresponding codes. The next lines give

the characteristics of the automata constructed as well as the number and total size of these codes

in each case. The size of these codes depends of course on the choices made for the representation

of each morphological feature and corresponds to a file simply containing their list.

The first size indicated for the automata corresponds to that of a file used to represent them.

Such a representation can however be made much more compact thanks to the well-known tech-

nique proposed by Liang (1983) since the automata used in language processing are generally

very sparse1. It is important to bear in mind that this method not only reduces the size of the

automaton but also provides direct access, namely it makes the time necessary to search for a

given transition at a given state constant. The compacted size indicated in table 1 corresponds

to the space required to keep the automaton in memory which is equal to the one used to store

it on disk when using the method just mentioned. The total final size is the amount of memory

needed to represent the whole dictionary, including codes.

1 This method has also been described by other authors in the same context of natural language pro-
cessing (Liang 1983; Désarménien1986; Revuz 1991).

Automata Theory Applied to NLP 5

Our experiments were carried out using various machines (NEXT Cube 68040, 32 Mb RAM,

HP/9000 755, 64 Mb RAM, CRAY II, 128 RAM). The time spent indicated for the construction of

the minimal automata from the initial files should only be considered as an upper bound especially

because of the presence of many other users. Not all figures are indicated in this part. Indeed,

38 Mb seemed to be insufficient2 to apply without modification the minimization algorithm to

the uncompacted automata corresponding to the dictionaries FDELACF and GDELAF. Thus,

for these dictionaries and only for these, experiments were carried out on a CRAY. We did

mention to be complete the time spent for the construction of the automata in the case of these

dictionaries. However, those figures are not very significant due to the considerable number of

programs running on that machine when the experiment was made. These experiments also helped

us to check the soundness of our programs for very large automata and to construct for the first

time these two very large dictionaries by minimal automata. The automaton corresponding to

the GDELACF contains more than 630,000 transitions after minimization.

On the whole, the experiments show the usefulness of automata for the representation of

dictionaries. Indeed, the time needed to construct the automata is short, their size is particularly

compact compared to that of initial files, and they provide very fast look-up3.

Notice that although the number of lines of the French dictionary of compound words is

about the same as the number of lines of the English dictionary of simple words, the automaton

corresponding to FDELACF is more than four times larger than that of EDELAF. This is mainly

due to the length of compound words: although many compound words share the same prefix or

suffix, the size of these shared parts is still small compared to the length of the compounds.

The representation by minimal automata of dictionaries of compound words could then seem

less appropriate. One could have recourse for this type of dictionaries to other intermediate

representations putting in common factors or subwords of the entries or use simple words as

an alphabet for compound words. But, these methods do not necessarily improve the results.

The latter for instance not only leads to a representation of FDELACF less compact (2.4 Mb,

(Roche 1993b)), but also gives slower look-up because of the intermediate indexation it requires.

A direct representation of FDELACF appears as both more compact and convenient. Besides,

this representation offers the following advantage: the same operations then apply to FDELACF

and FDELAF. So it is then natural to construct the union of these two dictionaries.

We have constructed the minimal automaton4 corresponding to the union of these two dictio-

naries (GDELAF). It can be stored in 3.1 Mb of memory and contains all inflected forms of French.

It allows one to lemmatize texts using a single automaton. Notice, however, that the size of this

automaton is about the same as the sum of those of the dictionaries FDELAF and FDELACF.

2 Because of independent technical reasons we could only use 38 Mb out of the 64 available in principle
on the HP/9000 systems.

3 The look-up time computed in number of words per second is only an indication. It depends on many
practical parameters. It does not depend, of course, on the size of the automaton.

4 One can efficiently construct from this machine a deterministic automaton recognizing
A∗L(GDELAF), where A represents the French alphabet and L(GDELAF) the set of all French
inflected forms (Mohri 1995). This automaton is very useful in many natural language processing
applications.

6 M. Mohri

The experiment shows that making the union hardly reduces the number of transitions of these

automata.

The main basis for the representation of dictionaries by automata is that, in general, many

entries share the same codes, and that the total number of codes is small compared to the number

of entries. Minimization has still then an important effect. But at worst, if all codes were distinct,

then minimization would have no effect and the size of the deterministic tree representing a

dictionary could not be reduced.

As a matter of fact, as dictionaries become more and more accurate the number of codes tends

to increase considerably. This number is about 22,000 for the last version of FDELAF (in older

versions considered by Roche (1993b) it was about 8,400). With this number of codes, the number

of transitions of the automaton of FDELAF exceeds 220,000 which of course also increases the

compacted size. Also, during the construction of this automaton one needs to distinguish different

codes. But the space required for an efficient hashing of the codes can also become very costly.

As an example, a tree used to represent these codes would have more than 100,000 nodes.

This dependency of the representation by automata on the codes seems to constitute a serious

disadvantage of this method. Since the codes contain the linguistic information associated to

words, their size can become very large and this can directly affect the whole representation.

