
A Theory of Learning with Competing Objectives and User Feedback

Pranjal Awasthi1, Corinna Cortes1, Yishay Mansour1, 2, Mehryar Mohri1, 3,
1Google Research; 2Tel-Aviv University; 3Courant Institute of Mathematical Sciences.

pranjalawasthi@google.com, corinna@google.com, mansour@google.com, mohri@google.com.

Abstract

Large-scale deployed learning systems are often evaluated
along multiple objectives or criteria. But, how can we learn or
optimize such complex systems, with potentially conflicting
or even incompatible objectives? How can we improve the sys-
tem when user feedback becomes available, feedback possibly
alerting to issues not previously optimized for by the system?
We present a new theoretical model for learning and optimiz-
ing such complex systems. Rather than committing to a static
or pre-defined tradeoff for the multiple objectives, our model
is guided by the feedback received, which is used to update
its internal state. Our model supports multiple objectives that
can be of very general form and takes into account their po-
tential incompatibilities. We consider both a stochastic and an
adversarial setting. In the stochastic setting, we show that our
framework can be naturally cast as a Markov Decision Process
with stochastic losses, for which we give efficient vanishing
regret algorithmic solutions. In the adversarial setting, we de-
sign efficient algorithms with competitive ratio guarantees.
We also report the results of experiments with our stochastic
algorithms validating their effectiveness.

1 Introduction
Learning algorithms trained on large amounts of data are
increasingly adopted in a variety of applications and form
the engine driving complex large-scale systems such as e-
commerce platforms, online advertising auctions and rec-
ommender systems. Their system designer must take into
account multiple metrics when optimizing them (Kaminskas
and Bridge 2016; Masthoff 2011; Lin et al. 2019). As an
example, consider the case of a recommendation system for
recipes, videos or fashion. There is no single metric that de-
fines what a good recommendation engine should do. One
needs to carefully take into consideration metrics measuring
the quality of recommendations provided to end-users, their
relevance and utility, the long-term growth of the content
creators, and the overall revenue generated for the hosting
platform. Furthermore, it is crucial to consider the risk of
bias in these systems (Speicher et al. 2018; Xiao et al. 2017;
Holstein et al. 2019). Hence, additional metrics may need to
be incorporated, such as performance across demographic
groups, geographical locations or other identity terms. This
can easily lead to hundreds of metrics that need to be simul-
taneously optimized for user satisfaction.

Further complicating the above scenario is the fact that
often the multiple metrics considered are incompatible and in-
herently in conflict with each other (Kleinberg, Mullainathan,
and Raghavan 2017; Sener and Koltun 2018; Jin 2006). For
instance, in the context of a recommendation system, there
is a tension between maximizing revenue via ad placements
and maximizing end-user “happiness”. Another tension may
be between maximizing quality versus diversity of recom-
mendations. In many cases, resolving such conflicts may
force the designer to make hard choices among notions that
seem perfectly reasonable in isolation, weighing in current
use-patterns, wins and losses. An illuminating example is the
analysis of the COMPAS tool for predicting recidivism by
(Angwin et al. 2019). The authors showed that, among black
defendants who do not recidivate, the tool predicted incor-
rectly at twice the rate than it did for white defendants who
did not recidivate, i.e., the tool was unfair according to the
false positive rate metric. The creator of the tool, Northpointe,
responded by demonstrating that the tool was fair according
to other natural measures such as AUC (Area Under the ROC
Curve), for which each group had similar values. Later work
showed that this tension is inherent and that it is often im-
possible to simultaneously satisfy multiple seemingly natural
criteria (Kleinberg, Mullainathan, and Raghavan 2017) (see
also (Feller et al. 2016)).

The above discussion raises the question of how one should
define the optimal trade-off among multiple conflicting met-
rics to optimize for user satisfaction. A natural approach is
to define the trade-offs in a static manner, either by using
domain knowledge and human expertise, or by analyzing past
historical data. Another line of work studies optimization in
the presence of multiple objectives by designing algorithms
that compete with any linear combination of the objectives
(Mohri, Sivek, and Suresh 2019; Cortes et al. 2020) or by
designing pareto-optimal solutions (Sener and Koltun 2018;
Shah and Ghahramani 2016). However, these solutions may
be sub-optimal for the richer situation where user feedback
is available. While algorithms tailored to a specific metric or
a combination of metrics would be effective at first, experi-
ence shows that they become non pertinent over time: once a
system is deployed and it interacts with its end-users, ineffi-
ciencies in the system design emerge, as evident via the user
feedback, which in turn could lead one to prefer metrics origi-
nally not accounted for (Liu et al. 2018). In the context of the

COMPAS tool discussed above, this would correspond to the
situation where user complaints make the system designers
change loss function to ensure equal false-positive rates. The
important aspect is that the underlying data distribution on
which the tool has been trained doesn’t change, new user
feedback simply alerts the designers to short-comings of the
system. Motivated by the above, in this work, we present a
theoretical data-driven model for optimizing multiple con-
flicting metrics by taking into account the user feedback. Our
proposed framework allows for the design of algorithmic
solutions with strong theoretical guarantees.

In the context of a recommender system, user initiated feed-
back may be a "dislike", "too spicy", or "age inappropriate"
(Chen and Pu 2012), but feedback may also be indirectly ob-
served by, e.g., high abandonment rates or low click-through
rates. Going from complaints to actionable solutions involves
many steps. First, the complaints are analyzed, typically by
human specialists, and attributed to a set of predefined crite-
ria, such as low accuracy of classifiers, false positive rates or
AUC scores. Each complaint could trigger several criteria and
a human specialist can monitor the aggregate performance on
each criterion. Since criteria are often incompatible, based on
the analysis of the complaints and their effect on the criteria,
a decision is made to allocate resources to improve a subset of
them and this process repeats (Yu et al. 2020). While human
involvement is crucial in the above process, a large portion of
the above process could be made algorithmic and automated.

Our model assumes predetermined costs for user com-
plaints along the multiple metrics. The difficulty in optimiz-
ing for user happiness arises from the fact that the nature and
volume of the complaints depend on the state of the model.
Of course if no complaints is received, an optimal state has
been reached, but most often complaints will arise. Fixing
the model to optimize for this set of complaints will most
likely spur a different set of complaints, etc. Only by visiting
all incompatible states of the model and observing the asso-
ciated complaint set would one be able to fully optimize the
model. Such an exhaustive search is prohibitive from both
a time and development perspective. This paper presents a
model that effectively reaches a beneficial state and provides
performance guarantees.

The rest of the paper is organized as follows. In Section 2,
we define our model. In the stochastic setting (Section 3),
we show that our framework can be cast as a Markov De-
cision Process with stochastic losses, for which we give ef-
ficient vanishing regret algorithmic solutions. We also fur-
ther discuss our modeling assumptions and extensions. The
adversarial setting is discussed in Appendix D. Here, we
give algorithms with competitive ratio guarantees. Section 4
demonstrates how our framework can be realized in practice
and reports the results of experiments with our algorithms in
the stochastic setting that demonstrate their effectiveness and
the applicability of our model. We also defer the related work
discussion as well as many of the proofs to the appendix.

2 Conflict Resolution Model
We consider optimization in the presence of multiple cri-
teria, where not all criteria can be satisfied simultaneously.
The constraints are specified by an undirected graph G =

(V,E), where each vertex represents a criterion and where
an edge between vertices vi and vj indicates that criteria
vi and vj cannot be simultaneously satisfied. We denote by
V = {v1, . . . , vk} the set of k criteria considered. Figure 1
illustrates these definitions. Note that vertices may represent
joint criteria as in Figure 1(b).

We consider a machine learning system that evolves over
a sequence of time steps in the presence of the criteria repre-
sented by the graph G. At each time step t, the system is in
some state st characterized by its performance on all criteria
in V . Note, a state is distinct from a vertex of G. The system
then receives a new batch of feedback that depend on its
current state and incurs a loss. The objective of the algorithm
is to minimize the total cost incurred over a period of time,
which includes the total loss accrued, as well as the total cost
of fixing various criteria over that period. We envision that
the algorithm is solving a constraint optimization problem
with the criteria as constraints.

The assignment of a complaint to criteria can be achieved
by human analysis or via a multi-class multi-label classifier
trained on past data and making use of known classifiers
for specific criteria. Even when a complaint is related to a
single criterion, we do not simply advocate taking that raw
feedback as the ground truth. We discuss the risks associated
with doing so in Section 3 and Appendix F, in the context of
the COMPAS example. To further improve and maintain the
accuracy of this multi-class multi-label classifier, in practice,
there may be ongoing data labeling and assistance by expert
auditors analyzing complaints. Note that not all complaints
received by the system are relevant and the classifier, or a hu-
man in the loop, may decide to not assign a complaint to any
criterion. This also helps protect the system against poten-
tial attacks by coordinated users. Recent work on interactive
models for ML fairness has studied this for specific metrics
and auditor behavior (Bechavod, Jung, and Wu 2020).

Loss. As a result of the complaints, the system incurs a
loss and responds by changing its state. The definition of the
loss, which depends on the criteria affected by the complaints
is critical, a poor choice can yield a so-called loudest voice
effect (see discussion in Section 3). The notion of complaints
and the associated loss may seem abstract at this point. In
Section 4, we demonstrate how our model can be applied in
practice.

Graph and criteria. The assumption that the graph G is
known a priori may seem restrictive. However, in many set-
tings, graph G can be derived from analyzing past complaints
and by measuring how fixing one criterion affects the perfor-
mance on others. For instance, in the recommendation system
example discussed above, where each metric corresponds to
the false positive rate on a different slice of the data, one can
easily use past data to see how optimizing the false positive
rate on one slice affects the other and get the graph of in-
compatibilities. See the experiments in Section 4 for a more
concrete example. Our model also provides the flexibility of
accounting for incompatibilities among criteria such as those
discussed by (Kleinberg, Mullainathan, and Raghavan 2017)
and (Feller et al. 2016). This can be achieved by augmenting
the graph with vertices representing joint criteria as in Fig-
ure 1(b). The graph stipulates in particular that v1, v2 and v3

(a) (b) (c)

Figure 1: (a) Illustration of constraints graph G. Vertices v1, v2, v3, v4 represent 4 different criteria. (b) More generally, each
vertex can represent a joint criterion, for example v1 ∧ v2. This helps specify joint constraints such as the following: v1, v2,
and v3 cannot be simultaneously satisfied. (c) Illustration of the MDP for a fully connected incompatibility graph G over three
criteria. The state set is S = {0 = [0,0,0],1 = [1,0,0],2 = [0,1,0],3 = [0,0,1]}, the action set A = {0,1,2,3}. Each transition
is labeled with a/λ(s, a), where a is the action taken from s and where λ(s, a) is the total loss incurred as a result.

cannot be all simultaneously satisfied.
States. We will adopt the following simplifying assump-

tions and will later discuss their extensions or relaxation in
Section 3. We assume that each criterion can only be in one
of two states: fixed, meaning that criterion vi is met or is not
violated, or unfixed, meaning the opposite. Hence, the over-
all state of the system can be described by a k-dimensional
Boolean vector. An action corresponds to fixing a particular
criterion, or set of criteria, and moving to a different state.
Fixing the criteria associated to vi entails an algorithmic and
resource allocation cost that we denote by ci. Initially, all
criteria are unfixed. At each time step, a conflict resolution
system or algorithm selects some action, which may be to
fix an unfixed vertex vi, thereby incurring the cost ci and
unfixing any vertex adjacent to vi, or the algorithm may se-
lect the null action, not to fix or unfix any vertex and wait
to collect more data. Note that the incompatibilities in our
model defined via edges in the graph are data agnostic. In
practice, it is possible that two generally incompatible criteria
can be simultaneously satisfied for a given dataset, say via
incorporating a slack. This is a direction for future work.

