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Abstract—We present a theoretical framework for the compres-
sion of automata, which are widely used representations in speech
processing, natural language processing and many other tasks. As
a corollary, our framework further covers graph compression. We
introduce a probabilistic process of graph and automata generation
that is similar to stationary ergodic processes and that covers
real-world phenomena. We also introduce a universal compression
scheme LZA for this probabilistic model and show that LZA
significantly outperforms other compression techniques such as gzip
and the UNIX compress command for several synthetic and real data
sets.
Index Terms—Lempel-Ziv, universal compression, graphs

I. INTRODUCTION

Massive amounts of data are generated and processed by
modern search engines and popular online sites, which have
been reported to be in the order of hundreds of petabytes. At
a different level, sophisticated models are commonly stored on
mobile devices for tasks such as speech-to-text conversion. Thus,
efficient storage and compression algorithms are needed both at
the data warehouse level (petabytes of data) and at a device
level (megabytes of data). Memory and storage constraints for
the latter, as well as the communication costs of downloading
complex models, further motivate the need for effective com-
pression algorithms.

Most existing compression techniques were designed for se-
quential data. They include Huffman coding and arithmetic
coding, which are optimal compression schemes for sequences of
symbols distributed i.i.d. according to some unknown distribution
[10], or the Lempel-Ziv schemes, which are asymptotically opti-
mal for stationary ergodic processes [15], [20], or various combi-
nations of these schemes, such as the UNIX command compress,
an efficient implementation of Lempel-Ziv-Walsh (LZW) and
gzip, a combination of Lempel-Ziv-77 (LZ77) and Huffman
coding.

However, much of the modern data processed at the data
warehouse or mobile device levels admits further structure: it
may represent segments of a very large graph such as the web
graph or a social network, or include very large finite automata
or finite-state transducers such as those widely used in speech
recognition or in a variety of other language processing tasks
such as machine translation, information extraction, and tagging
[17]. These data sets are typically very large. Web graphs contain
tens of billions of nodes (web pages). In speech processing, a
large-alphabet language model may have billions of word edges.
These examples and applications strongly motivate the need for
structured data compression in practice.

But, how can we exploit this structure to devise better com-
pression algorithms? Can we improve upon the straightforward
serialization of that data followed by the subsequent application
of an existing sequence compression algorithm? Surprisingly, the
problem of compressing such structured data has received little

attention. Here, we precisely study the problem of structured
data compression. Motivated by the examples just mentioned,
we focus on the problem of automata compression and, as a
corollary, graph compression.

An empirical study of web graph compression was given
by [5], [6], [14]. A theoretical study of the problem was first
presented by [1] who proposed a scheme using a minimum
spanning tree to find similar nodes to compress. However, the
authors showed that many generalizations of their problem are
NP-hard. Motivated by probabilistic models, [8], [9] later showed
that arithmetic coding can be used to nearly optimally compress
(the structure of) graphs generated by the Erdős-Rényi model.

An empirical study of automata compression has been pre-
sented by several authors in the past, including [11], [12].
However, we are not aware of any theoretical work focused
on automata compression. Our objective is three-fold: (i) pro-
pose a probabilistic model for automata that captures real-
world phenomena; (ii) provide a provably universal compression
algorithm; and (iii), show experimentally that the algorithm fares
well compared to techniques such as gzip and compress. Note
that the probabilistic model we introduce can be viewed as a
generalization of Erdős-Rényi graphs [4].

The rest of the paper is organized as follows: in Section II, we
briefly describe finite automata and some of their key properties.
In Section III, we describe our probabilistic model and show that
it helps cover many real-world applications. In Section IV, we de-
scribe our proposed algorithm, LZA, and prove its optimality. In
Section V, we further demonstrate our algorithm’s effectiveness
in terms of its degree of compression. Due to space constraints,
all the proofs are deferred to an extended version of the paper.

