Natural Language Engineering 1 (1): 000-000 © 1995 Cambridge University Press 1

On Some Applications of Finite-State Automata
Theory to Natural Language Processing

Mehryar Mohri

ATET Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974, USA
E-mazil: mohri@research.att.com

(Received June 1995; Revised July 19961+)

Abstract

We describe new applications of the theory of automata to natural language processing: the represen-
tation of very large scale dictionaries and the indexation of natural language texts. They are based on
new algorithms that we introduce and describe in detail. In particular, we give pseudocodes for the de-
terminization of string to string transducers, the deterministic union of p-subsequential string to string
transducers, and the indexation by automata. We report several experiments illustrating the applications.

1 Introduction

The theory of automata provides efficient and convenient tools for the representation of linguistic
phenomena. Natural language processing can even be considered as one of the major fields of
application of this theory (Perrin 1993). The use of finite-state machines has already been shown
to be successful in various areas of computational linguistics: lexical analysis (Silberztein 1993),
morphology and phonology (Koskenniemi 1985; Karttunen et al. 1992; Kaplan and Kay 1994;
Mohri and Sproat 1996), local syntax (Roche 1993a; Mohri 1994d), syntax (Woods 1970; Roche
1993a; Mohri 1993; Pereira and Wright 1991), text-to-speech synthesis (Sproat 1995), speech
recognition (Pereira et al. 1994; Mohri et al. 1996).

We here report new successful results of this theory in the following two applications: the
representation or compilation of large scale dictionaries and the indexation of natural language
texts. We have devised new algorithms that can be used as the bases for these applications. We
describe in detail these new algorithms and indicate the various steps of the construction of the
finite-state machines in practice, as well as the results of several experiments.

1 This work was done while the author was an associate professor of computer science and computational
linguistics at the Institut Gaspard Monge-LADL in Paris, France.

2 M. Mohri

For the dictionary compilation experiments we carried out, we used the latest versions of the
very large scale dictionaries of LADL (Laboratoire d’Automatique Documentaire et Linguistique)
available in 1994. These versions of the dictionaries contain many more distinguishing morpho-
logical codes than older ones. We indicate how this affects the results. The experiments show the
usefulness of p-subsequential transducers and their minimization in the representation of large
scale dictionaries. We also experimented for the first time the compilation of the dictionary of
compound words of French (DELACF) as well as that of all inflected words (simple and frozen).
This allowed us to check the soundness of our programs for very large finite-state machines.

We also performed several experiments of indexation of natural language texts using trans-
ducers or automata. We mainly tested our programs on French corpora but the conclusions of
our experiments are likely to apply to many other languages. Although the use of automata and
transducers in indexation still needs to be optimized, experiments show it to be very promising.
It also allows one to combine indexation with other text processing operations in a flexible way
using classical operations such as composition of transducers.

In all these experiments, we used a large set of programs (more than 15,000 lines of code)
written in C that can be used to perform efficiently many operations on automata and trans-
ducers including determinization, minimization, union, intersection, compaction, and other more
complex or specific tasks. In the following, we constantly refer to these tools.

2 Compilation of large scale dictionaries into finite-state machines

Large dictionaries can be compiled into finite automata with distinct final states. We recall the
principle of that method, the construction in practice, and the results of our experiments with
large dictionaries. We then describe new methods for compiling dictionaries into p-subsequential
transducers, indicate the results of our experiments using that method, and compare them with
those obtained with automata. Notice that the methods described here both assume that the
dictionaries are given as a large list of strings and not as a set of rules as considered by Kaplan
and Kay (1994) for instance.

2.1 Representation by finite automata
2.1.1 Principle

Large dictionaries can be efficiently represented by finite-state automata (Revuz 1991). Consider,
for instance, the dictionary of inflected words of English (EDELAF), (Karlsfeld 1991). Lines of
this dictionary are composed of an inflected form followed by its associated canonical form and
morphological indications. The following are two typical lines of this dictionary:

done,do.V3:PP
done,done. A0

The inflected form done can correspond to the past participle of the verb to do (first line) or

Automata Theory Applied to NLP 3

to the adjective done (second line). Inflected forms can be ambiguous, thus several canonical
forms might be associated with the same inflected form. The dictionary can be factorized and
put into a compact form in which canonical forms are computed from inflected forms by adding
or removing some of their final letters. The above lines can be compacted into the following:

done,2.V3:PP,0.A0

Once put in this form, with each inflected form of the dictionary is associated a single code
(here the code associated with done would be the string 2. V3:PP,0.A0). The dictionary can then
be represented by an automaton in which final states are provided with numbers referring to
these codes. Figure 1 gives an example of such an automaton. It represents some of the inflected
words of English.

1 0.N28:s, 0.V3:IINF

- O.N2:sp

Fig. 1. Representation of dictionaries by automata.

The graph represented in Figure 1 is in fact a tree. It is generally impossible to store the
set of words of a large-scale dictionary in such a deterministic tree, since this would lead to a
blow-up. And, although efficient minimization algorithms for automata are available (Aho et al.
1974; Revuz 1991), one cannot apply them directly to a tree representing the whole dictionary.
Therefore, the construction of the final minimal automaton requires splitting the dictionary into
several smaller parts for which it is possible to construct a deterministic tree and therefore the
corresponding minimal automaton, and then use several operations of union of automata to get
the desired result.

2.1.2 FExperiments

We have fully implemented and experimented this method by considering several among the
latest versions of the large dictionaries of LADL:

the dictionary of simple inflected forms of French (FDELAF), (Courtois 1989),

the dictionary of compound inflected forms of French (FDELAF), (Silberztein 1993),
their union, the dictionary of all inflected forms of French (GDELAF),

the dictionary of simple inflected forms of English (EDELAF), (Karlsfeld 1991),

4 M. Mohri

e the dictionary of simple inflected forms of Italian (IDELAF).