Fixing costs. This can be estimated from past experience.
In the absence of any prior information, one could assume
a unit fixing cost. We deliberately avoid making specific
choices. This gives us flexibility in dealing with different
types of metrics in a unified manner. While the focus of our
study is theoretical, let us emphasize that our model is easily
applicable and implementable in practice. We further discuss
this in the end of Section 3 and illustrate it in Section 4.

3 Stochastic Setting
We first detail a stochastic setting of our model that can be
described in terms of a Markov Decision Process (MDP).
Next, we present algorithms with strong regret guarantees.

Description. The distribution of complaints received by
the system is a function of its current state, i.e., the current
set of fixed or unfixed criteria vi. Thus, we consider an MDP
with a state space S ⊆ {0,1}k representing the set of bit
vectors for criteria: a state s ∈ {0,1}k is defined by s(i) = 0
when criterion vi is unfixed and s(i) = 1 when it is fixed. By
definition of the incompatibility graph G, s is a valid state iff

the set of fixed criteria at s is an independent set of G.
When in state s ∈ S, the system incurs a loss `si due to

complaints related to criterion i ∈ [k]. Loss `si is a ran-
dom variable assumed to take values in [0,B] with mean
µsi . We do not assume independence across criteria, i.e., `si
and `sj may be dependent for a given state s. The action set is
A = {0,1, . . . , k}. A non-zero action i corresponds to fixing
criterion i. Action 0 is the null action, i.e., no criterion is
fixed. Transitions are deterministic: given state s and action
i ∈ A, the next state is s if i = 0, otherwise, for i ≠ 0 the
next state is the state s′ that only differs from s by s′(i) = 1
and (possibly) s′(j) = 0 for all j ∈ N(i), where N(i) is the
neighbors of vi in G, since neighbors of i must be unfixed
once i is fixed.

Each action a = i admits a fixing cost ci. The cost for
unfixing, as well as the null action, is zero. The loss in-
curred when taking action a at state s is the sum of the fixing
cost ca and the complaint losses at the (possibly) next state
s′: λ(s, a) = ca +∑ki=1 `

s′
i . The expected loss of transition

(s, a, s′) is:

E[ca +
k

∑
i=1

`s
′
i] = ca +

k

∑
i=1

µs
′
i . (1)

Note, ca and the losses `s
′
i are observed by the algorithm,

but the mean values µs
′
i are unknown. To keep the formalism

simple we assume that the cost ca of taking an action a is
independent of the current state s.

Figure 1(c) illustrates our stochastic model for three mu-
tually incompatible criteria. The notion of each metric in a
binary state is a simplifying modeling assumption for our
theory. We discuss this more at the end of this section.

Correlation sets. In practice, the distribution of com-
plaints related to a criterion vi at two different states may be
related. To capture these correlations in a general way, we
assume that a collection C = {C1,C2, . . . ,Cn} of correlation
sets is given, where each Cj is a subset of the k criteria and
has size at most m. By allowing correlation sets of varying
sizes, we can capture a range of dependencies that may exist
between different criteria. These dependencies affect the loss
observed by the algorithm at each time.

Figure 2: Example of correlation sets and associated losses
for a graph with four criteria.

We assume that at a given state s, each set Cj generates
losses with mean value θsj per vertex, and that if two states
s and s′ admit the same configuration for the vertices in Cj ,
then they share the same parameter θsj = θ

s′
j . Given a criterion

i and a state s, we assume that the loss incurred by criterion i
equals the sum of the individual losses due to each correlation
set Cj that contains i. Thus, µsi can be expressed as follows:
µsi = ∑

n
j=1 θ

s
j I(i ∈ Cj). If a criteria is not correlated with any

other vertex, we add to C a correlation set of size one for that
criterion. See Figure 2 for an illustration. For each j ∈ [n],
there are at most 2m configurations for the vertices of Cj in
a state s, hence there are at most 2mn distinct parameters
θsj . Let θ denote the vector of all distinct parameters θsj . Our
MDP model can then be denoted MDP(S,A,C,θ).

Algorithm. We consider an online algorithm that at time t
takes action at from state st and reaches state st+1, starting
from the initial state (0, . . . ,0). settings, The objective of
an algorithm can be formulated as that of learning a policy,
that is a mapping π∶S → A, with a value close to that of
the optimal. We are mainly interested in the cumulative loss
of the algorithm over the course of T interactions with the
environment. The goal is to minimize the pseudo-regret:

Reg(A) =
T

∑
t=1

E [λt(st, at)] −
T

∑
t=1

E [λt(s
π∗
t , π

∗
(sπ

∗
t))],

where λt(s, a) is the total loss incurred by taking action a
at state s at time t, s1 = (0, . . . ,0) and π∗ is the optimal
policy. Note, λt is only a function of the current state and the
action taken. The expectation is over the random generation
of the complaint losses. Given the correlation sets and the
parameter θ, the optimal policy π∗ corresponds to moving
from the initial state (0, . . . ,0) to the state s∗ ∈ S with the
most favorable distribution and remaining at s∗ forever. We
define by g(s) the expected (per time step) loss incurred by
staying in state s, that is, g(s) ∶= ∑ki=1 µ

s
i . The optimal state

s∗ is then defined as follows:

s∗ = argmin
s∈S

g(s). (2)

Note, in this definition we disregard the one-time cost of
moving to a state from the initial state, since in the long
run the expected cost incurred by staying at a given state
governs the choice of the optimal state. Since our problem
can be seen as that of learning with a deterministic MDP with
stochastic losses, we could adopt an existing algorithm for
that problem (Jaksch, Ortner, and Auer 2010). However, the
running-time of such algorithms would directly depend on the
size of the state space S, which here is exponential in k, and
that of the action set A. Furthermore, the regret guarantees

of these algorithms would also depend on ∣S∣∣A∣. Instead, by
exploiting the structure of the MDP, we can design vanishing
regret algorithms with a computational complexity that is
only polynomial in k and the number of parameters. We will
assume access to an oracle that, given θ, can optimize (2). In
Appendix B, we show how to approximately solve (2) for the
case of singleton correlation sets, where the true parameters
θ can also be estimated efficiently (see Theorem 4).

There are important distinctions between our proposed
model and the standard online learning setting. We have a
notion of a state that evolves as a result of the stochastic losses
suffered. These losses in turn depend on the distribution of
complaints received. This distribution should not be confused
with the distribution of data over which classifiers may be
trained to fix a criterion. The latter is assumed constant in
time. Via correlation sets we can model complex correlations
among the criteria when defining the stochastic losses.

Case m = 2. To illustrate the ideas behind our general al-
gorithm, we first consider a simpler setting where correlation
sets are defined on subsets of size at most two. This setting
also captures an important case where fixing a particular crite-
rion affects the complaints of its neighbors. The algorithmic
challenge we face here is to avoid exploring the exponentially
many states in the MDP. Instead, we will design an algorithm
that spends an initial exploration phase by visiting a specific
subset of states of size at most 4n. This subset denoted by K,
that we call a cover of C will help the algorithm estimate the
expected loss of any state in the MDP given the estimates of
losses for states in the cover. After the exploration phase, the
algorithm creates an estimate θ̂ of the true parameter vector
θ, uses the optimization oracle for solving Eq. (2) to find
a near optimal state ŝ and selects to stay at state ŝ for the
remaining time steps. We next define the cover.

For two criteria i, j and b ∈ {0,1}, we say that (i, j, b) is
a dichotomy if there exist two states s, s′ ∈ S such that: (1)
s(j) = 0 and s′(j) = 1, and (2) s(i) = s′(i) = b. We call the
two states s, s′ an (i, j, b)-pair. Note that if an edge (vi, vj)
is present in G, then (i, j,1) cannot be a dichotomy, since
criteria i and j cannot be fixed simultaneously. A cover K of
C is simply a subset of the states in the MDP that contains an
(i, j, b)-pair for every {i, j} ∈ C and valid dichotomy (i, j, b).

Furthermore, for every singleton set {i} in C, K contains
states s, s′ such that s(i) = 0, s′(i) = 1 and s(j) = s′(j)
for all j ≠ i. Note that we only need the cover to contain
an (i, j, b)-pair if {i, j} is a correlation set. Hence, it is easy
to see that when m = 2, there is always a cover of size at
most 4n. Next, we state our key result that estimating the loss
values for the states in a cover is sufficient.
Theorem 1. Let K be a cover for C. For any state s ∈ S and
any i ∈ [k] with s(i) = b, we have:

µsi =µ
s′
i +

k

∑
j=1

Xi,j
b [I(s(j) = 1) I(s′(j) = 0)]

−
k

∑
j=1

Xi,j
b [I(s(j) = 0) I(s′(j) = 1)] , (3)

where s′ is any state in K with s′(i) = b, and for {i, j} ∈ C,
Xi,j
b ∶= µs1i − µs2i where (s1, s2) is some (i, j, b) pair. If

{i, j} ∉ C, we define Xi,j
b to be zero.

From the above theorem we have the following guarantee.
Theorem 2. Consider an MDP(S,A,C,θ) with losses in
[0,B], maximum fixing cost c, and correlations sets of size
at most m = 2. Let K be a cover of C of size r ≤ 4n, then,
the algorithm of Figure 3 achieves a pseudo-regret bounded
by O(kr1/3(c +B)(log rkT)1/3T 2/3). Furthermore, given
access to an oracle for (2), the algorithm runs in time poly-
nomial in k and n = ∣C∣.

There is a natural extension to arbitrary correlation sets via
extending the notion of a dichotomy and a cover (Algorithm
in Figure 7, Appendix B). Our algorithms are also scalable.
During step 1 they only explore the states in the cover K that
could be much smaller than the full state space.