II. DIRECTED GRAPHS AND FINITE AUTOMATA

A finite automaton A is a 5-tuple (Q,Σ, δ, qI , F ) where Q =
{1, 2, . . . , n} is a finite set of states, Σ = {1, 2, . . . ,m} a finite
alphabet, δ : Q × Σ → Q∗ the transition function, qI ∈ Q an
initial state, and F ⊆ Q the set of final states. Thus, δ(q, a)
denotes the set of states reachable from state q via transitions
labeled with a ∈ Σ. If there is no transition by label a, then
δ(q, a) = ∅. We denote by E ⊆ Q × Σ × Q the set of all
transitions (q, a, q′) and by E[q] the set of all transitions from
state q. With the automata notation just introduced, a directed
graph can be defined as a pair (Q, δ) where Q = {1, 2, 3, . . . , n}
is a finite set of nodes and δ : Q → Q∗ a finite set of edges
where, for any node q, δ(q) denotes the set of nodes connected
to q.

An example of an automaton is given in Figure 1(a). State
0 in this simple example is the initial state (depicted with the
bold circle) and state 1 is the final state (depicted with double
circle). The strings 12 and 222 are among those accepted by this
automaton. By using symbolic labels on this automaton in place
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Fig. 1: (a) An example automaton; (b) a subway turnstile automaton; (c) an example weighted transducer.

of the usual integers, as depicted in Figure 1(b), we can interpret
this automaton as the operation of a subway turnstile. It has two
states locked and unlocked and actions (alphabet) coin and push.
If the turnstile is in the locked state and you push, it remains
locked and if you insert a coin, it becomes unlocked. If it is
unlocked and you insert a coin it remains unlocked, but if you
push once it becomes locked.

Note that directed graphs form a subset of automata with
Σ = {1}. Thus, in what follows, we can focus on automata
compression. Furthermore, to be consistent with the existing
automata literature, we use states to refer to nodes and transitions
to refer to edges in both graphs and automata going forward.

Some key applications motivating the study of automata are
speech and natural language processing. In these applications, it
is often useful to augment transitions with both an output label
and some real-valued weight. The resulting devices, weighted
finite-state transducers (FSTs), are extensively used in these
fields [2], [17], [18]. An example of an FST is given in
Figure 1(c). The string 12 is among those accepted by this
transducer. For this input, the transducer outputs the string 23 and
has weight .046875 (transitions weights 0.75 times 0.25 times
final weight 0.25).

We propose an algorithm for unweighted automata compres-
sion. For FSTs, we use the same algorithm by treating the input-
output label pair as a single label. If the automaton is weighted,
we just add the weights at the end of the compressed file by
using some standard representation.

III. RANDOM AUTOMATA COMPRESSION

A. Probabilistic model

Our goal is to propose a probabilistic model for automata
generation that captures real world phenomena. To this end,
we first review probabilistic models for sequences and draw
connections to probabilistic models for automata.

1) Probabilistic processes on sequences: We now define i.i.d.
sampling of sequences. Let xn1 denote an n-length sequence
x1, x2 . . . xn. If xn1 are n independent samples from a distribution
p over X , then p(xn1 ) =

∏n
i=1 p(xi). Note that under i.i.d.

sampling, the index of the sample has no importance, i.e.,

p(Xi = x) = p(Xj = x), ∀1 ≤ i, j ≤ n, x ∈ X .

Stationary ergodic processes generalizes i.i.d. sampling. For a
stationary ergodic process p over sequences

p(Xm
i = xmi ) = p(Xm+j

i+j = xmi ),∀i, j,m, xmi .

Informally stationary ergodic processes are those for which only
the relative position of the indices matter and not the actual ones.

2) Probabilistic processes on automata: Before deriving mod-
els for automata generation, we first discuss an invariance
property of automata that is useful in practice. The set of
strings accepted by an automaton and the time and space of
its use are not affected by the state numbering. Two automata
are isomorphic if they coincide modulo a renumbering of the
states. Thus, automata (Q,Σ, δ, qI , F ) and (Q′,Σ, δ′, q′I , F

′) are
isomorphic, if there is a one-to-one mapping f : Q → Q′ such
that f(δ(q, a)) = δ′(f(q), a), for all q ∈ Q and a ∈ Σ,
f(qI) = q′I , and f(F ) = F ′, where f(F ) = {f(q) : q ∈ F}.