Table 1 gives the corresponding results.

Table 1 Representation by Automata.

DICTIONARIES| Name FDELAF | FDELACF| GDELAF| EDELAF| IDELAF
French V.7| Compound General English Italian
Nb of lines 672,000 156,000 828,000 145,000 612,000
Initial size 21.2 Mb 5.6 Mb 27.9 Mb 3.6 Mb 20 Mb
AUTOMATA Nb of states 84,600 322,800 389,650 48,770 78,320
Nb of transitions 181,910 466,570 633,520 101,970 177,350
Size 2.4 Mb 7.6 Mb 10 Mb 1.2 Mb 2.3 Mb
Compacted size 818 Kb 1.88 Mb 2.70 Mb 447 Kb 806 Kb
Nb of codes 13,200 1,750 14,950 1,590 11,190
Size of codes 358 Kb 445 Kb 403 Kb 25 Kb 257 Kb
Total final size 1.2 Mb 1.9 Mb 3.1 Mb 470 Kb 1.1 Mb
TIME SPENT Constr. (CRAY) - 12h40 18h53 - -
Constr. (HP) 12’30 - - 4’55” 12’30
Constr. (NEXT) 1h18’ - - 17 1h20’
Look-up (HP) 90 w/ms 90 w/ms 90 w/ms | 90 w/ms | 90 w/ms

The first lines of the table indicate the number of lines of the initial files containing these
dictionaries as well as the corresponding sizes in bytes. Automata are in fact not sufficient to
represent these dictionaries since one also needs to store corresponding codes. The next lines give
the characteristics of the automata constructed as well as the number and total size of these codes
in each case. The size of these codes depends of course on the choices made for the representation
of each morphological feature and corresponds to a file simply containing their list.

The first size indicated for the automata corresponds to that of a file used to represent them.
Such a representation can however be made much more compact thanks to the well-known tech-
nique proposed by Liang (1983) since the automata used in language processing are generally
very sparsel. It is important to bear in mind that this method not only reduces the size of the
automaton but also provides direct access, namely it makes the time necessary to search for a
given transition at a given state constant. The compacted size indicated in table 1 corresponds
to the space required to keep the automaton in memory which is equal to the one used to store
it on disk when using the method just mentioned. The total final size is the amount of memory
needed to represent the whole dictionary, including codes.

! This method has also been described by other authors in the same context of natural language pro-
cessing (Liang 1983; Désarménien1986; Revuz 1991).

Automata Theory Applied to NLP 5

Our experiments were carried out using various machines (NEXT Cube 68040, 32 Mb RAM,
HP /9000 755, 64 Mb RAM, CRAY II, 128 RAM). The time spent indicated for the construction of
the minimal automata from the initial files should only be considered as an upper bound especially
because of the presence of many other users. Not all figures are indicated in this part. Indeed,
38 Mb seemed to be insufficient? to apply without modification the minimization algorithm to
the uncompacted automata corresponding to the dictionaries FDELACF and GDELAF. Thus,
for these dictionaries and only for these, experiments were carried out on a CRAY. We did
mention to be complete the time spent for the construction of the automata in the case of these
dictionaries. However, those figures are not very significant due to the considerable number of
programs running on that machine when the experiment was made. These experiments also helped
us to check the soundness of our programs for very large automata and to construct for the first
time these two very large dictionaries by minimal automata. The automaton corresponding to
the GDELACF contains more than 630,000 transitions after minimization.

On the whole, the experiments show the usefulness of automata for the representation of
dictionaries. Indeed, the time needed to construct the automata is short, their size is particularly
compact compared to that of initial files, and they provide very fast look-up?>.

Notice that although the number of lines of the French dictionary of compound words is
about the same as the number of lines of the English dictionary of simple words, the automaton
corresponding to FDELACF is more than four times larger than that of EDELAF. This is mainly
due to the length of compound words: although many compound words share the same prefix or
suffix, the size of these shared parts is still small compared to the length of the compounds.

The representation by minimal automata of dictionaries of compound words could then seem
less appropriate. One could have recourse for this type of dictionaries to other intermediate
representations putting in common factors or subwords of the entries or use simple words as
an alphabet for compound words. But, these methods do not necessarily improve the results.
The latter for instance not only leads to a representation of FDELACF less compact (2.4 Mb,
(Roche 1993b)), but also gives slower look-up because of the intermediate indexation it requires.
A direct representation of FDELACF appears as both more compact and convenient. Besides,
this representation offers the following advantage: the same operations then apply to FDELACF
and FDELAF. So it is then natural to construct the union of these two dictionaries.

We have constructed the minimal automaton? corresponding to the union of these two dictio-
naries (GDELAF). It can be stored in 3.1 Mb of memory and contains all inflected forms of French.
It allows one to lemmatize texts using a single automaton. Notice, however, that the size of this
automaton is about the same as the sum of those of the dictionaries FDELAF and FDELACF.

2 Because of independent technical reasons we could only use 38 Mb out of the 64 available in principle
on the HP/9000 systems.

3 The look-up time computed in number of words per second is only an indication. It depends on many
practical parameters. It does not depend, of course, on the size of the automaton.

Y One can efficiently construct from this machine a deterministic automaton recognizing
A*L(GDELAF), where A represents the French alphabet and L(GDFELAF) the set of all French
inflected forms (Mohri 1995). This automaton is very useful in many natural language processing
applications.

6 M. Mohri

The experiment shows that making the union hardly reduces the number of transitions of these
automata.