Thus, new versions of the dictionaries seem to suggest that the representation by automata

would be less appropriate. The figures indicated in Table 1 correspond to this same version from

which we have removed several substrings, and therefore some information, so as to reduce the

number of codes.

2.2 Representation by sequential transducers

Since the number of codes tends to increase, it becomes more appropriate to represent dictionaries

by transducers. A morphological dictionary can be viewed as a list of pairs of strings of the type

(inflected form, canonical form). This list defines a function which is natural to represent by a

transducer. Such a representation also provides reverse look-up, namely given a canonical form to

obtain the set of inflected forms associated with it. However, one needs to keep this representation

efficient as in the case of deterministic automata.This led us to consider sequential transducers.

2.2.1 definitions

Let us recall some definitions relating to these efficient transducers.

• A transducer is said to be sequential when it has a deterministic input, namely at any state

there is at most one transition labeled with a given element of the input alphabet.
• Sequential transducers can be extended to allow a single additional output string (subse-

quential transducers) or a finite number p of output strings (p-subsequential transducers)

at final states. These last transducers allow one to deal with the ambiguities in natural

language processing (Mohri 1994a).
• We call determinization the algorithm allowing one, when possible, to obtain a p-subsequ-

ential transducer from a given one.

Automata Theory Applied to NLP 7

0	 1	
d:d

2	
o:o

5	

i:o

3	
e:ε

4	n:ε

.N28:s

.V3:INF

8	d:ε

6	s:ε

e.N2:s:p

7	

e:ε

.V3:P3s

.e.N2:p

.V3:PP

.neA0

V3:PRET

Fig. 2. Representation of dictionaries by p-subsequential transducers

• We also use the term sequential in a generic way to denote the class of all transducers with

deterministic input (sequential, subsequential, p-subsequential) when no ambiguity arises

as in the title of this section.

Like deterministic automata, sequential transducers provide a very fast look-up depending only

on the length of the input string and not on the size of the machine. Entries of dictionaries are often

ambiguous and one needs to associate several of them with a single form. These ambiguities can

be represented using p-subsequential transducers. Figure 2 gives an example of p-subsequential

transducer representing the same set of words as that of figure 1. Additional output strings are

allowed at final states (arrows with no destination state).

There are several ways of adding new entries to a transducer. One method consists of adding

these entries non-deterministically. When inserting a new pair of words in the transducer, new

transitions are created when both input and output letters differ from those of existing transitions.

The resulting transducer is then non-sequential since two transitions leaving the same state may

have the same input labels. In many cases encountered in natural language processing, this

transducer can be determinized so as to obtain a p-subsequential transducer.

2.2.2 Determinization of transducers

The corresponding algorithm is close to the powerset construction used for determinizing au-

tomata. The difference is that here one needs to provide states of the sets with strings. These

strings correspond to a delay in the emission which is due to the fact that outputs corresponding

to a given input can be different. Because of this difference, only the longest common prefix of

outputs can be kept and subsets are made of pairs (state, string) and not just of states. Figures

3 and 4 give an example of the application of the determinization. The subsets corresponding

to the states of the subsequential transducer are indicated in 4. Notice that in this example the

number of states of the determinized transducer T2 is even less than with T1. This is due to the

fact that the transducer T2 is subsequential.

8 M. Mohri

0	

b:b
c:c

2	
a:a

1	
a:b

a:a

a:b

b:b

Fig. 3. Transducer T1.

0	

{(0, ε)}

b:b
c:c

1	

{(1,b),(2,a)}

a:ε

ε

b:bb

a:a

a

Fig. 4. Subsequential transducer T2 obtained from T1 by determinization.

A non-sequential transducer T1 = (V1, I1, F1, A,B∗, δ1, σ1) is a 7-tuple where:

• V1 is the set of its states,

• I1 ⊆ V is the set of initial states,

• F1 ⊆ V the set of final states,

• A and B finite sets corresponding respectively to the input and output alphabets of the

transducer,

• δ1 the state transition function mapping V1 ×A to 2V1 , the powerset of V1,

• σ1 the output function mapping V1 ×A× V1 to B∗.

In the same way, a subsequential transducer T2 = (V2, i2, F2, A,B∗, δ2, σ2, φ2) is an 8-tuple where:

• i2 is its unique initial state,

• δ2, its transition function maps V2 ×A to V2,

• σ2, its output function maps V2 ×A to B∗,

• Φ2, its final output function maps F to B∗.

Given a positive integer p, a p-subsequential transducer T2 = (V2, i2, F2, A,B∗, δ2, σ2, φ2) can be

defined in the same way except that Φ2 then maps F to (B∗)p.

Not all transducers can be determinized. This is because the class of subsequential transducers

Automata Theory Applied to NLP 9

is a strict subclass of all transducers (Choffrut 1978). However, in most cases considered in natural

language processing the transducers can be determinized. In particular, all acyclic transducers

can be determinized. We here give the pseudocode of the algorithm to determinize a transducer

T1 when possible (figure 5). The result is a subsequential transducer T2.