Under stationary ergodic processes, two sequences with the
same order of observed symbols have the same probabilities.
Similarly we wish to construct a probabilistic model of automata
such that any two isomorphic automata have the same probabil-
ities. For example, the probabilities of automata in Figure 2 are
the same.

There are several probabilistic models of automata and graphs
that satisfy this property. Perhaps the most studied random model
is the Erdős-Rényi model G(n, p), where each state is connected
to every other state independently with probability p [4]. Note
that if two automata are isomorphic then the Erdős-Rényi model
assigns them the same probability. The Erdős-Rényi model is
analogous to i.i.d. sampling on sequences. We wish to generalize
the Erdős-Rényi model to more realistic models of automata.

Since the automata model should not depend on the state
numbering, it could only depend on the set of incoming or
leaving paths. There is no other possible semantics we could
assign to states. Between incoming or outgoing paths, choosing
the dependency on the incoming paths is natural given the
sequentiality of language models. For example in an n-gram
model, a state might have an outgoing transition with label
Francisco or Diego only if it has an input transition with label
San. This is an example where we have restrictions on paths of
length 2. In general, we may have restrictions on paths of any
length `.

We define an `-memory model for automata as follows. Let h`q
be the set of paths of length at most ` leading to the state q. The
probability distribution of transitions from a state depends on the
paths leading to it. Let δ(q, ∗) def

= δ(q, 1), δ(q, 2), . . . , δ(q,m).

p(A) = p(δ(1, ∗), δ(2, ∗), . . . , δ(n, ∗)) ∝
n∏
q=1

p(δ(q, ∗)|h`q).

Similarly, transitions leaving a state q dissociate into marginals
conditioned on the history h`q and probability that q′ ∈ δ(q, a)
also dissociates into marginals.

p(δ(q, ∗)|h`q) =
∏
a∈Σ

p(δ(q, a)|h`q)

=
∏
a∈Σ

n∏
q′=1

p(1(q′ ∈ δ(q, a))|h`q),
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Fig. 2: An example of isomorphic automata. The above two
automata are same under the permutation 0 → 0, 1 → 2, and
2→ 1.

where 1(q′ ∈ δ(q, a)) is the indicator of the event q′ ∈ δ(q, a).
Note that the probabilities are defined with proportionality. This
is due to the probabilities possibly not adding to one. Thus we
have a constant Z to ensure that it is a probability distribution.

p(A) = p(δ(1, ∗), δ(2, ∗), . . . , δ(n, ∗))

=
1

Z

n∏
q=1

p(δ(q, ∗)|h`q)

=
1

Z

n∏
q=1

∏
a∈Σ

p(δ(q, a)|h`q).

Note that `-memory models assign the same probability to
automata that are isomorphic. In our calculations, we restrict `
to make the model tractable.

Note that sequences form a subset of automata as follows. For
a sequence xn over alphabet Σ, consider the automata represen-
tation with states Q = {1, 2, . . . n}, initial state qI = 1, final state
F = {n}, alphabet Σ, and transition function δ(i, xi) = i+1 and
δ(i, x) = φ for all x 6= xi. Informally, every sequence can be
represented as an automaton with line as the underlying structure.
Note that the `-memory model is similar to `th order Markov
chain for sequences.

B. Entropy and coding schemes

A compression scheme is a mapping from X to {0, 1}∗
such that the resulting code is prefix-free and can be uniquely
recovered. For a coding scheme c, let lc(x) denote the length
of the code for x ∈ X . It is well-known that the expected
number of bits used by any coding scheme is the entropy of the
distribution, defined as H(p)

def
=
∑
x∈X p(x) log 1

p(x) . The well
known Huffman coding scheme achieves this entropy up-to one
additional bit. For n-length sequences arithmetic coding is used,
which achieves compression up-to entropy with few additional
bits of error.

The above-mentioned coding methods such as Huffman coding
and arithmetic coding require the knowledge of the underlying
distribution. In many practical scenarios, the underlying distribu-
tion may be unknown and only the broader class to which the
distribution belongs may be known. For example, we might know
that the given n-length sequence is generated by i.i.d. sampling
of some unknown distribution p over {1, 2, . . . , k}. The objective
of a universal compression scheme is to asymptotically achieve
H(p) bits per symbol even if the distribution is unknown. A
coding scheme c for sequences over a class of distributions P is
called universal if

lim sup
n→∞

max
p∈P

E[lc(X
n)]−H(Xn)

n
= 0.