The main basis for the representation of dictionaries by automata is that, in general, many
entries share the same codes, and that the total number of codes is small compared to the number
of entries. Minimization has still then an important effect. But at worst, if all codes were distinct,
then minimization would have no effect and the size of the deterministic tree representing a
dictionary could not be reduced.

As a matter of fact, as dictionaries become more and more accurate the number of codes tends
to increase considerably. This number is about 22,000 for the last version of FDELAF (in older
versions considered by Roche (1993b) it was about 8,400). With this number of codes, the number
of transitions of the automaton of FDELAF exceeds 220,000 which of course also increases the
compacted size. Also, during the construction of this automaton one needs to distinguish different
codes. But the space required for an efficient hashing of the codes can also become very costly.
As an example, a tree used to represent these codes would have more than 100,000 nodes.

This dependency of the representation by automata on the codes seems to constitute a serious
disadvantage of this method. Since the codes contain the linguistic information associated to
words, their size can become very large and this can directly affect the whole representation.
Thus, new versions of the dictionaries seem to suggest that the representation by automata
would be less appropriate. The figures indicated in Table 1 correspond to this same version from
which we have removed several substrings, and therefore some information, so as to reduce the
number of codes.

2.2 Representation by sequential transducers

Since the number of codes tends to increase, it becomes more appropriate to represent dictionaries
by transducers. A morphological dictionary can be viewed as a list of pairs of strings of the type
(inflected form, canonical form). This list defines a function which is natural to represent by a
transducer. Such a representation also provides reverse look-up, namely given a canonical form to
obtain the set of inflected forms associated with it. However, one needs to keep this representation
efficient as in the case of deterministic automata.This led us to consider sequential transducers.

2.2.1 definitions
Let us recall some definitions relating to these efficient transducers.

e A transducer is said to be sequential when it has a deterministic input, namely at any state
there is at most one transition labeled with a given element of the input alphabet.

e Sequential transducers can be extended to allow a single additional output string (subse-
quential transducers) or a finite number p of output strings (p-subsequential transducers)
at final states. These last transducers allow one to deal with the ambiguities in natural
language processing (Mohri 1994a).

o We call determinization the algorithm allowing one, when possible, to obtain a p-subsequ-
ential transducer from a given one.

Automata Theory Applied to NLP 7

V3:PRET

Fig. 2. Representation of dictionaries by p-subsequential transducers

e We also use the term sequential in a generic way to denote the class of all transducers with
deterministic input (sequential, subsequential, p-subsequential) when no ambiguity arises
as in the title of this section.

Like deterministic automata, sequential transducers provide a very fast look-up depending only
on the length of the input string and not on the size of the machine. Entries of dictionaries are often
ambiguous and one needs to associate several of them with a single form. These ambiguities can
be represented using p-subsequential transducers. Figure 2 gives an example of p-subsequential
transducer representing the same set of words as that of figure 1. Additional output strings are
allowed at final states (arrows with no destination state).

There are several ways of adding new entries to a transducer. One method consists of adding
these entries non-deterministically. When inserting a new pair of words in the transducer, new
transitions are created when both input and output letters differ from those of existing transitions.
The resulting transducer is then non-sequential since two transitions leaving the same state may
have the same input labels. In many cases encountered in natural language processing, this
transducer can be determinized so as to obtain a p-subsequential transducer.

2.2.2 Determinization of transducers

The corresponding algorithm is close to the powerset construction used for determinizing au-
tomata. The difference is that here one needs to provide states of the sets with strings. These
strings correspond to a delay in the emission which is due to the fact that outputs corresponding
to a given input can be different. Because of this difference, only the longest common prefix of
outputs can be kept and subsets are made of pairs (state, string) and not just of states. Figures
3 and 4 give an example of the application of the determinization. The subsets corresponding
to the states of the subsequential transducer are indicated in 4. Notice that in this example the
number of states of the determinized transducer 15 is even less than with 7. This is due to the
fact that the transducer T is subsequential.

8 M. Mohri

Fig. 3. Transducer T;.

Fig. 4. Subsequential transducer 75 obtained from 77 by determinization.

A non-sequential transducer Ty = (Vi, 11, F1, A, B*,61,01) is a 7-tuple where:

V1 is the set of its states,

I, C V is the set of initial states,

F; CV the set of final states,

A and B finite sets corresponding respectively to the input and output alphabets of the

transducer,
e §; the state transition function mapping V7 x A to 21, the powerset of V7,
e 0 the output function mapping Vi x A x V; to B*.

In the same way, a subsequential transducer Ty = (Va, 49, Fa, A, B*, 02, 09, ¢2) is an 8-tuple where:

e {5 is its unique initial state,
e 05, its transition function maps Vo x A to Vs,
e 0y, its output function maps V5 x A to B*,
o O, its final output function maps F to B*.
Given a positive integer p, a p-subsequential transducer Ty = (Va, ia, Fo, A, B*, 02,02, ¢2) can be
defined in the same way except that ®o then maps F' to (B*)P.
Not all transducers can be determinized. This is because the class of subsequential transducers

Automata Theory Applied to NLP 9

is a strict subclass of all transducers (Choffrut 1978). However, in most cases considered in natural
language processing the transducers can be determinized. In particular, all acyclic transducers
can be determinized. We here give the pseudocode of the algorithm to determinize a transducer
T; when possible (figure 5). The result is a subsequential transducer T5.