Beyond T
2
3 regret. Next, we present algorithms that

achieve Õ(
√
T) regret, first in the case m = 1, next for any

m, under the assumption that each criterion does not partici-
pate in too many correlations sets. Although our problem can
be cast as an instance of the stochastic multi-armed bandit
problem with switching costs, and arms corresponding to
the states in the MDP, existing algorithms achieving Õ(

√
T)

have time complexity that depends on the number of arms
which in our case is exponential (2k) (Cesa-Bianchi, Dekel,
and Shamir 2013; Simchi-Levi and Xu 2019). We will show
here that, in most realistic instances of our model, we can
achieve Õ(

√
T) regret efficiently. When correlation sets are

of size one, the parameter vector θ can be described using the
following 2k parameters: for each i ∈ [k], let γ0i denote the
expected loss incurred by criterion i when it is unfixed and
γ1i its expected loss when it is fixed. Our proposed algorithm
is similar to the UCB algorithm (Auer, Cesa-Bianchi, and
Fischer 2002). For every vertex i, let τ0i,t be the total number
of time steps up to t (including t) during which vi is in an un-
fixed position and let τ1i,t be the number of times steps up to
t during which vi is in a fixed position. Fix δ ∈ (0,1) and let
γ̂bi,t be the empirical average loss observed when vertex vi is
in state b, for b ∈ {0,1}. Our algorithm maintains optimistic
estimates

γ̃bi,t = γ̂
b
i,t − 10B

¿
Á
ÁÀ

log(kT /δ)

τ bi,t
. (4)

The algorithm divides the T time steps into consecutive in-
tervals that we call as episodes. In episode h, the algorithm
moves to and stays at a fixed state for t(h) time steps. in
a fixed state. At the end of the episode it makes a query
to the optimization oracle (using the current optimistic esti-
mates) to decide on the state to go to for the next episode.
The algorithm carefully chooses t(h) to maintain low regret.
The algorithm is described in Figure 4. We will prove that it
benefits from the following regret guarantee.
Theorem 3. Consider MDP(S,A,C,θ) with losses in [0,B]

and maximum fixing cost c. Given correlations sets C of
size one, the algorithm of Figure 4 achieves a pseudo-regret
bounded by O(k2(c + B)2

√
T logT). Furthermore, given

access to an oracle for (2), the algorithm runs in time poly-
nomial in k.

The algorithm of Figure 4 can be extended to higherm values
(see Figure 9 in Appendix C).
Modeling assumptions and extensions. Here we briefly dis-
cuss assumptions and extensions.

Scalability. The running time of our algorithms depends
linearly on the size of the cover K. While in the worst case
the size of the cover could be exponential in n,m, in practice,
we expect it to be rather small.

Loss function. The choice of the loss function is critical.
We made the simplifying assumption that the loss at each
time step is additive in the losses incurred by correlation
sets. A careless choice of what the additive losses correspond
to may result in a sub-optimal overall. For example, a poor
choice is one that uses the volume of complaints, i.e., how
many complaints have triggered a criterion. This will make
us vulnerable to the loudest voices in the system. In Section 4,
we discuss how our framework can be implemented in prac-
tice and present reasonable choices for the loss function. We
further discuss the choice of the loss function in the case of
the COMPAS example in Appendix F.

Adversarial manipulation. Our model may be vulnerable
to strategic coordination. A malicious group of users can form
a sub-community generating a large number of complaints
to press the system to include a new criterion in the graph.
The presence of such poor criteria may result in an overall
suboptimal system. Modeling this scenario is beyond the
scope of the current work.

Continuous states. While this is a direction for future
work, our method offers a simple way to achieve this by
adding, for each criterion i, new criteria to the graph with
different levels or thresholds τ1, τ2, . . . for satisfying i.

4 Experiments
Real-world dataset. We next illustrate how our framework
can be applied to real-world data. Due to space constraints,
we provide a brief description here and refer the reader to
Appendix E for details and more results. We studied the UCI
Adult dataset (Kohavi 1996) which includes 48,852 examples,
each represented by 124 features, after processing. Each data
point corresponds to a person and the label is a 0/1-value
representing whether the income of the person is more or
less than $50,000. The dataset contains information about
sensitive attributes such as race and gender. We simulated
an online scenario where a classifier is making predictions
on the income of individuals. At each time step, a batch of
complaints arrive, the system incurs a loss and responds by
transitioning to a different state (and updating the classifier).
We now describe the various components.
Graph G: We used race in {black,white} as an attribute to ob-
tain two sub-populations and considered two natural criteria,
namely the true positive rate and the AUC score, equivalent
to the criteria of the COMPAS tool. This leads to four vertices
tprw, tprb, aucw, aucb. Furthermore, we added the overall
classifier accuracy as a fifth vertex. We consider a unit fixing
cost for all criteria.
Losses and Correlation Sets: We consider correlation sets of
size one, and the total loss of a state is the sum of the losses of
each criterion. For the accuracy vertex, we define the loss to

Input: The graph G, correlation sets C, fixing costs ci.

1. Pick a cover K = {s1, s2, . . . , sr} of C.

2. Let N = 10T2/3(log rkT)1/3
r2/3 .

3. For each state s ∈ K do:
• Move from current state to s in at most k time steps.
• Play action a = 0 in state s for the next N time steps to obtain an estimate µ̂s

i for all i ∈ [k].
4. Using the estimated losses for the states in K and Equation (3), run the oracle for the optimization (2) to obtain an approximately optimal

state ŝ.
5. Move from current state to ŝ and play action a = 0 from ŝ for the remaining time steps.

Figure 3: Algorithm for m = 2 achieving Õ(T 2/3) pseudo-regret.

Input: graph G, correlation sets C, fixing costs ci.

1. Let K be the cover of size k + 1 that includes the all zeros state and the states corresponding to indicator vectors of the k vertices.
2. Move to each state in the cover once and update the optimistic estimates according to (4).
3. For episodes h = 1,2, . . . do:

• Run the optimization oracle for solving Eq. (2) with the optimistic estimates as in (4) to get a state s.

• Move to state s. Stay in state s for t(h) time steps and update corresponding estimates using (4). Here t(h) =mini τ
s(i)
i,th

and th is the
total number of time steps before episode h starts.

Figure 4: Online algorithm for m = 1 with Õ(
√
T) regret.

Figure 5: Performance of the Algorithm of Figure 4. Loss
of the offline and online algorithms and states chosen by the
online algorithm, as a function of the time steps.

be the error of the classifier. For a vertex, say tprw, if the over-
all tpr of the classifier and the tpr on the white population de-
viated by more than τ , we penalized the classifier linearly: the
loss for tprw was defined as: max(0, ∣tproverall − tprw ∣− τ).
Other losses are defined similarly. We set τ = 0.005.
Incompatibilities and State Transitions: We solved, for each
state s ∈ {0,1}5, an optimization via the tensorflow con-
strained optimization toolkit (Cotter et al. 2018; Cotter, Jiang,
and Sridharan 2018) to get a classifier. We evaluated the
classifier on a test set and if the loss of any criterion was
more than a specific threshold (0.01), we considered the state
invalid. As an example, in the instance corresponding to Fig-
ure 5, we obtained four valid states. We obtained the state
transitions as follows. If the algorithm asked to fix vi in state
s, we set s(i) = 1 to go to the next state s′. While s′ is invalid,
we unfixed the criterion (not including vi) with the highest
loss in the state s′ to reach another state.
Simulating Complaints: We divided the dataset into 16,000

examples that we used to update our classifier at each time
step and the remaining test set to simulate the arrival of
complaints. At each step, we randomly selected a batch of
examples from the test set to generate complaints. This batch
was used to compute the loss at the given time step.
Benchmark and Results: We compared our Algorithm of
Figure 4 with an offline optimal solution computed by finding
the state with the minimum average loss over the sequence of
complaints. The results are in Figure 5. We plot the loss of the
algorithm as compared to the benchmark, as well as the states
chosen by the algorithm, as a function of the time steps. Our
algorithm quickly converges to the offline optimal solution
after an initial exploration phase. Note that the choice of the
loss functions was important in this case and that we did
not weight each criterion by the volume of the complaints.
This demonstrates that our algorithms, when combined with
a good choice of the loss function, can be useful in practice.
See Appendix E for details and additional experiments.

5 Conclusion
We presented a new data-driven model of online optimization
from user feedback in the presence of multiple criteria, with
algorithms benefiting from theoretical guarantees both in the
stochastic and the adversarial setting. We provided empirical
evidence that our model can be effectively realized in practice.
Several extensions are worth exploring in future work. These
include fixing costs that can vary with time to capture varying
algorithmic price and human effort cost. Similarly, the losses
in our stochastic model could be time-dependent to express
the growing cost of a criterion not being addressed.

References
Agarwal, A.; Beygelzimer, A.; Dudík, M.; Langford, J.; and
Wallach, H. 2018. A reductions approach to fair classification.
arXiv preprint arXiv:1803.02453.

Angwin, J.; Larson, J.; Mattu, S.; and Kirchner, L. 2019.
Machine bias: There’s software used across the country to
predict future criminals. and it’s biased against blacks. 2016.
URL https://www. propublica. org/article/machine-bias-risk-
assessments-in-criminal-sentencing.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learning,
47(2-3): 235–256.
Bastani, O.; Zhang, X.; and Solar-Lezama, A. 2019. Prob-
abilistic verification of fairness properties via concentra-
tion. Proceedings of the ACM on Programming Languages,
3(OOPSLA): 1–27.
Bechavod, Y.; Jung, C.; and Wu, Z. S. 2020. Metric-Free
Individual Fairness in Online Learning. arXiv preprint
arXiv:2002.05474.
Bellamy, R. K.; Dey, K.; Hind, M.; Hoffman, S. C.; Houde,
S.; Kannan, K.; Lohia, P.; Martino, J.; Mehta, S.; Mojsilovic,
A.; et al. 2018. AI Fairness 360: An extensible toolkit for de-
tecting, understanding, and mitigating unwanted algorithmic
bias. arXiv preprint arXiv:1810.01943.
Borodin, A.; and El-Yaniv, R. 1998. Online computation and
competitive analysis. Cambridge University Press.
Cesa-Bianchi, N.; Dekel, O.; and Shamir, O. 2013. Online
learning with switching costs and other adaptive adversaries.
In Advances in Neural Information Processing Systems, 1160–
1168.
Chen, L.; and Pu, P. 2012. Critiquing-based recommenders:
survey and emerging trends. User Modeling and User-
Adapted Interaction, 22(1): 125–150.
Cortes, C.; Mohri, M.; Gonzalvo, J.; and Storcheus, D. 2020.
Agnostic learning with multiple objectives. Advances in
Neural Information Processing Systems, 33: 20485–20495.
Coston, A.; Ramamurthy, K. N.; Wei, D.; Varshney, K. R.;
Speakman, S.; Mustahsan, Z.; and Chakraborty, S. 2019.
Fair transfer learning with missing protected attributes. In
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, 91–98.
Cotter, A.; Gupta, M.; Jiang, H.; Srebro, N.; Sridharan, K.;
Wang, S.; Woodworth, B.; and You, S. 2018. Training well-
generalizing classifiers for fairness metrics and other data-
dependent constraints. arXiv preprint arXiv:1807.00028.
Cotter, A.; Jiang, H.; and Sridharan, K. 2018. Two-player
games for efficient non-convex constrained optimization.
arXiv preprint arXiv:1804.06500.
Doroudi, S.; Thomas, P. S.; and Brunskill, E. 2017. Impor-
tance Sampling for Fair Policy Selection. Grantee Submis-
sion.
Dwork, C.; Immorlica, N.; Kalai, A. T.; and Leiserson, M.
2018. Decoupled classifiers for group-fair and efficient ma-
chine learning. In Conference on Fairness, Accountability
and Transparency, 119–133.
Feller, A.; Pierson, E.; Corbett-Davies, S.; and Goel, S. 2016.
A computer program used for bail and sentencing decisions
was labeled biased against blacks. It’s actually not that clear.
The Washington Post.