The normalization factor in the above definition is n, as the
number of sequences of length n increases exponentially with
n. For automata and graphs with n states (denoted by An) we

choose a scaling scaling factor of n2 as the number of automata
scales as exp(n2). We call a coding scheme c for automata over
a class of distributions P universal if

lim sup
n→∞

max
p∈P

E[lc(An)]−H(An)

n2
= 0.

We now describe the algorithm LZA. Note that the algorithm
does not require the knowledge of the underlying parameters or
the probabilistic model.

IV. ALGORITHM FOR AUTOMATON COMPRESSION

Our algorithm recursively finds substructures over states and
uses a Lempel-Ziv subroutine. Our coding method is based on
two auxiliary techniques to improve the compression rate: Elias-
delta coding and coding the differences. We briefly discuss these
techniques and their properties before describing our algorithm.

A. Elias-delta coding and coding the differences

Elias-delta coding is a universal compression scheme for
integers [13]. To represent a positive integer x, Elias-delta codes
use blog xc+ 2blogblog xc+ 1c+ 1 bits. To obtain a code over
N ∪ {0}, we replace x by x+ 1and use Elias-delta codes.

We now use Elias-delta codes to obtain to code sets of integers.
Let x1, x2, . . . , xm be integers such that 0 ≤ x1 ≤ x2 ≤ · · · ≤
xm ≤ n. We use the following algorithm to code x1, x2, . . . , xm.
The decoding algorithm follows from ELIAS-DECODE [13].

Algorithm DIFFERENCE-ENCODE
Input: Integers 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ n.
1) Use ELIAS-ENCODE to code x1− 0, x2−x1, . . .xd−xd−1.

Lemma 1 (Appendix A). For integers such that 0 ≤ x1 ≤
x2, . . . xd ≤ n, DIFFERENCE-ENCODE uses at most

d log
n+ d

d
+ 2d log

(
log

n+ d

d
+ 1
)

+ d

bits.

We first give an example to illustrate DIFFERENCE-ENCODE’s
usefulness. Consider graph representation using adjacency lists.
For every source state, the order in which the destination states
are stored does not matter. For example, if state 1 is connected
to states 2, 4, and 3, it suffices to represent the unordered set
{2, 3, 4}. In general if a state is connected to d out of n states,
then it suffices to encode the ordered set of states y1, y2, . . . , yd
where 1 ≤ y1 ≤ y2 ≤ y3 . . . yd ≤ n. The number of such
possible sets is

(
n
d

)
. If the state-sets are all equally likely, then

the entropy of state-sets is log
(
n
d

)
≈ d log n

d .
If each state is represented using log n bits, then d log n >

d log n
d bits are necessary, which is not optimal. However, by

Lemma 1, DIFFERENCE-ENCODE uses d log n+d
d (1 + o(1)) ≈

d log n
d , and hence is asymptotically optimal. Furthermore, the

bounds in Lemma 1 are for the worst-case scenario and in
practice DIFFERENCE-ENCODE yields much higher savings. A
similar scenario arises in LZA as discussed later.

B. LZA

We now have at our disposal the tools needed to design a
variant of the Lempel-Ziv algorithm for compressing automata,
which we denote by LZA. Let dq

def
= |E[q]| be the num-

ber of transitions from state q and let transitions in E[q] =



{(q, a1, q1), (q, a2, q2), . . . , (q, adq , qdq )} are ordered as follows:
for all i, qi ≤ qi+1 and if qi = qi+1 then ai < ai+1.