The notations are those just introduced above. We also denote by x A y the longest common
prefix of two strings x and y and by x~!(zy) the string y obtained by dividing (zy) at left by .
We use a queue @) to maintain the set of states of the resulting transducer T5. Those states are
equivalently subsets made of pairs (¢, w) of a state ¢ of T; and a string w € B*. We also use the
following notations:

o Ji(a) ={(q,w)|61(q, a) defined and (¢, w) € g2}
d JQ(G’) :{(q7w7 q/)|51 (qa CL) defined and (Qa w) € q2 and q, € 61 (q7a)}

to simplify the presentation of the pseudocode.

DETERMINIZATION_TRANSDUCER(T}, T»)

1 F2 — (Z)
2 iy U {(i,€)}
i€l

3 Q< {iz}

4 while Q # 0

5 do g2 < head[Q)]

6 if (there exists (¢, w) € g2 such that ¢ € Fy)

7 then FQ HFQU{(]Q}

8 $2(g2) —w

9 for each a such that (q,w) € ¢z and 6, (q, a) defined

10 do o2(ga,a) — /\ [w /\ o1(g a,q")]
(g,0)€J1(a) q'€d1(q,w)

11 0(g2a) — | {(d]o2(g2,0)] wor(g, a,)}
(q,w,q")€J2(a)

12 if (02(g2,a) is a new state)

13 then ENQUEUE(Q,d2(q2,a))

14 DEQUEUE(Q)

Fig. 5. Algorithm for the determinization of a transducer 77.

At each step of the algorithm a new state g2 is considered (line 5). ¢o is a final state iff
it contains a pair (¢,w) with ¢ final in 77. In that case, w is the final output at the state
g2- Then each input label a of the transitions leaving the states of the subset g2 is considered
(line 10). A transition is constructed from gz to d2(ge,a) with ouput o2(ge,a). o2(ge,a) is the
longest common prefix of the output labels of all the transitions leaving the states ¢ of g2 with
input label a when left concatenated with their delayed string w. d2(ge,a) is the subset made

10 M. Mohri

of pairs (¢/,w’) where ¢’ is a state reached by one of the transitions with input label a in 77,
and w' = [02(q2,a)] twoi(g,a,q’) the delayed string that could not be output earlier in the
algorithm. Notice that [o2(q2,a)] ™}
of all woy(q,a,q’) (line 10).
Simple modifications allow one to extend the use of the algorithm to the case of transducers that

can be represented by p-subsequential transducers. We need this extension for our applications

wo1(g, a,q') is a well-defined string since [02(q2, @)] is a prefix

since the dictionary transducers we consider generally admit ambiguities. The extension requires
considering a function ¢2 mapping F» to (B*)?, and changing lines 6-8 into the following ones:
6 for each (¢, w) € g such that ¢ € Fy

7 do Fy«— FhU {QQ}

8 ADD_OUTPUT(¢2, g2, w)

where the effect of ADD_OUTPUT(¢2, g2, w) is to modify the function ¢ such that a new output
string w be added at the final state gs.

2.2.8 Deterministic union of p-subsequential transducers

One can also add a new entry to a transducer in a deterministic way. In order to add the pair
(w1, ws) to a transducer one can first insert (w1, €) in a deterministic way as with deterministic
automata, and then associate to the final state reached a final output ws. Proceeding this way
for each new entry from the beginning of the construction one directly obtains a p-subsequential
transducer which has the structure of a tree.

Experiments show that this method is often very efficient for constructing transducers rep-
resenting large dictionaries. The construction from the dictionary file is then very fast. One
disadvantage of this method is that the outputs are then pushed toward final states which cre-
ates a long delay in emission. However, p-subsequential transducers can be minimized (Mohri
1994a). An important characteristic of that minimization algorithm is that it pushes back ouputs
as much as possible toward the initial state. Thus, it eliminates the problem just mentioned.

Fig. 6. p-Subsequential transducer T;.

Automata Theory Applied to NLP 11

p-subsequential transducers allow very fast look-up. Minimization helps to make them also
space efficient. But, as with automata, one cannot construct directly the p-subsequential trans-
ducer representing a large-scale dictionary. The tree construction mentioned above leads indeed
to a blow up for a large number of entries.

Fig. 7. p-Subsequential transducer T5.

So, here again, one needs first to split the dictionary into several parts, construct the cor-
responding p-subsequential transducers, minimize them, and then perform the union of these
transducers and reminimize the resulting one. However, one wishes the union of these trans-
ducers to be p-subsequential too to keep their look-up efficiency. To do so, the union of the
p-subsequential transducers needs to be done in a deterministic way generating directly from two
given p-subsequential transducers their union as a p-subsequential transducer.

{29, (2 b}
b:ab

{(undef, £),(2,€)}
{(L a1 e}

{(1, €),(undef, €)}

Fig. 8. p-Subsequential transducer T3, deterministic union of 771 and T%.

Figures 6, 7 and 8 illustrate the deterministic union of two p-subsequential transducers. Only

12 M. Mohri

those final state outputs that are not empty strings are indicated in these figures. As in the case
of automata, the corresponding union algorithm consists of reading the two transducers simul-
taneously and to consider pairs of states made of the states reached in each machine. However,
here one also needs to associate strings to each of those states. Indeed, since for the same input
label in the two machines the output labels might differ only the longest common prefix of the
output labels is output. One needs to keep track of the remaining part of the strings. These are
the strings associated to the states. Figure 9 gives the pseudocode of the algorithm to compute
the deterministic union of two p-subsequential transducers.