The notations are those just introduced above. We also denote by x ∧ y the longest common

prefix of two strings x and y and by x−1(xy) the string y obtained by dividing (xy) at left by x.

We use a queue Q to maintain the set of states of the resulting transducer T2. Those states are

equivalently subsets made of pairs (q, w) of a state q of T1 and a string w ∈ B∗. We also use the

following notations:

• J1(a) ={(q, w)|δ1(q, a) defined and (q, w) ∈ q2}

• J2(a) ={(q, w, q′)|δ1(q, a) defined and (q, w) ∈ q2 and q′ ∈ δ1(q, a)}

to simplify the presentation of the pseudocode.

DETERMINIZATION TRANSDUCER(T1, T2)

1 F2 ← ∅

2 i2 ←
⋃

i∈I1

{(i, ε)}

3 Q← {i2}

4 while Q 6= ∅

5 do q2 ← head[Q]

6 if (there exists (q, w) ∈ q2 such that q ∈ F1)

7 then F2 ← F2 ∪ {q2}

8 φ2(q2)← w

9 for each a such that (q, w) ∈ q2 and δ1(q, a) defined

10 do σ2(q2, a)←
∧

(q,a)∈J1(a)

[w
∧

q′∈δ1(q,w)

σ1(q, a, q′)]

11 δ2(q2, a)←
⋃

(q,w,q′)∈J2(a)

{(q′, [σ2(q2, a)]−1wσ1(q, a, q′))}

12 if (δ2(q2, a) is a new state)

13 then Enqueue(Q, δ2(q2, a))

14 Dequeue(Q)

Fig. 5. Algorithm for the determinization of a transducer T1.

At each step of the algorithm a new state q2 is considered (line 5). q2 is a final state iff

it contains a pair (q, w) with q final in T1. In that case, w is the final output at the state

q2. Then each input label a of the transitions leaving the states of the subset q2 is considered

(line 10). A transition is constructed from q2 to δ2(q2, a) with ouput σ2(q2, a). σ2(q2, a) is the

longest common prefix of the output labels of all the transitions leaving the states q of q2 with

input label a when left concatenated with their delayed string w. δ2(q2, a) is the subset made

10 M. Mohri

of pairs (q′, w′) where q′ is a state reached by one of the transitions with input label a in T1,

and w′ = [σ2(q2, a)]−1wσ1(q, a, q′) the delayed string that could not be output earlier in the

algorithm. Notice that [σ2(q2, a)]−1wσ1(q, a, q′) is a well-defined string since [σ2(q2, a)] is a prefix

of all wσ1(q, a, q′) (line 10).

Simple modifications allow one to extend the use of the algorithm to the case of transducers that

can be represented by p-subsequential transducers. We need this extension for our applications

since the dictionary transducers we consider generally admit ambiguities. The extension requires

considering a function φ2 mapping F2 to (B∗)p, and changing lines 6-8 into the following ones:

6 for each (q, w) ∈ q2 such that q ∈ F1

7 do F2 ← F2 ∪ {q2}

8 Add Output(φ2, q2, w)
where the effect of Add Output(φ2, q2, w) is to modify the function φ2 such that a new output

string w be added at the final state q2.

2.2.3 Deterministic union of p-subsequential transducers

One can also add a new entry to a transducer in a deterministic way. In order to add the pair

(w1, w2) to a transducer one can first insert (w1, ε) in a deterministic way as with deterministic

automata, and then associate to the final state reached a final output w2. Proceeding this way

for each new entry from the beginning of the construction one directly obtains a p-subsequential

transducer which has the structure of a tree.

Experiments show that this method is often very efficient for constructing transducers rep-

resenting large dictionaries. The construction from the dictionary file is then very fast. One

disadvantage of this method is that the outputs are then pushed toward final states which cre-

ates a long delay in emission. However, p-subsequential transducers can be minimized (Mohri

1994a). An important characteristic of that minimization algorithm is that it pushes back ouputs

as much as possible toward the initial state. Thus, it eliminates the problem just mentioned.

0	 1	
a:a

b:ε

2	b:b

c:c

b

c

a

Fig. 6. p-Subsequential transducer T1.

Automata Theory Applied to NLP 11

p-subsequential transducers allow very fast look-up. Minimization helps to make them also

space efficient. But, as with automata, one cannot construct directly the p-subsequential trans-

ducer representing a large-scale dictionary. The tree construction mentioned above leads indeed

to a blow up for a large number of entries.

0	 1	
a: ε

2	b:abb

d:d

ab

Fig. 7. p-Subsequential transducer T2.

So, here again, one needs first to split the dictionary into several parts, construct the cor-

responding p-subsequential transducers, minimize them, and then perform the union of these

transducers and reminimize the resulting one. However, one wishes the union of these trans-

ducers to be p-subsequential too to keep their look-up efficiency. To do so, the union of the

p-subsequential transducers needs to be done in a deterministic way generating directly from two

given p-subsequential transducers their union as a p-subsequential transducer.