Ghosh, B.; Basu, D.; and Meel, K. S. 2020. Justicia: A
Stochastic SAT Approach to Formally Verify Fairness. arXiv
preprint arXiv:2009.06516.
Gupta, M.; Cotter, A.; Fard, M. M.; and Wang, S. 2018. Proxy
fairness. arXiv preprint arXiv:1806.11212.
Gupta, V.; Nokhiz, P.; Roy, C. D.; and Venkatasubramanian,
S. 2019. Equalizing recourse across groups. arXiv preprint
arXiv:1909.03166.
Hashimoto, T. B.; Srivastava, M.; Namkoong, H.; and Liang,
P. 2018. Fairness without demographics in repeated loss
minimization. arXiv preprint arXiv:1806.08010.
Holstein, K.; Wortman Vaughan, J.; Daumé III, H.; Dudik,
M.; and Wallach, H. 2019. Improving fairness in machine
learning systems: What do industry practitioners need? In
Proceedings of the 2019 CHI conference on human factors
in computing systems, 1–16.
Jabbari, S.; Joseph, M.; Kearns, M.; Morgenstern, J.; and
Roth, A. 2017. Fairness in reinforcement learning. In Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, 1617–1626. JMLR. org.
Jaksch, T.; Ortner, R.; and Auer, P. 2010. Near-optimal
regret bounds for reinforcement learning. Journal of Machine
Learning Research, 11(Apr): 1563–1600.
Jin, Y. 2006. Multi-objective machine learning, volume 16.
Springer Science & Business Media.
Jin, Y.; and Sendhoff, B. 2008. Pareto-based multiobjec-
tive machine learning: An overview and case studies. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Ap-
plications and Reviews), 38(3): 397–415.
Kaminskas, M.; and Bridge, D. 2016. Diversity, serendipity,
novelty, and coverage: a survey and empirical analysis of
beyond-accuracy objectives in recommender systems. ACM
Transactions on Interactive Intelligent Systems (TiiS), 7(1):
1–42.
Kannan, S.; Roth, A.; and Ziani, J. 2019. Downstream effects
of affirmative action. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, 240–248.
Karlin, A. R.; Manasse, M. S.; Rudolph, L.; and Sleator, D. D.
1988. Competitive snoopy caching. Algorithmica, 3(1-4):
79–119.
Kearns, M.; Roth, A.; and Sharifi-Malvajerdi, S. 2019. Av-
erage Individual Fairness: Algorithms, Generalization and
Experiments. arXiv preprint arXiv:1905.10607.
Kleinberg, J.; Mullainathan, S.; and Raghavan, M. 2017. In-
herent Trade-Offs in the Fair Determination of Risk Scores.
In Innovations in Theoretical Computer Science Conference
(ITCS).
Kohavi, R. 1996. Scaling up the accuracy of naive-bayes
classifiers: A decision-tree hybrid. In Kdd, volume 96, 202–
207.
Lamy, A.; Zhong, Z.; Menon, A. K.; and Verma, N. 2019.
Noise-tolerant fair classification. In Advances in Neural
Information Processing Systems, 294–305.
Lin, X.; Chen, H.; Pei, C.; Sun, F.; Xiao, X.; Sun, H.; Zhang,
Y.; Ou, W.; and Jiang, P. 2019. A pareto-efficient algorithm

for multiple objective optimization in e-commerce recom-
mendation. In Proceedings of the 13th ACM Conference on
recommender systems, 20–28.
Liu, L. T.; Dean, S.; Rolf, E.; Simchowitz, M.; and Hardt,
M. 2018. Delayed impact of fair machine learning. arXiv
preprint arXiv:1803.04383.
Marler, R. T.; and Arora, J. S. 2004. Survey of multi-objective
optimization methods for engineering. Structural and multi-
disciplinary optimization, 26(6): 369–395.
Masthoff, J. 2011. Group recommender systems: Combining
individual models. In Recommender systems handbook, 677–
702. Springer.
Menon, A. K.; and Williamson, R. C. 2018. The cost of
fairness in binary classification. In Conference on Fairness,
Accountability and Transparency, 107–118.
Mohri, M.; Sivek, G.; and Suresh, A. T. 2019. Agnostic
federated learning. In International Conference on Machine
Learning, 4615–4625. PMLR.
Mouzannar, H.; Ohannessian, M. I.; and Srebro, N. 2019.
From fair decision making to social equality. In Proceedings
of the Conference on Fairness, Accountability, and Trans-
parency, 359–368.
Sener, O.; and Koltun, V. 2018. Multi-task learning as multi-
objective optimization. arXiv preprint arXiv:1810.04650.
Shah, A.; and Ghahramani, Z. 2016. Pareto frontier learn-
ing with expensive correlated objectives. In International
Conference on Machine Learning, 1919–1927. PMLR.
Simchi-Levi, D.; and Xu, Y. 2019. Phase transitions and
cyclic phenomena in bandits with switching constraints. In
Advances in Neural Information Processing Systems, 7521–
7530.
Speicher, T.; Ali, M.; Venkatadri, G.; Ribeiro, F. N.; Arvani-
takis, G.; Benevenuto, F.; Gummadi, K. P.; Loiseau, P.; and
Mislove, A. 2018. Potential for discrimination in online tar-
geted advertising. In Conference on Fairness, Accountability
and Transparency, 5–19. PMLR.
Thomas, P. S.; da Silva, B. C.; Barto, A. G.; Giguere, S.; Brun,
Y.; and Brunskill, E. 2019. Preventing undesirable behavior
of intelligent machines. Science, 366(6468): 999–1004.
Tsirtsis, S.; and Gomez-Rodriguez, M. 2020. Decisions,
Counterfactual Explanations and Strategic Behavior. arXiv
preprint arXiv:2002.04333.
Wang, S.; Guo, W.; Narasimhan, H.; Cotter, A.; Gupta,
M.; and Jordan, M. I. 2020. Robust Optimization for
Fairness with Noisy Protected Groups. arXiv preprint
arXiv:2002.09343.
Wen, M.; Bastani, O.; and Topcu, U. 2019. Fairness with
Dynamics. arXiv preprint arXiv:1901.08568.
Xiao, L.; Min, Z.; Yongfeng, Z.; Zhaoquan, G.; Yiqun, L.; and
Shaoping, M. 2017. Fairness-aware group recommendation
with pareto-efficiency. In Proceedings of the eleventh ACM
conference on recommender systems, 107–115.
Yu, B.; Yuan, Y.; Terveen, L.; Wu, Z. S.; Forlizzi, J.; and Zhu,
H. 2020. Keeping designers in the loop: Communicating
inherent algorithmic trade-offs across multiple objectives. In
Proceedings of the 2020 ACM Designing Interactive Systems
Conference, 1245–1257.

A Related work
There is extensive literature on optimizing multiple metrics or objectives under specific criteria. The recent works of (Mohri, Sivek,
and Suresh 2019; Cortes et al. 2020) consider optimizing in the presence of multiple base objectives. Given objectives L1, . . . , Li
these works aim to design “agnostic” algorithms that can simultaneously compete with any linear or convex combination of the
objectives. Another line of work considers design algorithms that can achieve the Pareto optimal solution (Jin and Sendhoff
2008; Sener and Koltun 2018; Shah and Ghahramani 2016; Marler and Arora 2004).

Another line of work considers optimizing multiple constraints (inspired by group fairness metrics) via constrained non-convex
optimization (Agarwal et al. 2018; Cotter et al. 2018; Thomas et al. 2019). These publications either reduce the problem to that of
cost-sensitive classification (Agarwal et al. 2018; Dwork et al. 2018) or replace the non-convex constraints by convex proxies and
next optimize them via external or swap regret minimization algorithms (Cotter, Jiang, and Sridharan 2018; Cotter et al. 2018).

There have also been studies of the inherent tension between satisfying multiple metrics. (Kleinberg, Mullainathan, and
Raghavan 2017) and (Feller et al. 2016) demonstrate that it is impossible to satisfy equal opportunity and calibration at the same
time. Inspired from fairness applications the work of (Menon and Williamson 2018) studies the tradeoff between accuracy and
other metrics of interest such as false positive and false negative rates.

Recent works have also studied the long-term impact of optimizing multiple conflicting criteria in settings with feedback
mechanisms (Liu et al. 2018; Hashimoto et al. 2018; Mouzannar, Ohannessian, and Srebro 2019; Kannan, Roth, and Ziani 2019).
(Liu et al. 2018) show that, in certain situations, constrained loss minimization to equalize certain criteria could lead to further
disparate impact on the end users in the long run. (Hashimoto et al. 2018) proposed algorithms for minimizing such disparate
impact in settings involving repeated loss minimization. More recently, (Jabbari et al. 2017; Wen, Bastani, and Topcu 2019)
study the problem of satisfying multiple constraints in reinforcement learning settings involving a Markov Decision Process. The
authors in (Jabbari et al. 2017) consider learning in an MDP where the criteria to be optimized require that the algorithm never
takes an action a over action a′ if the long-term reward is higher. It is clear to see that the optimal policy for the MDP indeed
satisfies this property. Hence, there does exist a policy that satisfies the required criterion. However, the authors show that finding
a near optimal policy while satisfying the criterion requires time exponential in the size of the state space.