The algorithm is based on the observation that the ordering of
the transitions leaving a state does not affect the definition of an
automaton and works as follows. The states of the automaton are
visited in a BFS order. For each state visited, the set of outgoing
transitions is sorted based on their destination state. Next, the
algorithm recursively finds the largest overlap of the sets of
transitions that match some dictionary element and encodes the
pair (matched dictionary element number, next transition), and
adds the dictionary element to Td, alphabet of the transition
to TΣ, and the destination state of the transition to Tδ . It
also updates the dictionary element by adding a new dictionary
element (matched dictionary element number, next transition) to
the dictionary. Finally it encodes Td, Tδ using DIFFERENCE-
ENCODE and encodes each element in TΣ using dlogme bits.

Algorithm LZA
Input: The transition label function δ of the automaton.
Output: Encoded sequence S.
1) Set dictionary D = ∅.
2) Visit all states q in BFS order. For every state q do:

a) Code dq using dlog nme bits.
b) Set Td = ∅, TΣ = ∅, and Tδ = ∅.
c) Start with j = 1 in E[q] = {(q, a1, q1), . . . , (q, adq , qdq )}

and continue till j reaches dq .
i) Find largest l such that (aj , qj), . . . , (aj+l, qj+l) ∈ D.

Let this dictionary element be dr.
ii) Add (aj , qj), . . . , (aj+l+1, qj+l+1) to D.

iii) Add dr to Td, qj+l+1 to Tδ , and aj+l+1 to TΣ.
d) Use DIFFERENCE-ENCODE to encode Td, Tδ and encode

each element in TΣ using dlogme bits. Append these
sequences to S

3) Discard the dictionary and output S.

We note that simply compressing the unordered sets Td and
Tδ suffices for unique reconstruction and thus DIFFERENCE-
ENCODE is the natural choice. Observe that DIFFERENCE-
ENCODE is a succinct representation of the dictionary and does
not affect the way Lempel-Ziv dictionary is built. Thus the
decoding algorithm follows immediately from retracing the steps
in LZA and LZ78 decoding algorithm. The run time of LZA is
similar to that of other Lempel Ziv algorithms and is O(n+ |E|).

If DIFFERENCE-ENCODE is not used, the number of bits used
would be approximately |D| log |D|+ |D| log n, which is strictly
greater than that number of bits in Lemma 2. Furthermore, we
did consider several other natural variants of this algorithm where
we difference-encode the states first and then serialize the data
using a standard Lempel-Ziv algorithm. However, we could not
prove asymptotic optimality for those variants. Proving their
non-optimality requires constructing distributions for which the
algorithm is non-optimal and is not the focus of this paper.

We first bound the number of bits used by LZA in terms of
the size of the dictionary |D|, the number of states n, and the
alphabet size m. This bound is independent of the underlying
probabilistic model. Next, we proceed to derive probabilistic
bounds.

Lemma 2 (Appendix B). The total number of bits used by LZA

is at most

|D| [log(n+ 1) + log (ν + 1) + 2 log(log(n+ 1) + 1)]

+ |D| [2 log (log (ν + 1) + 1) + 2 + dlogme] + ndlog nme,

where ν = n2

|D| .

C. Proof of optimality

In this section, we prove that LZA is asymptotically opti-
mal for the random automata model introduced in Section III.
Lemma 2 gives an upper bound on the number of bits used in
terms of the size of the dictionary |D|. We now present a lower
bound on the entropy in terms of D which will help us prove
this result. The proof is given in Appendix C.

Lemma 3. LZA satisfies

H(p) ≥ E[|D|]
[
log

E[|D|]
n
−m` − log

(
n2m

E[|D|]
+ 1

)
− 1

]
.

The above result together with Lemma 2 implies

Theorem 4 (Appendix D). If 2m
`

= o
(

logn
log logn

)
, then LZA is

a universal compression algorithm.

V. EXPERIMENTS

A. Automaton structure compression

LZA compresses automata, but for most applications, it is
sufficient to compress the automata structure. We convert LZA
into LZAS , an algorithm for automata structure compression
as follows. We first perform a breadth first search (BFS) with
the initial state as the root state and relabel the states in their
BFS visitation order. We then run LZA with the following
modification. In step 2, for every state q we divide the transitions
from q into two groups, T qold transitions whose destination states
have been traversed before in LZA and T qnew, transitions whose
destinations have not been traversed. Note that since the state
numbers are ordered based on a BFS visit, the destination state
numbers in T qnew are 1, 2, . . . n, and can be recovered easily while
decoding and thus need not be stored. Hence, we run step 2b in
LZA only on transitions in T qold. For T qnew, we just compress the
transition labels using a standard implementation of LZ78.