0	

{(0,ε),(1,ε)}

1	

{(1, a),(1, ε)}

a: ε

2	

{(1, ε),(undef, ε)}

b:ε

4	
{(2, ε), (2, b)}

b:ab

5	

{(2, ε),(undef, ε)}

c:ac

3	

{(undef, ε),(2,ε)}
d:ad

ab

ac

b:b

c:c

b

c

a

b

a

Fig. 8. p-Subsequential transducer T3, deterministic union of T1 and T2.

Figures 6, 7 and 8 illustrate the deterministic union of two p-subsequential transducers. Only

12 M. Mohri

those final state outputs that are not empty strings are indicated in these figures. As in the case

of automata, the corresponding union algorithm consists of reading the two transducers simul-

taneously and to consider pairs of states made of the states reached in each machine. However,

here one also needs to associate strings to each of those states. Indeed, since for the same input

label in the two machines the output labels might differ only the longest common prefix of the

output labels is output. One needs to keep track of the remaining part of the strings. These are

the strings associated to the states. Figure 9 gives the pseudocode of the algorithm to compute

the deterministic union of two p-subsequential transducers.

UNION p SUBSEQUENTIAL TRANSDUCER(T, T1, T2)

1 F ← ∅

2 i← {(i1, ε), (i2, ε)}

3 Q← {i}

4 while Q 6= ∅

5 do q ← head[Q] . one can write: q = {(q1, w1), (q2, w2)}

6 if (q1 ∈ F1 or q2 ∈ F2)

7 then F ← F ∪ {q}

8 for each output φij(qi) (i ∈ {1, 2}, j ≤ p)

9 do Add Output(φ, q, wiφij(qi))

10 for each a such that δ1(q1, a) defined or δ2(q2, a) defined

11 do if (δ1(q1, a) undefined)

12 then σ(q, a)← w2σ2(q2, a)

13 δ(q, a)←{(Undefined,ε), (δ2(q2, a), ε)}

14 else if (δ2(q2, a) undefined)

15 then σ(q, a)← w1σ1(q1, a)

16 δ(q, a)← {(δ1(q1, a), ε), (Undefined,ε)}

17 else σ(q, a)← w1σ1(q1, a) ∧ w2σ2(q2, a)

18 δ(q, a)← {(δ1(q1, a), [σ(q, a)]−1w1σ1(q1, a)),

(δ2(q2, a), [σ(q, a)]−1w2σ2(q2, a))}

19 if (δ(q, a) is a new state)

20 then Enqueue(Q, δ(q, a))

21 Dequeue(Q)

Fig. 9. Algorithm for building a p-subsequential union T of two p-subsequential transducers T1 and T2.

Given T1 = (V1, i1, F1, A,B∗, δ1, σ1, φ1) and T2 = (V2, i2, F2, A,B∗, δ2, σ2, φ2) two p-subse-

quential transducers5, where φi is the output function associated with Ti, the algorithm constructs

the union T = (V, i, F,A,B∗, δ, σ, φ). We use in the algorithm a constant Undefined distinct

5 Recall that for any final state q, (φij(q), (j ≤ p), is the set of outputs at q in Ti.

Automata Theory Applied to NLP 13

from all states of T1 and T2 and with the convention that δi(Undefined, a) is not defined for

any a ∈ A and i ∈ {1, 2}.

As previously we use a queue Q to maintain the states of the resulting machine. Each state

q of the resulting machine is considered once (line 5). It is equivalently a pair of the type

{(q1, w1), (q2, w2)} where q1 is a state of T1, q2 a state of q2 and w1 and w2 the delayed strings. q

is final iff both q1 and q2 are final. The set of final ouputs is then the union of all final outputs at

q1 and q2 when left concatenated with the corresponding delayed strings (lines 6-9). Each input

label a of the transitions of q1 and q2 is then considered. A new transition from q to δ(q, a) with

output σ(q, a) is then created considering the three cases:

• only q2 admits a transition with input label a,

• only q1 admits a transition with input label a,

• both q1 and q2 admit a transition with input label a.

In this last case only the longest common prefix of the output labels left concatenated with w1

and w2 can be output (line 17).

The efficiency of the implementation of these algorithms critically depends on the hashing

method used to determine if the state defined is new (figure 5 line 12, figure 9 line 19). All other

operations are less time consuming. We defined and used a new dynamic double hashing method

based on classical methods (Aho et al. 1986; Cormen et al. 1992)that ensures both very fast

look-up and uses few extra space. Both the determinization and the union algorithms are then

very fast in practice.

2.2.4 Experiments

We have fully implemented the algorithms and methods described in the two previous sections

and experimented them with several large dictionaries. Table 2 illustrates some of these results6.