UNION_p_SUBSEQUENTIAL_TRANSDUCER(T, T3, T3)
F—90
i {(ila 6)7 (iQa 6)}
Q — {i}
while Q # 0
do ¢« head[Q] ©® one can write: ¢ = {(q1,w1), (g2, w2)}
if ((h € F; or g2 € FQ)
then F «— FU{q}
for each output ¢;;(¢;) (i € {1,2},j <p)
do ADD_OUTPUT(9, ¢, w;$ij(¢;))
10 for each a such that d1(q1,a) defined or (g2, a) defined

© 00 g O U = W N

11 do if (81(q1,a) undefined)

12 then o(q,a) — w202(ge,a)

13 d(q,a) —{(UNDEFINED;¢€), (d2(q2,a),€)}

14 else if (d2(g2, a) undefined)

15 then o(q,a) — wio1(q1,a)

16 d(q,a) — {(61(q1,a),€), (UNDEFINED,€) }

17 else o(q,a) — wio1(q1,a) A wao2(ge, a)

18 8(q,a) «— {(d1(q1,), [0(g,a)] " twr01(q1, @),
(02(g2, @), [0(g, a)] ' w202(g2, @)}

19 if (0(q,a) is a new state)

20 then ENQUEUE(Q,d(q,a))

21 DEQUEUE(Q)

Fig. 9. Algorithm for building a p-subsequential union T' of two p-subsequential transducers 77 and T5.

Given T1 = (‘/1, il, Fl, A7 B*7 (51, a1, (]51) and T2 = (VQ, ’ig, FQ, A, B*7 (52, agg, ¢2) two p—subse—
quential transducers®, where ¢; is the output function associated with T}, the algorithm constructs
the union T' = (V,i, F, A, B*,0,0,¢). We use in the algorithm a constant UNDEFINED distinct

® Recall that for any final state ¢, (¢:;(q), (< p), is the set of outputs at ¢ in Tj.

Automata Theory Applied to NLP 13

from all states of 71 and T» and with the convention that ¢;(UNDEFINED, a) is not defined for
any a € A and ¢ € {1,2}.

As previously we use a queue () to maintain the states of the resulting machine. Each state
g of the resulting machine is considered once (line 5). It is equivalently a pair of the type
{(q1,w1), (g2, w2)} where gy is a state of Ty, g2 a state of g2 and w; and ws the delayed strings. ¢
is final iff both ¢; and g9 are final. The set of final ouputs is then the union of all final outputs at
g1 and g2 when left concatenated with the corresponding delayed strings (lines 6-9). Each input
label a of the transitions of ¢; and go is then considered. A new transition from ¢ to §(g,a) with
output o(g,a) is then created considering the three cases:

e only ¢o admits a transition with input label a,
e only ¢; admits a transition with input label a,
e both ¢; and ¢» admit a transition with input label a.

In this last case only the longest common prefix of the output labels left concatenated with w;
and wy can be output (line 17).

The efficiency of the implementation of these algorithms critically depends on the hashing
method used to determine if the state defined is new (figure 5 line 12, figure 9 line 19). All other
operations are less time consuming. We defined and used a new dynamic double hashing method
based on classical methods (Aho et al. 1986; Cormen et al. 1992)that ensures both very fast
look-up and uses few extra space. Both the determinization and the union algorithms are then
very fast in practice.

2.2.4 FEzxperiments

We have fully implemented the algorithms and methods described in the two previous sections
and experimented them with several large dictionaries. Table 2 illustrates some of these results®.
The first lines of the table recall the size of the considered dictionaries and give indications about
the number of transitions and states of the obtained transducers. The output labels of these
transducers are not just letters. We have indicated in the following lines the number of elements
and the size in memory of the output alphabet.

The final size corresponds to the space in memory or on disk required by the whole transducer
when compacted. Since the transducer is sequential a compaction method close to the one used
with automata can be used here (Liang 1983). It helps to reduce the size of the transducer and
allows constant look-up time.

The experiments were carried out on two machines. The time spent indicated corresponds
to the whole process of the construction of the transducer from the initial file containing the
dictionary”. The look-up time should only be considered as an indication.

5 The DELAPF dictionary consists of the list of inflected forms of French with their corresponding set
of pronunciations (Laporte 1988).

7 Notice that one does not need here to sort the initial dictionary file, or factorize it and compact it as
in the case of the representation by automata.

14 M. Mohri

Table 2. Representation by p-subsequential transducers.

DICTIONARIES | Name DELAPF FDELAF | EDELAF| IDELAF
Phonetic V.3 | French V.7 English Italian
Nb of lines 472,000 672,000 145,000 612,000
Initial size 9.6 Mb 21.2 Mb 3.6 Mb 20 Mb
TRANSDUCERS| Nb of states 46,750 67,000 47,540 64,390
Nb of transitions 130,125 191,300 115,450 194,606
D 4 7 8 8
Size of the alph. (Nb) 13,490 22,790 14,150 21,870
Size of the alph. (Space) 85 Kb 116 Kb 154 Kb 109 Kb
Uncompacted size 2.1 Mb 3.6 Mb 2 Mb 3.5 Mb
Final size 870 Kb 1.3 Mb 790 Kb 1.3 Mb
TIME SPENT Construction (HP) 9’30 20° 11°35” 19’
Construction (NEXT) 38’ 1h21 30° 1h35’
Look-up (HP) 80 w/ms 80 w/ms 80 w/ms | 80 w/ms

Since the transducers we use here are sequential, the look-up time only depends on the length of
the input word and not on the size of the dictionary. Also, the minimization algorithm we use for
transducers not only helps to reduce the number of states without losing the advantage of look-up
efficiency, but also provides a quasi-determinization of the output side of the transducer (Mohri
1994a). Thus, the average time for the inverse look-up (from canonical forms to the inflected
forms) is also very low and comparable to the one indicated in the table.