Since each destination state can appear in T qnew only once,
the number of transitions in ∪qT qnew ≤ n, Since this number
is � n2, the normalization factor in the definition of universal
compression algorithm for automata, the proof of Theorem 4
extends to LZAs. Since for most applications, it is sufficient to
compress to the automata structure, we implemented LZAs in
C++ and added it to the OpenFst open-source library [3]1.

B. Comparison

The best known convergence rate of all Lempel-Ziv algorithms
for sequences is O

(
log logn

logn

)
and LZA has the same conver-

gence rate under the `-memory probabilistic model.
However in practice data sets have finitely many states and the

underlying automata may not be generated from an `-memory
probabilistic model. To prove the practicality of the algorithm,
we compare LZAs with the Unix compress command (LZW)
and gzip (LZ77 and Huffman coding) for various synthetic and
real data sets.

1Available for download atwww.openfst.org

www.openfst.org


Class Uncompressed LZAS compress gzip LZA+gzip
G1 172208 18260 22681 23752 17320
A1 172076 21745 33478 31682 21108
G2 34102 2536 4994 4564 2443
A2 34171 3027 6707 5546 2940

TABLE I: Synthetic data compression examples (in bytes).

1) Synthetic Data: While the `-memory probabilistic model
illustrates a broad class of probabilistic models on which LZA is
universal, generating samples from an `-memory model is dif-
ficult similar to graphical models as the normalization factor Z
is hard to compute. We therefore test our algorithm on a few
simpler synthetic data sets. In all our experiments the number of
states is 1000 and the results are averaged over 1000 runs.

Table I summarizes our results for a few synthetic data sets,
specified in bytes. Note that one of the main advantages of
LZAS over existing algorithms is that LZAS just compresses the
structure, which is sufficient for applications in speech processing
and language modeling. Furthermore, note that to obtain the
actual automaton from the structure we need the original state
numbering, which can be specified in n log n bits, which is
(1000 log2 1000)/8 ≤ 1250 bytes in our experiments. Even if
we add 1250 bytes to our results in Table I, LZA still performs
better than gzip and compress.

We run the algorithm on four different synthetic data sets
G1, G2, A1, A2. G1 and A1 are models with a uniform out-degree
distribution over the states and G2 and A2 are models with a non-
uniform out-degree distribution:
G1: directed Erdős-Rényi graphs where we randomly generate

transitions between every source-destination pair with probability
1/100.
A1: automata version of Erdős-Rényi graphs, where there is a

transition between every two states with probability 1/100 and
the transition labels are chosen independently from an alphabet
of size 10 for each transition.
G2: we assign each state a class c ∈ {1, 2, . . . 1000} randomly.

We connect every two states s and d with probability 1/(cs+cd).
The resulting graph has degrees varying from 2 to log 1000.
A2: we generate the transitions as above and we label each

transition to be a deterministic function of the destination state.
This is similar to n-gram models, where the the destination state
determines the label. Here again we chose |Σ| = 10.

Note that LZA always performs better than the standard
Lempel-Ziv-based algorithms gzip and compress. Note that al-
gorithms designed with specific knowledge of the underlying
model can achieve better performance. For example, for G1,
arithmetic coding can be used to obtain a compressed file size of
n2h(0.01)/8 ≈ 10000 bytes. However the same algorithm would
not perform well for G2 or A2.