The first lines of the table recall the size of the considered dictionaries and give indications about

the number of transitions and states of the obtained transducers. The output labels of these

transducers are not just letters. We have indicated in the following lines the number of elements

and the size in memory of the output alphabet.

The final size corresponds to the space in memory or on disk required by the whole transducer

when compacted. Since the transducer is sequential a compaction method close to the one used

with automata can be used here (Liang 1983). It helps to reduce the size of the transducer and

allows constant look-up time.

The experiments were carried out on two machines. The time spent indicated corresponds

to the whole process of the construction of the transducer from the initial file containing the

dictionary7. The look-up time should only be considered as an indication.

6 The DELAPF dictionary consists of the list of inflected forms of French with their corresponding set
of pronunciations (Laporte 1988).

7 Notice that one does not need here to sort the initial dictionary file, or factorize it and compact it as
in the case of the representation by automata.

14 M. Mohri

Table 2. Representation by p-subsequential transducers.

DICTIONARIES Name DELAPF FDELAF EDELAF IDELAF
Phonetic V.3 French V.7 English Italian

Nb of lines 472,000 672,000 145,000 612,000
Initial size 9.6 Mb 21.2 Mb 3.6 Mb 20 Mb

TRANSDUCERS Nb of states 46,750 67,000 47,540 64,390
Nb of transitions 130,125 191,300 115,450 194,606
p 4 7 8 8
Size of the alph. (Nb) 13,490 22,790 14,150 21,870
Size of the alph. (Space) 85 Kb 116 Kb 154 Kb 109 Kb
Uncompacted size 2.1 Mb 3.6 Mb 2 Mb 3.5 Mb
Final size 870 Kb 1.3 Mb 790 Kb 1.3 Mb

TIME SPENT Construction (HP) 9’30 20’ 11’35” 19’
Construction (NEXT) 38’ 1h21 30’ 1h35’
Look-up (HP) 80 w/ms 80 w/ms 80 w/ms 80 w/ms

Since the transducers we use here are sequential, the look-up time only depends on the length of

the input word and not on the size of the dictionary. Also, the minimization algorithm we use for

transducers not only helps to reduce the number of states without losing the advantage of look-up

efficiency, but also provides a quasi-determinization of the output side of the transducer (Mohri

1994a). Thus, the average time for the inverse look-up (from canonical forms to the inflected

forms) is also very low and comparable to the one indicated in the table.

The time spent to construct the minimal p-subsequential transducers is longer than that of

the construction of corresponding automata (sometimes only slightly longer), but it is still quite

short and the whole process of construction of the transducers can be considered as very fast. The

experiments also show that the size of the output alphabet remains small and that its contribution

to the final size of the transducer is negligible.

The final transducers obtained are very compact. Compare for instance the size of the p-

subsequential transducer representing the French dictionary FDELAF and that of the corre-

sponding automaton. Both sizes are roughly the same (1.2 Mb for the automaton, 1.3 for the

transducer). Experiments also suggest that with the increase of the number of codes, the size of

the automaton could exceed the size of the minimal transducer. Besides, the transducer allows

look-up’s from both sides whereas the automaton does not.

One can also compose the transducer with an automaton using the output of the transducer

to match the labels of the automaton. This of course cannot be done using the representation

by automata. Also, the use of the minimal transducers makes the finite-state machine more

independent of the choice of the codes. Although the order in which morphological features are

indicated is still important and could change the number of transitions or states of the transducer,

the prefixation stage of the minimization algorithm makes the transducer independent of the

Automata Theory Applied to NLP 15

precise notations for tenses or moods for instance. It is also worthwhile to point out that the p-

subsequential transducers obtained here both provide a fast look-up time and are more compact

than the non-sequential transducers used to represent dictionaries. The size of the non sequential

transducer representing FDELAF constructed by Roche (1993b) is about 1.5 Mb (> 1.3 Mb),

and the size of the DELAPF transducer 6.9 Mb (>> 870 Kb here). Notice that the time spent

for the construction of these transducers is about the same in both cases.

These results of our experiments tend to confirm the efficiency of the representation of dic-

tionaries by p-subsequential transducers. They provide fast look-up time, double side look-up,

and compactness. Several extensions of these results can be considered. Practical results can be

improved using various optimization heuristics to reduce sizes or to the time spent for the con-

struction of the machines. From a theoretical point of view, one can consider the extension of

these methods to the case of polysequential transducers (Schutzenberger 1987) and to that of

large weighted finite-state machines (Mohri et al. 1996).

3 Indexation with finite-state machines

Finite-state machines can also be used in indexation of texts. The algorithm devised by Crochemore

(1986) allows one to obtain in linear time and linear space a subsequential transducer represent-

ing the general index of a text, namely the position of all factors of a text8. An example of such

a transducer for a text reduced to t = aabba is represented in figure 10.

3.1 Indexation with subsequential string to weight transducers

The input automaton associated with this transducer represents exactly the set of suffixes of the

text t. Since any factor of a text is a prefix of a suffix of this text, this input automaton also

allows one to recognize the factors of t. The transducer associates a number to each input string.