The time spent to construct the minimal p-subsequential transducers is longer than that of
the construction of corresponding automata (sometimes only slightly longer), but it is still quite
short and the whole process of construction of the transducers can be considered as very fast. The
experiments also show that the size of the output alphabet remains small and that its contribution
to the final size of the transducer is negligible.

The final transducers obtained are very compact. Compare for instance the size of the p-
subsequential transducer representing the French dictionary FDELAF and that of the corre-
sponding automaton. Both sizes are roughly the same (1.2 Mb for the automaton, 1.3 for the
transducer). Experiments also suggest that with the increase of the number of codes, the size of
the automaton could exceed the size of the minimal transducer. Besides, the transducer allows
look-up’s from both sides whereas the automaton does not.

One can also compose the transducer with an automaton using the output of the transducer
to match the labels of the automaton. This of course cannot be done using the representation
by automata. Also, the use of the minimal transducers makes the finite-state machine more
independent of the choice of the codes. Although the order in which morphological features are
indicated is still important and could change the number of transitions or states of the transducer,
the prefixation stage of the minimization algorithm makes the transducer independent of the

Automata Theory Applied to NLP 15

precise notations for tenses or moods for instance. It is also worthwhile to point out that the p-
subsequential transducers obtained here both provide a fast look-up time and are more compact
than the non-sequential transducers used to represent dictionaries. The size of the non sequential
transducer representing FDELAF constructed by Roche (1993b) is about 1.5 Mb (> 1.3 Mb),
and the size of the DELAPF transducer 6.9 Mb (>> 870 Kb here). Notice that the time spent
for the construction of these transducers is about the same in both cases.

These results of our experiments tend to confirm the efficiency of the representation of dic-
tionaries by p-subsequential transducers. They provide fast look-up time, double side look-up,
and compactness. Several extensions of these results can be considered. Practical results can be
improved using various optimization heuristics to reduce sizes or to the time spent for the con-
struction of the machines. From a theoretical point of view, one can consider the extension of
these methods to the case of polysequential transducers (Schutzenberger 1987) and to that of
large weighted finite-state machines (Mohri et al. 1996).

3 Indexation with finite-state machines

Finite-state machines can also be used in indexation of texts. The algorithm devised by Crochemore
(1986) allows one to obtain in linear time and linear space a subsequential transducer represent-
ing the general index of a text, namely the position of all factors of a text®. An example of such
a transducer for a text reduced to ¢ = aabba is represented in figure 10.

3.1 Indexation with subsequential string to weight transducers

The input automaton associated with this transducer represents exactly the set of suffixes of the
text t. Since any factor of a text is a prefix of a suffix of this text, this input automaton also
allows one to recognize the factors of t. The transducer associates a number to each input string.
This number is obtained by adding the output integers of the labels during the recognition. For
instance, when applied to the factor b the transducer outputs the single integer 2. This integer
corresponds to the first position of the factor b in the text. All other possible positions are
obtained by searching the rest of the automaton from the state 5. Any path leading from this
state to a final state corresponds to a position of b. Here, two paths (5-4-6 and 5-6) can be found
and give the following integers: 0 +0 = 0 and 1. Therefore the set of the positions of b in ¢ is
{24+ 0=2,2+1 = 3}. In the same way, the transducer can be used to find the three positions
ofaint: 0+ (4) =4 (path 1), 0+ (1 +0+0) =1 (path 1-3-4-6), 0+ (0+ 0+ 0+ 0) = 0 (path
1-2-3-4-6).

The subsequential transducer allows one to find the set of positions of any factor but the
complexity of this operation depends on the size of the text. There exists a representation of this
subsequential transducer which allows one to obtain the set of positions of a given word w in

8 The input automaton associated with this transducer is minimal. A fortiori, the transducer is minimal
in the sense defined by Mohri (1994b).

16 M. Mohri

Fig. 10. Indexation by a subsequential transducer.

linear time O(|w|). In that representation, input labels of transitions are strings. However, such a
representation is not convenient when dealing with natural language processing. Indeed, typical
use of this index would consists of searching for the existence and potential positions of a set of
words described by a regular expression. The regular expression can also be represented by an
automaton, but given the representation of the transducer its composition with the automaton
is made complex and time consuming.

3.2 Indexation with automata

We have devised an algorithm for constructing an automaton giving the general index of a text,
in which labels are alphabet letters. Using this automaton, once a given word is read, the set of
its positions can be directly obtained from the list of integers associated with the reached state.

The following figure (figure 11) illustrates this representation. States are here provided with
positions’ lists. Each of these lists corresponds to the set of ending positions of any word reaching
this state when read from the initial state. Hence, to obtain the set of positions of a string ending
at state ¢, one just needs to subtract the length of this string from each integer of the list of ¢.
For instance the positions’ list of state 5 gives the set of positions of b: {3 —1=2,4 -1 = 3}.
Thus, such indexing automata allow one to obtain directly the set of positions of a word. The
complexity of the operation is here clearly linear in the length of the searched word.

Our algorithm is close to that of Crochemore (1986). It is based one an equivalence relation
R over factors of a given text . Two factors are equivalent according to R iff they have the
same contexts, namely if they have the same set of ending positions in t. Two equivalent factors
correspond to the same state in this algorithm. Reading these strings from the initial state one
reaches that state. At every step of the algorithm, a failure function s is defined. For a given
factor u ending at the state ¢ when read from the initial state, s[g] allows one to determine the
set of suffixes of u that are not equivalent to u. So those suffixes lead to states distinct from ¢. In
order to construct the automaton we are interested in, one needs to indicate the ending positions
of u at the last state ¢ and also at all other states corresponding to suffixes not equivalent to u.
This is the main idea the construction of the indexing automaton is based upon.