2) Real-World Data: We also tested our compression algo-
rithm on a variety of ‘real-world’ automata drawn from various
speech and natural language applications. These include large
speech recognition language models and decoder graphs [17],
text normalization grammars for text-to-speech [19], speech
recognition and machine translation lattices [16], and pair n-gram
grapheme-to-phoneme models [7]. We selected approximately
eighty such automata from these tasks and removed their weights
and output labels (if any), since we focus here on unweighted
automata. Figure 3 shows the compressed sizes of these automata,
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Fig. 3: Real-world compression examples.

ordered by their uncompressed (adjacency-list) size rank, with the
same set of compression algorithms presented in the synthetic
case. At the smallest sizes, gzip out-performs LZA, but after
about 100 kbytes in compressed size, LZA is better. Overall, the
combination of LZA and gzip performs best.
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APPENDIX

A. Proof of Lemma 1

Since 0 is included in the set, the number of bits used to
represent x is upper bounded by θ(x) = log(x+1)+2 log(log(x+
1) + 1)c + 1. Observe that θ is a concave function since both
log and x 7→ log(log x) are concave. Let x0 = 0. Then, by the
concavity of θ, the total number of bits B used can be bounded
as follows:

B ≤
d∑
i=1

θ(xi − xi−1)

= d

d∑
i=1

1

d
θ(xi − xi−1)

≤ d θ
(1

d

d∑
i=1

xi − xi−1

)
= d θ

(1

d
xn

)
≤ d θ

(n
d

)
,

where we used for the last inequality xn ≤ n and the fact that θ
is an increasing function. This completes the proof of the lemma.

B. Proof of Lemma 2

Let kq be the number of elements added to the dictionary when
state q is visited by LZA. The maximum value of the destination
state is n. Thus, by Lemma 1, the number of bits used to code
Tδ is at most

n∑
q=1

(
kqθ
( n
kq

)
+ kqdlogme

)
,

where θ(·) is the function introduced in the proof of Lemma 1.
Similarly, since the maximum value of any dictionary element is
|D|, by Lemma 1, the number of bits used to code Td is at most

n∑
q=1

kqθ

(
|D|
kq

)
.

By concavity these summations are maximized when kq = |D|
n

for all q. Plugging in that expression in the sums above yields
the following upper bound on the maximum number of bits used:

|D|θ(ν) + |D|dlogme+ |D|θ(n).

Additionally, this number must be augmented by ndlog nme
since dlog nme bits are used to encode each dq , which completes
the proof.

C. Proof of Lemma 3

One of the main technical tools we use is Ziv’s inequality,
which is stated below.

Lemma 5 (Variation of Ziv’s inequality). For a probability
distribution p over non-negative integers with mean µ,

H(p) ≤ log(µ+ 1) + 1.

The next lemma bounds the probability of disjoint events under
different distributions.

Lemma 6. If A1, A2, . . . , Ak be a set of disjoint events. Then
for a set of distributions p1, p2, . . . pr,

k∑
i=1

r∑
j=1

pj(Ak) ≤
r∑
j=1

1 = r.

We now lower bound H(p) in terms of the number of
dictionary elements.

Let dq
def
= |E[q]| be the number of transitions from state q

and let transitions in E[q] = {(q, a1, q1), . . . , (q, adq , qdq )} are
ordered as follows: for all i, qi ≤ qi+1 and if qi = qi+1 then
ai < ai+1. To simplify the discussion, we will use the shorthand
eq,i

def
= (q, ai, qi). Then, by the definition of our probabilistic

model,

log p(A) =

n∑
q=1

log p(eq,1, eq,2, . . . , eq,dq |h`q)− logZ.

We group the transitions the way LZA constructed the dictionary.
Let {Dq,i} be the set of dictionary elements added when state q
is visited during the execution of the algorithm. For a dictionary
element Dq,i, let sq,q′ be the starting eq,i and tq,q′ the terminal
eq,i. Then, by the independence of the transition labels and the
fact that Z ≥ 1,

log p(A) ≤
n∑
q=1

∑
Dq,i

log p(eq,sq,i , eq,sq,i+1, . . . eq,tq,i |h`q).