(Wen, Bastani, and Topcu 2019) consider other metrics such as demographic parity in the context of learning in MDPs.
(Doroudi, Thomas, and Brunskill 2017) show that existing importance sampling methods for off-policy policy selection in
reinforcement learning can lead to bad outcomes according to other natural criteria and present algorithms to mitigate this effect.

While our work also involves learning in a Markov Decision Process (MDP) and optimizing multiple criteria in the long term,
the setup and the motivation are different. Unlike all the previous work mentioned, we do not commit to a fixed definition of
quality or a metric, and allow for arbitrary criteria. Hence, states in our MDP correspond to the current configurations of different
criteria. Rather than studying each metric in isolation, the objective of our work is to propose a data-driven model that can learn
from feedback, a near-optimal configuration of the metrics to impose on the system. To the best of our knowledge, ours is the first
work to incorporate optimizing metrics of arbitrary types in an online setting. In this context, inspired by fairness applications,
the recent work of (Kearns, Roth, and Sharifi-Malvajerdi 2019) studies a specific combination of group and individual fairness
metrics. The authors consider a setting where there is a distribution over individuals as well as a distribution over classification
tasks. They consider algorithms for achieving average individual fairness, that is in expectation over classification tasks, the
performance of the algorithm on a group fairness metric such as demographic parity should be the same for each individual.

An important aspect of our stochastic MDP-based model requires the ability to observe the losses associated with different
criteria at each time. This relates to the problem of evaluating and monitoring the performance of the system according to
different metrics from data. There has been work in recent years on developing auditing and monitoring approaches (Bastani,
Zhang, and Solar-Lezama 2019; Ghosh, Basu, and Meel 2020; Bellamy et al. 2018). Furthermore, many metrics require access
to both labeled data and to certain sensitive attribute information such as race or gender, for accurate evaluation. A recent line of
work has studied this estimation problem when one has limited and/or noisy access to sensitive attribute information (Gupta et al.
2018; Coston et al. 2019; Lamy et al. 2019; Wang et al. 2020). Finally, we note that our model learns from feedback received
as a form of complaints. These complaints are a result of a (potentially incorrect) decision made by an ML system. There has
been recent work in developing counterfactual based explanations (Tsirtsis and Gomez-Rodriguez 2020) for such decisions and
exploring recourse strategies (Gupta et al. 2019).

B Stochastic Setting
We first show that in the stochastic model, if correlation sets are of size one then one can efficiently approximate the cost of the
optimal state up to a factor of two.
Theorem 4. If correlations sets are of size one (m = 1), then, for any ε, δ > 0, the true parameter vector for MDP(S,A,C,θ) can
be approximated to ε-accuracy in `∞-norm with probability at least 1− δ, in at most O(B

2k
ε2

log(k
δ
)) time steps and exploring at

most k + 1 specific states in S. Furthermore, given a parameter vector θ, there is an algorithm that runs in time polynomial in k
and finds an approximately optimal state s′ such that g(s′) ≤ 2 mins∈S g(s).

Proof. Notice that when correlation sets are of size one, the expected loss incurred for criterion vi at any given state s solely
depends on whether s(i) = 0 or s(i) = 1. Hence in this case the MDP consists of 2k parameters where we use γ1i and γ0i to
denote the expected losses incurred by vertex i when it is in fixed and unfixed position respectively. For any δ > 0, by Hoeffding’s
inequality, we have that if we stay in state s = (0,0, . . . ,0) for N = B2

ε2
log(2k/δ) time steps then with probability at least

1 − δ
2

, we have each γ0i estimated up to ε accuracy. Let ei ∈ {0,1}k denote the indicator vector for i. If we stay in state s = ei
for B2

ε2
log(2k/δ) time steps, then with probability at least 1 − δ

2
we have γ1i estimated up to ε accuracy. Hence, overall after

O(B
2k
ε2

log(k
δ
)) time steps, we have each parameter estimated up to ε accuracy. Notice that in total we observe at most k + 1

states.
Next, we show how to efficiently approximate the loss of the best state. Given the parameters of the MDP each vertex has two

costs Λ
(1)
i = γ0i , denoting the cost incurred if the vertex is unfixed and Λ

(2)
i = ci + γ

1
i , denoting the cost incurred if the vertex is

fixed. Without loss of generality assume that Λ
(1)
i > Λ

(2)
i (any vertex that does not satisfy this can be safely left unfixed). For

each i, define yi = 1 if vertex i is unfixed otherwise define yi = 0. Then the offline problem of finding the best state can be written
as

min
k

∑
i=1

(1 − yi)Λ
2
i + yiΛ

1
i =

k

∑
i=1

yiγi +
k

∑
i=1

Λ
(2)
i

s.t. yi ∈ {0,1}

yi + yj ≥ 1, ∀(vi, vj) ∈ E.

Here γi = Λ
(1)
i −Λ

(2)
i > 0. By relaxing yi to be in [0,1] and solving the corresponding linear programming relaxation, we get a

solution y∗1 , y
∗
2 , . . . , y

∗
k . Let LPval denote the linear programming objective value achieved by y∗1 , y

∗
2 , . . . , y

∗
k . Since the linear

programming formulation is a valid relaxation of the problem of finding the best state, we have LPval ≤ mins∈S g(s).
We output the state s′ in which a vertex i if and only if y∗i < 1/2. Let S be the set of fixed vertices. We have

g(s′) =∑
i∈S

Λ
(2)
i +∑

i∉S

Λ
(1)
i

=
k

∑
i=1

Λ
(2)
i +∑

i∉S

(Λ
(1)
i −Λ

(2)
i)

=
k

∑
i=1

Λ
(2)
i +∑

i∉S

γi

<
k

∑
i=1

Λ
(2)
i + 2∑

i∉S

y∗i γi

< 2(
k

∑
i=1

Λ
(2)
i +

k

∑
i=1

y∗i γi)

< 2 ⋅ LPval
≤ min
s∈S

2gp(s).

B.1 Case m = 2

To illustrate the ideas behind our general algorithm, we first consider a simpler setting where correlation sets are defined on
subsets of size at most two. This setting also captures an important case where fixing a particular criterion affects the rate of
complaints of its neighbors.

Our algorithm consists of an exploration phase where it observes the losses for a specific subset of at most 4n states. We will
show that after the exploration phase, the algorithm can accurately estimate the expected loss for any other state s ∈ S. Notice

that the number of states in S is in general exponential in k. Thus, the subset of states to observe must be carefully chosen and
must take into account the structure of the graph G. After the exploration phase, the algorithm creates an estimate θ̂ of the true
parameter vector θ, uses the optimization oracle for solving Eq. (2) to find a near optimal state ŝ and selects to stay at state ŝ for
the remaining time steps.

Let c denote the maximum fixing cost: c = maxi∈[k] ci. We will show that the pseudo-regret of our algorithm is bounded by
O(k log k(c +B)1/3T 2/3 log(kT)). We first describe how we select the subset of states to observe in the exploration phase.

We say that (i, j, b) is a dichotomy if for two criteria i and j and for b ∈ {0,1}, there exist two states s, s′ ∈ S such that: (1)
s(j) = 0 and s′(j) = 1, and (2) s(i) = s′(i) = b. Note that if an edge (vi, vj) is present in G, then (i, j,1) cannot be a dichotomy,
since criteria i and j cannot be fixed simultaneously.
Definition 5. Consider a subset K ⊂ S. We will say that K is a cover for C if for any dichotomy (i, j, b), where {i, j} is a
correlation set ({i, j} ∈ C) there exist two states s, s′ ∈K such that:

(1) they agree in all criteria except criterion j: s(l) = s′(l) for all l ≠ j;
(2) criteria i is in state b in both: s(i) = s′(i) = b;
(3) we have that s(j) = 0 and s′(j) = 1.
We call such a pair (s, s′) an (i, j, b)-pair.

Furthermore, for every singleton set {i} in C, the cover K contains states s, s′ such that s(i) = 0, s′(i) = 1 and s(j) = s′(j)
for all j ≠ i. We can always find a cover K of size at most 4n by picking for each {i, j} ∈ C, at most four states corresponding to
different bit configurations for i and j, with all other bits set to zero. For any valid dichotomy (i, j, b) we define Xi,j

b as

Xi,j
b ∶= µsi − µ

s′
i , (5)

where s, s′ ∈ K is an (i, j, b) pair. If {i, j} ∉ C we define Xi,j
b to be zero. Notice that the values Xi,j

b can be approximated from
estimating the loss values of states in the cover. Next, we state our key result showing that, given the loss values for the states in a
cover, we can accurately estimate the loss values for any vertex in any other state.
Theorem 6 (Theorem 1). Let K be a cover for C. Then, for any state s ∈ S and any i ∈ [k] with s(i) = b, we have:

µsi = µ
s′′
i +

k

∑
j=1

Xi,j
b [I(s(j) = 1) I(s′′(j) = 0) − I(s(j) = 0) I(s′′(j) = 1)] , (6)

where s′′ is any state in K with s′′(i) = b.

Proof. Consider a correlation set {i, j}. The expected loss incurred by vertex vi or vj due to this set in any given state depends
solely on the configuration of vi and vj in that state. Hence there are four parameters in the θ vector corresponding to the
correlation set {i, j} and we denote them using γa,bi,j , where a, b ∈ {0,1}. Let s, s′ be an (i, j, b) pair. When we switch from s to
s′ the only difference in the expected losses for vertex i comes from the pair (i, j). Hence we have

µs
′
i − µ

s
i = γ

b,1
i,j − γ

b,0
i,j ∶=X

i,j
b .

Hence, given the loss estimates for states in K we can estimate Xi,j
b for each i, j ∈ [k] and b ∈ {0,1}. Next, given an arbitrary

state s with s(i) = b let s′′ ∈K such that s′′(i) = b. We have

µsi = µ
s′′
i + ∑

j∶s(j)=0
s′′(j)=1

(γb,0i,j − γ
b,1
i,j) + ∑

j∶s(j)=1
s′′(j)=0

(γb,1i,j − γ
b,0
i,j)

= µs
′′
i + ∑

j∶s(j)=1,
s′′(j)=0

Xi,j
b − ∑

j∶s(j)=0,
s′′(j)=1

Xi,j
b

= µs
′′
i +

k

∑
j=1

Xi,j
b [I(s(j) = 1) I(s′′(j) = 0) − I(s(j) = 0) I(s′′(j) = 1)] .

From the above theorem we have the following guarantee.
Theorem 7 (Theorem 2). Consider an MDP(S,A,C,θ) with losses in [0,B], a maximum fixing cost c, and correlations sets
of size at most m = 2. Let K be a cover of C of size r ≤ 4n, then, the algorithm of Figure 6 (same as Figure 3) achieves a
pseudo-regret bounded by O(kr1/3(c +B)(log rkT)1/3T 2/3). Furthermore, given access to the optimization oracle for Eq. (2),
the algorithm runs in time polynomial in k and n = ∣C∣.