This number is obtained by adding the output integers of the labels during the recognition. For

instance, when applied to the factor b the transducer outputs the single integer 2. This integer

corresponds to the first position of the factor b in the text. All other possible positions are

obtained by searching the rest of the automaton from the state 5. Any path leading from this

state to a final state corresponds to a position of b. Here, two paths (5-4-6 and 5-6) can be found

and give the following integers: 0 + 0 = 0 and 1. Therefore the set of the positions of b in t is

{2 + 0 = 2, 2 + 1 = 3}. In the same way, the transducer can be used to find the three positions

of a in t: 0 + (4) = 4 (path 1), 0 + (1 + 0 + 0) = 1 (path 1-3-4-6), 0 + (0 + 0 + 0 + 0) = 0 (path

1-2-3-4-6).

The subsequential transducer allows one to find the set of positions of any factor but the

complexity of this operation depends on the size of the text. There exists a representation of this

subsequential transducer which allows one to obtain the set of positions of a given word w in

8 The input automaton associated with this transducer is minimal. A fortiori, the transducer is minimal
in the sense defined by Mohri (1994b).

16 M. Mohri

0	

5

1	
a:0

5	

b:2

4

2	a:0

3	
b:1

4	b:0

6	
a:1

b:0

b:0

a:0

Fig. 10. Indexation by a subsequential transducer.

linear time O(|w|). In that representation, input labels of transitions are strings. However, such a

representation is not convenient when dealing with natural language processing. Indeed, typical

use of this index would consists of searching for the existence and potential positions of a set of

words described by a regular expression. The regular expression can also be represented by an

automaton, but given the representation of the transducer its composition with the automaton

is made complex and time consuming.

3.2 Indexation with automata

We have devised an algorithm for constructing an automaton giving the general index of a text,

in which labels are alphabet letters. Using this automaton, once a given word is read, the set of

its positions can be directly obtained from the list of integers associated with the reached state.

The following figure (figure 11) illustrates this representation. States are here provided with

positions’ lists. Each of these lists corresponds to the set of ending positions of any word reaching

this state when read from the initial state. Hence, to obtain the set of positions of a string ending

at state q, one just needs to subtract the length of this string from each integer of the list of q.

For instance the positions’ list of state 5 gives the set of positions of b: {3 − 1 = 2, 4 − 1 = 3}.

Thus, such indexing automata allow one to obtain directly the set of positions of a word. The

complexity of the operation is here clearly linear in the length of the searched word.

Our algorithm is close to that of Crochemore (1986). It is based one an equivalence relation

R over factors of a given text t. Two factors are equivalent according to R iff they have the

same contexts, namely if they have the same set of ending positions in t. Two equivalent factors

correspond to the same state in this algorithm. Reading these strings from the initial state one

reaches that state. At every step of the algorithm, a failure function s is defined. For a given

factor u ending at the state q when read from the initial state, s[q] allows one to determine the

set of suffixes of u that are not equivalent to u. So those suffixes lead to states distinct from q. In

order to construct the automaton we are interested in, one needs to indicate the ending positions

of u at the last state q and also at all other states corresponding to suffixes not equivalent to u.

This is the main idea the construction of the indexing automaton is based upon.

Automata Theory Applied to NLP 17

0	

{0,1,2,3,4,5}

1	

{1,2,5}

a

5	

{3,4}

b

2	

{2}

a

3	

{3}

b

4	

{4}

b

6	

{5}

a

b

b

a

Fig. 11. Indexation by an automaton.

A complete description of the algorithm is given below. It describes the construction of a

deterministic automaton G = (V, i, F,A, δ) indexing a text t, with:

• V the set of states of G,

• i ∈ V its initial state,

• F ⊆ V its final states,

• A the alphabet of the automaton,

• δ its transition function which maps V ×A to V .

The function Add Listp is used to add a new position to the list of a particular state. We have

mainly used the same notations as those of (Crochemore 1986). In particular, the function s

corresponds to the definition recalled above and the function l is such that l[q] is the longest

word leading from the initial state to the state q: l[q] = max{|u|/u ∈ A∗ and δ(i, u) = q}.

The automaton constructed this way is the minimal automaton9 recognizing the set of suffixes

of a given text t (Blumer et al. 1987). The complexity of this algorithm is quadratic, but it

leads to a very efficient full indexation of a text. In practice, the construction is very fast. The

average time spent to construct the automaton from a text of 50 Kb is about one second, using

an HP/9000 755. The corresponding automaton has about 80,000 states. Such an automaton

can be put in a very compact form, but one also needs to store the set of positions of the text.

Experiments with natural language texts show that the lists of positions of the states of the

automaton contain very few elements unless the state corresponds to a short word. Indeed, short

words such as articles or prepositions have generally many occurrences in a text.