Let gq,i = tq,i− sq,i. We group them now with gq,i and sq,i. Let
D(s, g) be the set of dictionary elements Dq,i with sq,i = s and
gq,i = g and let cs,g be the cardinality of that set: cs,g = |D(s, g)|
and etq,s = eq,s, eq,s+1, . . . eq,t . Then, by Jensen’s inequality, we
can write

n∑
q=1

∑
Dq,i

log p(etq,iq,sq,i |h
`
q)

=

n∑
q=1

n∑
s=1

n∑
g=1

∑
Dq,i∈D(s,g)

log p(es+gq,s |h`q)

=

n∑
s=1

n∑
g=1

cs,g
1

cs,g

n∑
q=1

∑
Dq,i∈D(s,g)

log p(es+gq,s |h`q)

≤
n∑
s=1

n∑
g=1

cs,g log
1

cs,g

n∑
q=1

∑
Dq,i∈D(s,g)

p(es+gq,s |h`q)

≤
n∑
s=1

n∑
g=1

cs,g log
2m

`

cs,g
.

where the last inequality follows by Lemma 6, the fact that
the events in each summation are disjoint and mutually exclusive
and that the number of possible histories h`q is ≤ 2m

l

. Since∑
s,g cs,g = |D|,

n∑
s=1

n∑
g=1

cs,g log
2m

`

cs,g

= |D|m` +

n∑
s=1

n∑
g=1

cs,g log
1

cs,g

= |D|m` − |D| log |D|+ |D|
n∑
s=1

n∑
g=1

cs,g
D

log
|D|
cs,g

= |D|m` − |D| log |D|+ |D|H(cs,g).

Let cs and cg be the projections of cs,g into first and second
coordinates. Then, we can write

H(cs,g) ≤ H(cs) +H(cg) ≤ log n+H(cg).



Using
∑
s,g cs,gg ≤ n2m, by Ziv’s inequality, the following

holds: H(cg) ≤ log
(
n2m
|D| +1

)
. Combining this with the previous

inequalities gives

log p(A) ≤ |D|
[
m` + log

(
n2m

|D|
+ 1

)
+ 1− log

|D|
n

]
.

Taking the expectation of both sides, next using the concavity of
|D| 7→ −|D| log(|D|) and Jensen’s inequality yield

H(p) ≥ E[|D|]
[
log

E[|D|]
n
−m` − log

(
n2m

E[|D|]
+ 1

)
− 1

]
.

D. Proof of Theorem 4

We first upper bound E[|D|] using Lemma 3.

Lemma 7. For the dictionary D generated by LZA

E[|D|] ≤ 10n2m log(m+ 1)2m
`

log n
.

Proof: An automaton is a random variable over n2 transition
labels each taking at most mm + 1 values, hence H(p) ≤
n2m log(m+1). Combining this inequality with Lemma 3 yields

n2m log(m+ 1) ≥

E[|D|]
[
log

E[|D|]
n
−m` − log

(
n2m

E[|D|]
+ 1

)
− 1

]
.

Now, let U = 10n2m log(m+1)2m`

logn and assume that the inequality
E[|D|] > U holds. Then, the following inequalities hold:

E[|D|]
[
log

E[|D|]
n
−m` − log

(
n2m

E[|D|]
+ 1

)
− 1

]
> U

[
log

10mn log(m+ 1)2m
`

log n
−m`

]

+ U

[
− log

(
log n

102m` log(m+ 1)
+ 1

)
− 1

]
≥ U

[
log n− log

(
log n

102m` log(m+ 1)
+ 1

)]
− U [log log n]

> n2m log(m+ 1),

which leads to a contradiction. This completes the proof of the
lemma.

We now have all the tools to prove Theorem 4. Let W (|D|)
be the upper bound in Lemma 2. Since we have a probabilistic
model and the fact that W is concave in |D|, the expected number
of bits

E[lLDA(An)] ≤W (E[|D|]).

Substituting the lower bound on H(p) from Lemma 3 and

rearranging terms, we have

max
p(An)

E[lLZA(an)]−H(p)

n2

= max
p(An)

W (E[|D|])−H(p)

n2

≤ E[|D|]
n2

[
log

(
(n+ 1)n

E[|D|]
·
(
n2m

E[|D|]
+ 1

)2
)]

+
E[|D|]
n2

[
2 log

(
log

(
n2

E[|D|]
+ 1

)
+ 1

)
+m` + 4 + logm

]
2E[|D|]
n2

log(log(n+ 1) + 1) +
dlog nme

n

= O
(

2m
` log logn+m`

log n

)
.

The last equality follows from Lemma 7. As n→∞, the bound
goes to 0 and hence LZA is a universal compression algorithm.
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