Input: The graph G, correlation sets C, fixing costs ci.
1. Pick a cover K = {s1, s2, . . . , sr} of C.

2. Let N = 10T
2/3

(log rkT)
1/3

r2/3 .
3. For each state s ∈K do:

• Move from current state to s in at most k time steps.
• Play action a = 0 in state s for the next N time steps to obtain an estimate µ̂si for all i ∈ [k].

4. Using the estimated losses for the states in K and Equation (6), run the oracle for the optimization (2) to obtain an
approximately optimal state ŝ.

5. Move from current state to ŝ and play action a = 0 from ŝ for the remaining time steps.

Figure 6: Online algorithm for m = 2 achieving Õ(T 2/3) pseudo-regret.

Proof. In each time step the maximum loss incurred by any criterion is bounded by c+B. Let {s1, s2, . . . , sr} be the states in K.
During the exploration phase the algorithm stays in each state for N time steps and incurs a total loss bounded by kNr(c +B).
During the exploration phase the algorithm moves from one state to another in at most k steps and incurs a total additional loss of
at most rk2(c+B). At any given state s ∈K and vertex vi, after N time steps we will, with probability at least 1− δ, an estimate

of µsi up to an accuracy of 2B
√

log 1/δ
N

. Setting δ = 1/(rkT 4) and using union bound, we have that at the end of the exploration
phase, with probability at least 1 − 1

T 4 , the algorithm will have estimate µ̂si for all s ∈K and i ∈ [k] such that

µ̂si − µ
s
i ≤ 4B

√
log rkT

N
. (7)

Hence during the exploitation phase, with high probability, the algorithm will have the estimate for the expected loss of each

state in S, i.e., ∑i µ
s
i up to an error of 4kB

√
log rkT
N

. Combining the above we get that the total pseudo-regret of the algorithm is
bounded by

Reg(A) ≤ kNr(c +B) + rk2(c +B) + (1 −
1

T 4
)4kBT

√
log rkT

N
+

1

T 4
k(c +B)T.

Setting N = 10T
2/3

(log rkT)
1/3

r2/3 we get that

Reg(A) ≤ O(kr1/3(c +B)(log rkT)
1/3T 2/3

).

B.2 General cCse
The algorithm for the case of m = 2 naturally extends to arbitrary correlation set sizes. Overall the structure of the algorithm
remains the same where we pick a cover of C and estimate the losses incurred in states that belong to the cover. Using the
estimated losses we are able to approximately estimate the loss of any vertex at any other state. In order to do this we extend
the definition of the cover as follows. Given correlation sets of arbitrary size in C, a vertex vi may participate in many of them.
We say that vertices vi and vj share a correlation set, if they appear together in a set in C. Consider the set of indices of all the
vertices that vi shares a correlation set with. We partition this set into disjoint subsets such that no two vertices in different
subsets share a correlation set. For a given vertex vi, we denote this collection of disjoint subsets by Ii. For example, if C contains
sets {1,2}, {1,3}, and {1,4}, then, I1 consists of the set {2,3,4}. On the other hand if C contains sets {1,2,3},{1,3,4}, and
{1,6,7} then, I1 consists of sets {2,3,4} and {6,7}. For a given state s and J ∈ Ii we denote by s(J) the vector s restricted to
indices in J . Notice that, in the worst case, Ii will consist of a single set of size at most min(k − 1, nm). However, for more
structured cases (e.g, m = 2) we expect Ii to consist of subsets of small sizes.

Given i ∈ [k], J ∈ Ii, b ∈ {0,1} and vectors u1, u2, we say that (i, b, J, u1, u2) is a dichotomy, if there exist two states s, s′ ∈ S
such that: (1) s(J) = u1, s′(J) = u2, (2) s(i) = b = s′(i), and (3) s, s′ agree in all other criteria. We call such a pair of states
s, s′ an (i, b, J, u1, u2) pair. We next extend the definition of a cover as follows. A subset K ⊆ S is called a cover of C if for any
valid dichotomy (i, b, J, u1, u2), there exists an (i, b, J, u1, u2) pair s, s′ ∈ K. In general, we will always have a cover of size at
most n2mn. Similar to (5), for a valid dichotomy (i, b, J, u1, u2), we define Xi,u1,u2

b,J as

Xi,u1,u2

b,J ∶= µsi − µ
s′
i , (8)

where s, s′ ∈K is an (i, b, J, u1, u2) pair. Given the loss values in the states present in K, we can estimate the loss of any other
state using Theorem 8 stated below.

Input: The graph G, correlation sets C, fixing costs ci.
1. Pick a cover K = {s1, s2, . . . , sr} of C.

2. Let N = 10T
2/3

(log rkT)
1/3

r2/3 .
3. For each state s ∈K do:

• Move from current state to s in at most k time steps.
• Play action a = 0 in state s for the next N time steps to obtain an estimate µ̂si for all i ∈ [k].

4. Using the estimated losses for the states in K and Equation (9), run the oracle for the optimization (2) to obtain an
approximately optimal state ŝ.

5. Move from current state to ŝ and play action a = 0 from ŝ for the remaining time steps.

Figure 7: Online algorithm for general m achieving Õ(T 2/3) pseudo-regret.

Theorem 8. Let K be a cover for C. Then, for any state s ∈ S and any i ∈ [k] with s(i) = b, we have:

µsi = µ
s′′
i + ∑

J∈Ii

X
i,s(J),s′′(J)
b,J (9)

Here s′′ is any state in K with s′′(i) = b.

Proof. Let s, s′ ∈ K be an (i, b, J, u1, u2) pair. When we move from state s to s′, the only difference between the expected
losses incurred by vertex vi comes from the configuration of the vertices in J . Hence there at at most 2∣J ∣+1 distinct parameters
governing the expected loss incurred by vertex i in a given state s due to the configuration of the vertices in J . Denoting these
parameters by γb,s(J)i,J we have

µs
′
i − µ

s
i = γ

b,s′(J)
i,J − γ

b,s(J)
i,J ∶=X

i,s′(J),s(J)
b,J .

Given the loss values for the states in the cover K, we can estimate the quantities Xi,s(J),s′′(J)
b,J .

Next, for an arbitrary state s such that s(i) = b, let s′′ ∈K be such that s′′(i) = b. We have

µsi = µ
s′′
i + ∑

J∈Ii

γ
b,s(J)
i,J − γ

b,s′′(J)
i,J

= ∑
J∈Ii

X
i,s(J),s′′(J)
b,J .

For general correlation sets with each vertex participating in at most n sets, we use (9) instead of (6) to estimate losses in
step 4 of the algorithm in Figure 6. The algorithm for general m is described in Figure 7 and has the following associated regret
guarantee. The proof is identical to the proof of Theorem 2.

Theorem 9. Consider an MDP(S,A,C,θ) with losses bounded in [0,B] and maximum cost of fixing a vertex being c. Given
correlations sets C of size at most m, and a cover K of C of size r ≤ n2mn, the algorithm in Figure 7 achieves a pseudo-regret
bounded by O(kr1/3(c +B)(log rkT)1/3T 2/3). Furthermore, given access to the optimization oracle for Eq. (2) the algorithm
runs in time polynomial in k, n = ∣C∣ and r = ∣K∣.

C Beyond T
2
3 Regret

In this section, we present algorithms for our problem that achieve Õ(
√
T) regret, first in the case m = 1, next for any m, under

the natural assumption that each criterion does not participate in too many correlations sets.
Let us first point out that our problem can be cast as an instance of the stochastic multi-armed bandit problem with switching

costs, where each state s is viewed as an arm and where the cost of transitions from state s to state s′ is the switching cost between
s and s′. For the instance of this problem with identical switching costs, Cesa-Bianchi, Dekel, and Shamir (2013)[Appendix
A] gave an algorithm achieving expected regret Õ(

√
T), via an arm-elimination technique with at most O(log logT) switches.

However, naturally, the regret guarantee and the time complexity of that algorithm depend on the number of arms, which in
our case is exponential (2k). We will show here that, in most realistic instances of our model, we can achieve Õ(

√
T) regret

efficiently.

Input: graph G, correlation sets C, fixing costs ci.
1. Let K be the cover of size k + 1 that includes the all zeros state and the states corresponding to indicator vectors of the k

vertices.
2. Move to each state in the cover once and update the optimistic estimates according to (10).
3. For episodes h = 1,2, . . . do:

• Run the optimization oracle for solving Eq. (2) with the optimistic estimates as in (10) to get a state s.
• Move from current state to state s. Stay in state s for t(h) time steps and update the corresponding estimates using (10).

Here t(h) = mini τ
s(i)
i,th

and th is the total number of time steps before episode h starts.

Figure 8: Online algorithm for m = 1 with Õ(
√
T) regret.

We first consider the case where the correlations sets in C are of size one (m = 1). In this case, the parameter vector θ can
be described using the following 2k parameters: for each i ∈ [k], let γ0i denote the expected loss incurred by criterion i when
it is unfixed and γ1i its expected loss when it is fixed. In this case, the cover K is of size k + 1 and includes the all-zero state,
as well as k states corresponding to the indicator vectors of the k vertices. Our algorithm is similar to the UCB algorithm for
multi-armed bandits (Auer, Cesa-Bianchi, and Fischer 2002) and maintains optimistic estimates of the parameters. For every
vertex i, we denote by τ0i,t the total number of time steps up to t (including t) during which the vertex vi is in an unfixed position
and by τ1i,t the total number of times steps up to t during which vertex vi is in a fixed position. Fix δ ∈ (0,1) and let γ̂bi,t be the
empirical expected loss observed when vertex vi is in state b, for b ∈ {0,1}. Our algorithm maintains the following optimistic
estimates at each time step t,

γ̃bi,t = γ̂
b
i,t − 10B

¿
Á
ÁÀ

log(kT /δ)

τ bi,t
. (10)

To minimize the fixing cost incurred when transitioning from one state to another, our algorithm works in episodes. In each
episode h, the algorithm first uses the current optimistic estimates to query the optimization oracle and determine the current best
state s. Next, it remains at state s for t(h) time steps before querying the oracle again. The number of time steps t(h) will be
chosen carefully to avoid incurring the fixing costs too often. The algorithm is described in Figure 8 (same as Figure 4 in main
body). We will prove that it benefits from the following regret guarantee.