One can reduce the space necessary for the construction of the indexing automaton by storing

a new position at a given state q only if l[q] > α where α is a chosen parameter. Indeed, even if

ending positions are not given at a state q, it is still possible to find them by examining every

path starting at q.

9 We do not need to define in this algorithm the final states, since the corresponding notion is no more
necessary for the purpose of indexation.

18 M. Mohri

AUTOMATON INDEXATION(G, t)

1 begin

2 create new state art; create new state init

3 l[init]← 0; s[init]← art; p← init

4 for i← 0 to length[t]− 1

5 do a← t[i]

6 create new state q

7 l[q]← l[p] + 1

8 while p 6= init and δ(p, a) undefined

9 do δ(p, a)← q

10 Add Listp(p, i)

11 p← s[p]

12 if (δ(p, a) undefined)

13 then δ(init, a)← q

14 s[q]← init

15 else if (l[p] + 1 = l[δ(p, a)])

16 then s[q]← δ(p, a)

17 while p 6= init

18 do Add Listp(p, i)

19 p← s[p]

20 else create copy r of δ(p, a) . with same transitions and list of positions

21 s[r]← s[δ(p, a)]

22 l[r]← l[p] + 1

23 s[q]← s[δ(p, a)]← r

24 while p 6= art and l[δ(p, a)] ≥ l[r]

25 do δ(p, a)← r

26 Add Listp(p, i)

27 p← s[p]

28 if (p 6= art)

29 then while p 6= init

30 do Add Listp(p, i)

31 p← s[p]

32 p← q

33 while p 6= init

34 do Add Listp(p, i)

35 p← s[p]

36 end.

Fig. 12. Algorithm for the indexation by an automaton G of a text t.

Automata Theory Applied to NLP 19

The search can be stopped for each path when a state with a non empty list of positions is

found. Subtracting the distance from q to such a state from the positions indicated at this state

gives the ending positions of the searched word. Suppose for instance that the list of positions

of the state 5 were not available. Then considering all leaving paths from state 5 and reaching

states with non empty lists, one would obtain the states 4 and 6, and the desired list of ending

positions of b, {4 − 1 = 3, 5 − 1 = 4}. Experimental results show that this method allows one

to reduce considerably the number of positions to store and that its cost in the search of the

positions of a word is low enough to be negligible when α is chosen to be about 5.

Indexation of very large texts can also be performed this way by splitting the text into several

smaller sections. The search for the positions can then be made by considering the automaton

associated with each of these sections or equivalently by considering the union of the automata

of all sections.

The results related to the indexation by automata still need to be improved considerably.

They provide a very efficient indexation, but the amount of storage they demand is still too

important compared to other indexing methods. However, the use of automata allows one to

combine indexation with other transducers containing linguistic information to refine the search

in a very flexible way.

The indexation automaton can for instance be composed with a morphological transducer.

When searching for a canonical form one then directly obtains the positions associated with all

the corresponding inflected forms. Similarly the indexation automaton can be composed with a

finite-state grammar (weighted or not) and a morphological transducer to restrict the search. In

all these cases, the result of the search is given as an automaton. Moreover, the composition can

be made on-the-fly (Mohri et al. 1996).

4 Conclusion

We described new algorithms that can be used in various natural language processing applications

to improve the space and time efficiency. The experiments we reported tend to confirm their use-

fulness in computational linguistics. We gave detailed indications about various constructions and

mentioned the pseudocodes of our algorithms. They should help one to make those experiments

without much difficulty.

The algorithms relating to sequential transducers (determinization and union) could be used

in many other areas to improve the use of transducers when possible. The indexation algorithm

suggests possible combinations with other finite-state tools to perform complex natural language

indexation of corpora. The efficient and natural operations such as composition, and union of au-

tomata and transducers that it allows are the fundamental basis for syntactic pattern recognition

in texts.

The algorithms that we introduced and described are the result of work in the theory of au-

tomata. We could not indicate here all the possibilities offered by that theory. It admits interesting

applications in most areas of natural language processing and often provides a full and coherent

picture of deep mechanisms with the appropriate level of abstraction. It also helps to make clearer

20 M. Mohri

the connections between natural language processing and other areas such as combinatorial pat-

tern matching and computational biology.

References

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1974. The design and analysis of computer
algorithms. Addison Wesley: Reading, MA.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers, Principles, Techniques and Tools.
Addison Wesley: Reading, MA.

A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnell. 1987. Complete inverted files
for efficient text retrieval and analysis. Journal of ACM, 34.

Christian Choffrut. 1978. Contributions à l’étude de quelques familles remarquables de fonctions ra-
tionnelles. Ph.D. thesis, (thèse de doctorat d’Etat), Université Paris 7, LITP: Paris, France.

T. Cormen, C. Leiserson, and R. Rivest. 1992. Introduction to Algorithms. The MIT Press: Cambridge,
MA.

Blandine Courtois. 1989. Delas: Dictionnaire électronique du LADL pour les mots simples du français.
Technical report, LADL.