Automata Theory Applied to NLP 17

{0,1,2,3,4,5} {1,2,5}

{34}

Fig. 11. Indexation by an automaton.

A complete description of the algorithm is given below. It describes the construction of a
deterministic automaton G = (V, i, F, A, §) indexing a text ¢, with:

e V the set of states of G,

e i € V its initial state,

e [C V its final states,

e A the alphabet of the automaton,

e J its transition function which maps V' x A to V.

The function ADD_LISTP is used to add a new position to the list of a particular state. We have
mainly used the same notations as those of (Crochemore 1986). In particular, the function s
corresponds to the definition recalled above and the function ! is such that {[g] is the longest
word leading from the initial state to the state ¢: l[q] = maz{|u|/u € A* and §(i,u) = ¢}.

The automaton constructed this way is the minimal automaton® recognizing the set of suffixes
of a given text ¢ (Blumer et al. 1987). The complexity of this algorithm is quadratic, but it
leads to a very efficient full indexation of a text. In practice, the construction is very fast. The
average time spent to construct the automaton from a text of 50 Kb is about one second, using
an HP /9000 755. The corresponding automaton has about 80,000 states. Such an automaton
can be put in a very compact form, but one also needs to store the set of positions of the text.
Experiments with natural language texts show that the lists of positions of the states of the
automaton contain very few elements unless the state corresponds to a short word. Indeed, short
words such as articles or prepositions have generally many occurrences in a text.

One can reduce the space necessary for the construction of the indexing automaton by storing
a new position at a given state ¢ only if I[g] > « where « is a chosen parameter. Indeed, even if
ending positions are not given at a state ¢, it is still possible to find them by examining every
path starting at q.

9 We do not need to define in this algorithm the final states, since the corresponding notion is no more
necessary for the purpose of indexation.

18

M. Mohri

AUTOMATON_INDEXATION(G, t)

© 00 N O U s W N

— =
= O

O W W W W W W NNDNDNNDNNNDNRFERFE R~ B = = = =
DU WIN R O ©OoO Utk WNRFE O WO Ot WwiN

begin
create new state art; create new state init
l[init] « 0; s[init] « art; p « init
for i < 0 to length[t] — 1
do a « t[i]
create new state ¢
lg] —[p] +1
while p # init and 6(p, a) undefined
do 4(p,a) < ¢
ADD_LISTP(p, 1)
p < slp]
if (0(p, a) undefined)
then d(init,a) «— ¢
slg] < init
else if (I[p] + 1 =1[6(p, a)])
then s[g] < d(p,a)
while p # init
do ADD_LISTP(p, i)
p «— s[p]
else create copy r of §(p,a) > with same transitions and list of positions
s[r] < s[6(p, a)]
lr] < ip] +1
sla] < s[0(p,a)]
while p # art and [§(p,a)] > I[r]
do o(p,a) —r
ADD_LISTP(p, 1)
p < s[p]
if (p # art)
then while p # init
do ADD_LISTP(p, 1)
p— slp]
p—q
while p # init
do ADD_LISTP(p,?)
p < s[p]
end.

Fig. 12. Algorithm for the indexation by an automaton G of a text t.

Automata Theory Applied to NLP 19

The search can be stopped for each path when a state with a non empty list of positions is
found. Subtracting the distance from ¢ to such a state from the positions indicated at this state
gives the ending positions of the searched word. Suppose for instance that the list of positions
of the state 5 were not available. Then considering all leaving paths from state 5 and reaching
states with non empty lists, one would obtain the states 4 and 6, and the desired list of ending
positions of b, {4 — 1 = 3,5 — 1 = 4}. Experimental results show that this method allows one
to reduce considerably the number of positions to store and that its cost in the search of the
positions of a word is low enough to be negligible when « is chosen to be about 5.

Indexation of very large texts can also be performed this way by splitting the text into several
smaller sections. The search for the positions can then be made by considering the automaton
associated with each of these sections or equivalently by considering the union of the automata
of all sections.

The results related to the indexation by automata still need to be improved considerably.
They provide a very efficient indexation, but the amount of storage they demand is still too
important compared to other indexing methods. However, the use of automata allows one to
combine indexation with other transducers containing linguistic information to refine the search
in a very flexible way.

The indexation automaton can for instance be composed with a morphological transducer.
When searching for a canonical form one then directly obtains the positions associated with all
the corresponding inflected forms. Similarly the indexation automaton can be composed with a
finite-state grammar (weighted or not) and a morphological transducer to restrict the search. In
all these cases, the result of the search is given as an automaton. Moreover, the composition can
be made on-the-fly (Mohri et al. 1996).

4 Conclusion

We described new algorithms that can be used in various natural language processing applications
to improve the space and time efficiency. The experiments we reported tend to confirm their use-
fulness in computational linguistics. We gave detailed indications about various constructions and
mentioned the pseudocodes of our algorithms. They should help one to make those experiments
without much difficulty.

The algorithms relating to sequential transducers (determinization and union) could be used
in many other areas to improve the use of transducers when possible. The indexation algorithm
suggests possible combinations with other finite-state tools to perform complex natural language
indexation of corpora. The efficient and natural operations such as composition, and union of au-
tomata and transducers that it allows are the fundamental basis for syntactic pattern recognition
in texts.

The algorithms that we introduced and described are the result of work in the theory of au-
tomata. We could not indicate here all the possibilities offered by that theory. It admits interesting
applications in most areas of natural language processing and often provides a full and coherent
picture of deep mechanisms with the appropriate level of abstraction. It also helps to make clearer

20 M. Mohri

the connections between natural language processing and other areas such as combinatorial pat-
tern matching and computational biology.