Theorem 10 (Theorem 3). Consider an MDP(S,A,C,θ) with losses bounded in [0,B] and maximum cost of fixing a vertex
being c. Given correlations sets C of size one, the algorithm of Figure 8 (same as Figure 4) achieves a pseudo-regret bounded by
O(k2(c +B)2

√
T logT). Furthermore, given access to an oracle for (2), the algorithm runs in time polynomial in k.

Proof. We first bound the total number of different states visited by the algorithm. Initially the algorithm visits k + 1 states
in the cover. After that, each time the optimization oracle returns a new state s, by the definition of t(h), the number of time
steps where some vertex is in a 0 or 1 position is doubled. Hence, at most O(k logT) calls are made to the optimization oracle.
Noticing that one can move from one state to another in at most k time steps, the total loss incurred during the switching of the
states is bounded by O(k2(c +B) logT).

For ε > 0 to be chosen later, we consider the episodes where the algorithm plays a state s with expected loss at most ε more
than that of the best state s∗. The total expected regret accumulated in these good episodes is at most εT . We next bound the
expected regret accumulated during the bad episodes.

From Hoeffding’s inequality we have that for any time t, with probability at least 1 − δ
T 3 , for all i ∈ [k], b ∈ {0,1},

γ̃bi,t + 20B

¿
Á
ÁÀ

log(kT /δ)

τ bi,t
≥ γbi ≥ γ̃

b
i,t. (11)

Let G be the good event that (11) holds for all t ∈ [1, T]. Conditioned on G we also have that for any state s and vertex i

µsi ≥ µ̃
s
i , (12)

where µ̃si is the estimated loss using the optimistic estimates. We will bound the expected regret accumulated in the bad episodes
conditioned on the event G above.

In order to do this we define certain key quantities. Consider a particular trajectory T of T time steps executed by the algorithm.
Furthermore, let T be such that the good event in (11) holds during the T time steps. We associate the following random variables
with the trajectory. Let Nε be the total number of time steps spent in bad episodes. Furthermore, let Regε be the total accumulated

regret during these time steps. Then it is easy to see that E[Regε ∣G] > εNε. For each vertex vi and b ∈ {0,1} we define τε(i, b)
to be the total number of time steps that vertex vi spends in bad episodes in position b and τε(i, b, t) to be the total number of
time steps spent in bad episodes up to time step t. Notice that

∑
b

∑
i

τε(i, b) ≤ 2kNε. (13)

Consider a particular bad episode h and let s be the state returned by the optimization oracle during that episode. Then
conditioned on the good event G, the total regret Regh accumulated during episode h satisfies

E[Regh∣T] =∑
i

(µsi − µ
s∗
i)t(h)

≤∑
i

(µsi − µ̃
s∗
i)t(h) (from(12))

≤∑
i

(µsi − µ̃
s
i)t(h) (since s is best state according to the optimistic losses)

≤∑
i

(γ
s(i)
i − γ̃

s(i)
i,th

)t(h)

≤∑
i

20B

¿
Á
ÁÀ

log(kT /δ)

τ bi,th
t(h). (from (10))

In the above inequality, the expectation is taken over the loss distribution for each vertex during states visited in the trajectory T .
we have that

E[Regh∣T] ≤∑
i

20B

¿
Á
ÁÀ log(kT /δ)

τε(i, b, th)
t(h).

Summing over bad episodes, the total expected regret in bad episodes can be bounded by

E[Regε∣T] ≤∑
i

∑
b

∑
h∶h is bad

20B

¿
Á
ÁÀ log(kT /δ)

τε(i, b, th)
t(h). (14)

Notice that τε(i, b, th) = ∑h′<h∶h′ is bad t(h
′). Furthermore, we know that ((Jaksch, Ortner, and Auer 2010)) for any sequence

z1, z2, . . . , zh of non-negative numbers such that zi ≥ 1,

h

∑
i=1

zi
√

∑
i−1
j=1 zj

≤ (1 +
√

2)

¿
Á
ÁÀ

h

∑
i=1

zi. (15)

From (15) we get:

∑
h∶h is bad

t(h)
√
τε(i, b, th)

≤
√
τε(i, b).

Substituting into (14) we get that

E[Regε∣T] ≤∑
i

∑
b

20B
√

log(kT /δ)
√
τε(i, b).

Using (13) we have that the above expected regret is maximized when τε(i, b) are equal, thereby implying

E[Regε∣T] ≤ 20Bk
√

log(kT /δ)
√
Nε.

Using the fact that E[Regε ∣G] > εNε we get that conditioned on G,

Nε ≤
400B2k2 log(kT /δ)

ε2
.

Combining trajectories T where the good event G holds, we get that the total expected regret accumulated in the bad episodes
satisfies

E[Regε∣G] ≤ 20Bk
√

log(kT /δ)
√
Nε

≤ 400B2k2
log(kT /δ)

ε
.

Combining the above with the total expected regret accumulated in the good episodes, the loss of moving to different states, and
the probability of good event G not holding, we get

Reg(A) ≤ 400B2k2
log(kT /δ)

ε
+ εT +

k(c +B)

T 3
+O(k2(c +B) logT).

Setting ε = 1
√
T

and δ = 1
T 4 , we have the final bound

Reg(A) ≤ O((c +B)
2k2

√
T log(T)).

The above result extends to higher m values, assuming that each vertex does not participate in too many correlation sets.
If a vertex vi appears in at most O(log k) correlation sets, then the total loss incurred by vertex vi in any state depends on
the position of vi and every other vertex that it is correlated with. Hence the total loss incurred by vertex vi depends on an
O(m log k)-dimensional vector. For every configuration b of this vector, we associate with each vertex vi, parameters γbi . Notice
that there are at most O(km) such parameters. Each parameter is in turn a sum of a subset of the parameters in θ. Notice that
in this case the size of the cover K is upper bounded by O(km+1). Our algorithm for higher m values is similar to the one for
m = 1, but instead maintains optimistic estimates of the parameters γbi via

γ̃bi,t = γ̂
b
i,t − 10B

¿
Á
ÁÀm

log(kT /δ)

τbi,t
. (16)

Here τbi,t is the total time spent up to and including t where the vertex i and the vertices that it is correlated with are in
configuration b. Similarly, for a given state s, we will denote by s(i), the configuration of the vertex i and the vertices that it is
correlated with. The algorithm is sketched below

Input: The graph G, correlation sets C, fixing costs ci.
1. Let K be the cover of size O(km+1).
2. Move to each state in the cover once and update the optimistic estimates according to (16).
3. For episodes h = 1,2, . . . do:

• Run the optimization oracle (2) with the optimistic estimates as in (16) to get a state s.
• Move from current state to state s. Stay in state s for t(h) time steps and update the corresponding estimates using (16).

Here t(h) = mini τ
s(i)
i,th

and th is the total number of time steps before episode h starts.

Figure 9: Online algorithm for higher m.

For m ≥ 1, we obtain the following guarantee.
Theorem 11. Consider an MDP(S,A,C,θ) with losses bounded in [0,B] and maximum cost of fixing a vertex being c. Given
correlations sets C of size at most m such that each vertex participates in at most O(log k) sets, the the algorithm in Figure 9
achieves a pseudo-regret bounded by O(mk2m+2(c + B)2

√
T logT). Furthermore, given access to an oracle for (2), the

algorithm runs in time polynomial in O(km+1).

Proof. The proof is very similar to the proof of Theorem 3. Since each time the optimization oracle is called the time spent in
some configuration s(i) is doubled, we get that the total number of calls to the optimization oracle are bounded by O(km logT).
Hence the total loss incurred during the exploration phase can be bounded by O(km(c +B) logT). Let G be the good event that
(16) holds for all t ∈ [1, T].

As before, the loss incurred during good episodes is bounded by εT . Define τε(i,b) to be the total time that vertex i and
vertices that it is correlated with spend in configuration b during bad episodes. Then analogous to (13) we have

∑
b

∑
i

τε(i,b) ≤ O(km)Nε.

For a trajectory T where the good event G holds, the total expected regret in bad episodes can be bounded as

E[Regε∣T] ≤∑
i

∑
b

∑
h∶h is bad

20B

¿
Á
ÁÀm

log(kT /δ)

τε(i,b, th)
t(h) (17)

≤∑
i

∑
b

20B
√
m log(kT /δ)

√
τε(i,b) (18)

≤ O(Bkm+1
)
√
m log(kT /δ)

√
Nε. (19)

Using the fact that E[Regε ∣T] > εNε we get that for a trajectory where the event G holds,

Nε ≤
O(R2k2m+2m log(kT /δ))

ε2
.

Hence we get that conditioned on the good event G, the total expected regret accumulated in the bad episodes is at most

E[Regε∣G] ≤ O(R2mk2m+2 log(kT /δ)

ε
).

Combining the above with the total expected regret accumulated in the good episodes, the loss of moving to different states,
and the probability of the event G not holding we get

Reg(A) ≤ O(B2mk2m+2 log(kT /δ)

ε
) + εT +

k(c +B)

T 3
+O(km logT).

Setting ε = 1
√
T

and δ = 1
T 4 , we have the final bound

Reg(A) ≤ O((c +B)
2mk2m+2

√
T log(T)).

An important corollary of the above is the following
Corollary 12. If G is a constant degree graph with correlation sets consisting of subsets of edges in G, then there is a polynomial
time algorithm that achieves a pseudo-regret bounded by O(k6(c +B)2

√
T logT).

D Adversarial Setting
Motivated by the discussion on adversarial manipulation in Section 3, we study a setting with no distributional assumptions
about the arrival of complaints. We consider an adversarial model where, at each time step, multiple complaints arrive for the
vertices in G. Initially all the vertices in G are in an unfixed state and each vertex has a fixing cost of ci. Each time, the algorithm
can decide to fix a particular vertex, and as a result its neighbors get unfixed. At time step t, if criterion vi is unfixed, then the
algorithm incurs a loss of `i(t) (which depends on the current state of the system), otherwise the algorithm incurs no loss. For an
algorithm A, during T time steps, the total loss is

Loss(A) =
k

∑
i=1

T

∑
t=1

`i(t) ⋅ I(st(i) = 0)

+
k

∑
i=1

T

∑
t=2

ci ⋅ I(st−1(i) = 0, st(i) = 1). (20)

Let OPT be the algorithm that, given the entire loss sequence in advance, makes the decisions to fix vertices. We define the
competitive ratio (Borodin and El-Yaniv 1998) of A to be the maximum of Loss(A)/Loss(OPT) over all possible complaint
sequences. Our main result is stated below.
Theorem 13. Let G be a graph with fixing costs at least one. There is a polynomial-time algorithm with a competitive ratio of at
most 2B + 4 on any sequence of complaints with loss values in [0,B].