Maxime Crochemore. 1986. Transducers and repetitions. Theoretical Computer Science, 45.

Jacques Désarménien. 1986. La division par ordinateur des mots français: application à TEX. Technique
et Science Informatiques, 5(4).

Maurice Gross. 1989. The use of finite automata in the lexical representation of natural language. Lecture
Notes in Computer Science, 377.

Ronald M. Kaplan and Martin Kay. 1994. Regular models of phonological rule systems. Computational
Linguistics, 20(3).

Gaby Karlsfeld. 1991. Dictionnaire morphologique de l’anglais. Technical report, LADL.

Lauri Karttunen, Ronald M. Kaplan, and Annie Zaenen. 1992. Two-level morphology with composition.
In Proceedings of the fifteenth International Conference on Computational Linguistics (COLING’92),
Nantes, France. COLING.

Lauri Karttunen. 1993. Finite-state lexicon compiler. Technical Report Xerox PARC P93-00077, Xerox
PARC.

Kimmo Koskenniemi. 1985. Compilation of automata from morphological two-level rules. In Proceedings
of the Fifth Scandinavian Conference of Computational Linguistics, Helsinki, Finland.

Eric Laporte. 1988. Méthodes algorithmiques et lexicales de phonétisation de textes. Ph.D. thesis,
Université Paris 7: Paris, France.

Franklin Mark Liang. 1983. Word Hy-phen-a-tion by Comput-er. Ph.D. thesis, Stanford University,
Stanford.

Mehryar Mohri and Richard Sproat. 1996. An efficient compiler for weighted rewrite rules. In 34th
Meeting of the Association for Computational Linguistics (ACL 96), Proceedings of the Conference,
Santa Cruz, California. ACL.

Mehryar Mohri, Fernando C. N Pereira, and Michael Riley. 1996. Weighted automata in text and speech
processing. In ECAI-96 Workshop, Budapest, Hungary. ECAI.

Mehryar Mohri. 1993. Analyse et représentation par automates de structures syntaxiques composées.
Ph.D. thesis, Université Paris 7: Paris, France.

Mehryar Mohri. 1994a. Compact representations by finite-state transducers. In 32nd Meeting of the
Association for Computational Linguistics (ACL 94), Proceedings of the Conference, Las Cruces, New
Mexico. ACL.

Mehryar Mohri. 1994b. Minimization of sequential transducers. Lecture Notes in Computer Science, 807.

Automata Theory Applied to NLP 21

Mehryar Mohri. 1994d. Syntactic analysis by local grammars automata: an efficient algori thm. In Pro-
ceedings of the International Conference on Computational L exicography (COMPLEX 94). Linguistic
Institute, Hungarian Academy of Science: Budapest, Hungary.

Mehryar Mohri. 1995. Matching patterns of an automaton. Lecture Notes in Computer Science, 937.
Fernando C. N. Pereira and Rebecca N. Wright. 1991. Finite-state approximation of phrase structure

grammars. In 29th Annual Meeting of the Association for Computational Lin guistics (ACL 94),
Proceedings of the Conference, Berkeley, California. ACL.

Fernando C. N Pereira, Michael Riley, and Richard Sproat. 1994. Weighted rational transductions and
their application to human language processing. In ARPA Workshop on Human Language Technology.
Advanced Research Projects Agency.

Dominique Perrin. 1990. Finite automata. In J. Van Leuwen, editor, Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, pages 1–57. Elsevier, Amsterdam.

Dominique Perrin. 1993. Les débuts de la théorie des automates. Technical Report LITP 93.04, LITP.
Dominique Revuz. 1991. Dictionnaires et lexiques, méthodes et algorithmes. Ph.D. thesis, Université

Paris 7: Paris, France.
Emmanuel Roche. 1993a. Analyse syntaxique transformationnelle du français par transducteur et lexique-

grammaire. Ph.D. thesis, Université Paris 7: Paris, France.
Emmanuel Roche. 1993b. Dictionary compression experiments. Technical Report IGM 93-5, Institut

Gaspard Monge, Noisy-le-Grand.
Marcel Paul Schutzenberger and Christophe Reutenauer. 1991. Minimization of rational word functions.

SIAM Journal of Computing, 20(4).
Marcel Paul Schutzenberger. 1987. Polynomial decomposition of rational functions. In Lecture Notes in

Computer Science. Lecture Notes in Computer Science, Springer-Verlag: Berlin Heidelberg New York.
Max Silberztein. 1993. Dictionnaires électroniques et analyse automatique de textes: le système INTEX.

Masson: Paris, France.
Richard Sproat. 1995. A finite-state architecture for tokenization and grapheme-to-phoneme conversion

in multilingual text analysis. In Proceedings of the ACL SIGDAT Workshop, Dublin, Ireland. ACL.
W.A. Woods. 1970. Transition network grammars for natural language analysis. Communications of the

Association for the Computational Machinery, 13(10).