References

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1974. The design and analysis of computer
algorithms. Addison Wesley: Reading, MA.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers, Principles, Techniques and Tools.
Addison Wesley: Reading, MA.

A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnell. 1987. Complete inverted files
for efficient text retrieval and analysis. Journal of ACM, 34.

Christian Choffrut. 1978. Contributions a l’étude de quelques familles remarquables de fonctions ra-
tionnelles. Ph.D. thesis, (these de doctorat d’Etat), Université Paris 7, LITP: Paris, France.

T. Cormen, C. Leiserson, and R. Rivest. 1992. Introduction to Algorithms. The MIT Press: Cambridge,
MA.

Blandine Courtois. 1989. Delas: Dictionnaire électronique du LADL pour les mots simples du francgais.
Technical report, LADL.

Maxime Crochemore. 1986. Transducers and repetitions. Theoretical Computer Science, 45.

Jacques Désarménien. 1986. La division par ordinateur des mots frangais: application & TEX. Technique
et Science Informatiques, 5(4).

Maurice Gross. 1989. The use of finite automata in the lexical representation of natural language. Lecture
Notes in Computer Science, 377.

Ronald M. Kaplan and Martin Kay. 1994. Regular models of phonological rule systems. Computational
Linguistics, 20(3).

Gaby Karlsfeld. 1991. Dictionnaire morphologique de I’anglais. Technical report, LADL.

Lauri Karttunen, Ronald M. Kaplan, and Annie Zaenen. 1992. T'wo-level morphology with composition.
In Proceedings of the fifteenth International Conference on Computational Linguistics (COLING’92),
Nantes, France. COLING.

Lauri Karttunen. 1993. Finite-state lexicon compiler. Technical Report Xerox PARC P93-00077, Xerox
PARC.

Kimmo Koskenniemi. 1985. Compilation of automata from morphological two-level rules. In Proceedings
of the Fifth Scandinavian Conference of Computational Linguistics, Helsinki, Finland.

Eric Laporte. 1988. M¢éthodes algorithmiques et lexicales de phonétisation de textes. Ph.D. thesis,
Université Paris 7: Paris, France.

Franklin Mark Liang. 1983. Word Hy-phen-a-tion by Comput-er. Ph.D. thesis, Stanford University,
Stanford.

Mehryar Mohri and Richard Sproat. 1996. An efficient compiler for weighted rewrite rules. In 34th
Meeting of the Association for Computational Linguistics (ACL 96), Proceedings of the Conference,
Santa Cruz, California. ACL.

Mehryar Mohri, Fernando C. N Pereira, and Michael Riley. 1996. Weighted automata in text and speech
processing. In FCAI-96 Workshop, Budapest, Hungary. ECAL

Mehryar Mohri. 1993. Analyse et représentation par automates de structures syntaxiques composées.
Ph.D. thesis, Université Paris 7: Paris, France.

Mehryar Mohri. 1994a. Compact representations by finite-state transducers. In 32"% Meeting of the
Association for Computational Linguistics (ACL 94), Proceedings of the Conference, Las Cruces, New
Mezico. ACL.

Mehryar Mohri. 1994b. Minimization of sequential transducers. Lecture Notes in Computer Science, 807.

Automata Theory Applied to NLP 21

Mehryar Mohri. 1994d. Syntactic analysis by local grammars automata: an efficient algori thm. In Pro-
ceedings of the International Conference on Computational L exicography (COMPLEX 94). Linguistic
Institute, Hungarian Academy of Science: Budapest, Hungary.

Mehryar Mohri. 1995. Matching patterns of an automaton. Lecture Notes in Computer Science, 937.

Fernando C. N. Pereira and Rebecca N. Wright. 1991. Finite-state approximation of phrase structure
grammars. In 29th Annual Meeting of the Association for Computational Lin guistics (ACL 94),
Proceedings of the Conference, Berkeley, California. ACL.

Fernando C. N Pereira, Michael Riley, and Richard Sproat. 1994. Weighted rational transductions and
their application to human language processing. In ARPA Workshop on Human Language Technology.
Advanced Research Projects Agency.

Dominique Perrin. 1990. Finite automata. In J. Van Leuwen, editor, Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, pages 1-57. Elsevier, Amsterdam.

Dominique Perrin. 1993. Les débuts de la théorie des automates. Technical Report LITP 93.04, LITP.

Dominique Revuz. 1991. Dictionnaires et lexiques, méthodes et algorithmes. Ph.D. thesis, Université
Paris 7: Paris, France.

Emmanuel Roche. 1993a. Analyse syntazique transformationnelle du francgais par transducteur et lexique-
grammasre. Ph.D. thesis, Université Paris 7: Paris, France.

Emmanuel Roche. 1993b. Dictionary compression experiments. Technical Report IGM 93-5, Institut
Gaspard Monge, Noisy-le-Grand.

Marcel Paul Schutzenberger and Christophe Reutenauer. 1991. Minimization of rational word functions.
SIAM Journal of Computing, 20(4).

Marcel Paul Schutzenberger. 1987. Polynomial decomposition of rational functions. In Lecture Notes in
Computer Science. Lecture Notes in Computer Science, Springer-Verlag: Berlin Heidelberg New York.

Max Silberztein. 1993. Dictionnaires électroniques et analyse automatique de textes: le systéme INTEX.
Masson: Paris, France.

Richard Sproat. 1995. A finite-state architecture for tokenization and grapheme-to-phoneme conversion
in multilingual text analysis. In Proceedings of the ACL SIGDAT Workshop, Dublin, Ireland. ACL.
W.A. Woods. 1970. Transition network grammars for natural language analysis. Communications of the

Association for the Computational Machinery, 13(10).