Our algorithm for this setting is provided in Figure 10. The intuition behind the algorithm is the following. For each criteria
we consider it fixing cost, the accumulated loss since the last time it was fixed plus a measure of the cost of fixing its neighbors.
We fix a criteria (and implicitly unfix its neighbors) once its accumulated loss is larger than both its fixing cost and a measure of
the cost of fixing its neighbors (the decision in the algorithm is more refined). This allows us to "charge" the cost of fixing a
criteria to its accumulated loss. In addition, we make sure that (future) fixing of the neighbors of the criteria can also be charged
appropriately.

In particular, we study an adversarial model where at each time step multiple complaints arrive for the vertices in G via the
choice made by an oblivious adversary. For a given vertex vi and time step t, we denote by `i(t) the loss incurred if criterion vi
is unfixed at time t. Similar to the setting from the previous section, initially all the vertices in G are in unfixed state and each
vertex has a fixing cost of ci. At each time step the algorithm can decide to fix a particular vertex. As a result all its neighbors
get unfixed. At time step t, if criterion vi is unfixed then the the algorithm incurs a loss of `i(t). If vi is fixed at time step t
then algorithm incurs no loss. The overall loss incurred by the algorithm is the total fixing cost and the total loss incurred over
the arrival complaints. As before, we will denote a configuration of the vertices in G using a vector s ∈ {0,1}k with s(i) = 0
representing an unfixed vertex. For an algorithm A processing the request sequence, During the course of T time steps, the total
loss of processing the complaints is

Loss(A) =
k

∑
i=1

T

∑
t=1

`i(t) ⋅ I(st(i) = 0) +
k

∑
i=1

T

∑
t=2

ci ⋅ I(st−1(i) = 0, st(i) = 1). (21)

Input: The graph G, fixing costs ci, loss sequence (i1, `i1), . . . , (iT , `iT).
1. For each i ∈ [k], initialize τi, κi to 0.
2. Process the complaints in sequence and for each complaint (i, `i) such that vi is unfixed do:

(a) τi = τi + `i.
(b) While `i > 0 and exists j ∈ N(i) with κj > 0 do:

i. Set ∆ = min(`i, κi) and reduce both κi and `i by ∆.
(c) If τi ≥ max (ci,∑j∈N(i) κj) fix vi. Set τi to 0 and κi to ci. Set τj = 0 for all j ∈ N(i).

Figure 10: Online algorithm for the adversarial setting.

Define OPT to be the algorithm that given the entire loss sequence in advance, makes the optimal choice of decisions
to fix vertices. Following standard terminology we define the competitive ratio of an algorithm A to be the maximum of
Loss(A)/Loss(OPT) over all possible complaint sequences. We will design efficient online algorithms for processing the
complaints that achieve a constant competitive ratio. Notice that in this setting, in order for the competitive ratio to be finite, we
need to bound the range of the losses and the fixing costs of the vertices. We will assume that the cost of fixing each vertex is at
least one and as before assume that the losses are bounded in the range [0,B]. For ease of exposition, in the rest of the discussion
we will assume that at each time step complaints arrive for one of the vertices in G. A simple reduction shows that an algorithm
that is competitive with OPT in this setting remains so in the general setting with the same competitive ratio. We discuss this at
the end of the section. Via this reduction we can consider the loss sequence to be of the form ((i1, `i1), . . . , (iT , `iT)) where it
is the index of the criterion for which the tth complaint arrives and `it is the associated loss.

To get a better understanding of the above adversarial setting, consider the case when the graph G over the criteria has no
edges, i.e., there are no conflicts. In this case, given a sequence of complaints, each with unit loss value, the optimal offline
algorithm that has the entire loss sequence in advance can independently make a decision for each vertex. In particular, if the
total loss of the complaints incurred at vertex vi exceeds the fixing cost ci then the optimal decision is to fix the vertex vi, and
otherwise simply incur the loss from the arriving complaints. In this case the online algorithm can also simply process each vertex
independently. At each vertex the algorithm is faced with the classical ski-rental problem for which there exists a deterministic
algorithm that is 2-competitive with optimal algorithm (Karlin et al. 1988). For each vertex i, the online algorithm simply waits
till a total loss of ci or more has been incurred on vertex i and then decides to fix it. It is easy to see that the total cost incurred by
this strategy is at most twice the cost incurred by OPT.

However, the above algorithm will fail miserably in the presence of conflicts in the graph G. As an example consider a graph
with two vertices vi and vj that are connected by an edge. Let the fixing cost of vi be 1 and the fixing cost of vj be C ≫ 1.
Consider a sequence of complaints, each of unit loss, consisting of C complaints for vj followed one complaint for vi. If this
sequence is repeated T times the optimal offline algorithm OPT incurs a loss of C +T by fixing vj and incurring losses due to vi.
However, the algorithm above will incur a cost of (2C + 2)T thereby leading to an unbounded competitive ratio. Hence, in order
to achieve a good competitive ratio one must make decisions not only based on the loss incurred at the given vertex vi, but also
the status of the vertices in the neighborhood of vi. Our main result in this section is the algorithm in Figure 10 that achieves a
constant factor competitive ratio.

The algorithm described in Figure 10 makes decisions based on local neighborhood information of a vertex. Intuitively, if a
vertex is fixed only once or a few times in the optimal algorithm one would like to avoid fixing it too many times. In order to
achieve this, each time a vertex vi is fixed, it adds a barrier of κi = ci to the loss any of its neighbors need to incur before getting
fixed. Hence, if a vertex is connected to a lot of fixed vertices then it has a high barrier to cross before getting fixed. During the
course of the algorithm each unfixed vertex is in one of the two phases. In phase one, the vertex is accumulating losses to pay for
the barrier introduced by its neighbors (step 2(b) of the algorithm). In phase two, once the barrier has been crossed the vertex
follows the standard ski-rental strategy independent of other vertices for making a decision as to fix or not. Notice that via step
2(b) of the algorithm, multiple neighbors of a vertex vi can help bring down the barrier of ci introduced by the action of fixing
vertex vi. This is necessary to ensure the online algorithm does not incur a large loss on a vertex by waiting too long to fix it.

As an example consider a graph G with k vertices and k − 1 edges, where vertex v0 is the central vertex connected to every
other vertex. Let the fixing cost of vertex v0 be a large value C, and the fixing cost of other vertices be one. We consider a
sequence of C complaints, each with unit loss arriving for vertex v0, followed by a sequence of C complaints for vertex v1 and
so on. In this case the optimal offline solution incurs a loss of C + k by deciding to fix every vertex except v0. After processing C
complaints for v0, the online algorithm will fix v0 and incur a loss of 2C. Next, during the course of processing C complaints for
v1, the algorithm fixes v1 and incurs an additional loss of C + 1. More importantly, due to step 2(b), the barrier κ0 introduced by
vertex v0 has been reduced to zero and hence the algorithm only incurs a loss of 2 per vertex for the remaining sequence for a
total loss of 3C + 2k − 1. Without the presence of step 2(b) each vertex will incur a loss of C leading to a large competitive ratio.

Notice that our algorithm in Figure 10 is designed for a setting where in each time step complaints arrive for a single vertex in

G. If multiple vertices accumulate complaints in a time step, we can simply order them arbitrarily and run the algorithm on the
new sequence. Let OPT be the optimal offline algorithm according to the chosen ordering of the complaints. Let OPT’ be the
optimal offline algorithm when processing multiple complaints per time step. Notice that for each time step, the loss of OPT
cannot be larger than that of OPT’ since any choice available to OPT’ is available to OPT as well. Hence it is enough to design
an algorithm that is competitive with OPT. In particular, we have the following theorem.
Theorem 14 (Theorem 13). Let G be a graph with fixing costs at least one. Then, the algorithm of Figure 10 achieves a
competitive ratio of at most 2B + 4 on any sequence of complaints with loss values in [0,B].

Proof. Recall that `i(t) denotes the loss incurred by vertex vi at time t. We divide this loss into the amount that was used to
reduce the κj value of one its neighbors and the rest. Formally, for every edge (i, j) we define δti→j as follows. If in time step t,
the complaint arrived for vertex i and step 2(b) was executed to reduce κj by ∆, then we define δti→j = ∆. Otherwise we define
δti→j to be zero. We also define

δti→i = `i(t) − ∑
j∈N(i)

δti→j . (22)

If vertex vi is fixed fi times during the course of the algorithm then we have that the total loss incurred by the algorithm can be
written as

Loss(A) =
k

∑
i=1

fici +
k

∑
i=1

T

∑
t=1

(δti→i + ∑
j∈N(i)

δti→j). (23)

Next we notice that each time a vertex vi is fixed it accumulates a value of κi = ci. Furthermore, the total loss incurred by vertices
as a result of executing step 2(b) is upper bounded by the total κ value accumulated. Hence we have

T

∑
t=1

k

∑
i=1

∑
j∈N(i)

δti→j ≤
k

∑
i=1

fici. (24)

Substituting into (23) we have

Loss(A) ≤
k

∑
i=1

2fici +
k

∑
i=1

T

∑
t=1

δti→i. (25)

Next we bound the above loss for each vertex separately. For a given vertex vi that is fixed fi times by the algorithm, we can
divide the time steps into fi + 1 intervals consisting of an interval I0 starting from t = 0 up to (and including) the first time
vi is fixed. The next fi intervals correspond to the time spent by vi between two successive fixes. Denoting these intervals as
I0, I1, . . . we have that

2fici +
k

∑
i=1

T

∑
t=1

δti→i = ∑
t∈I0

δti→i + ∑
t∈Ir

(2ci + δ
t
i→i). (26)

Next we compare the above to the loss incurred by OPT for vertex vi. Let `∗i(t) be the loss incurred by OPT for vertex vi at time
t. We will denote by s∗t the state of the vertices at time t according to OPT.

We instead redefine the loss incurred by OPT for vertex vi at time t to be

˜̀
i(t) = `

∗
i(t) + ∑

j∈N(i)

δtj→i I(s
∗
t (j) = 0). (27)

Notice that
∑

i∈N(j)

δtj→i I(s
∗
t (j) = 0) ≤ `∗j(t).

Hence we get that

k

∑
i=1

T

∑
t=1

˜̀
i(t) ≤

k

∑
i=1

(
T

∑
t=1

`∗i(t) + ∑
j∈N(i)

`∗j(t)) (28)

≤ 2 ⋅ Loss(OPT). (29)

Next we consider each interval in (25) separately. For any interval Ir we have that

∑
t∈Ir

δti→i ≤ Bci. (30)

This is because after incurring a loss of more than ci, any additional loss incurred by vi is due to step 2(b), since otherwise step
2(c) will be executed and vi will be fixed.

Next consider interval I0. The loss incurred by the algorithm on vertex vi equals ∑t∈I0 δ
t
i→i ≤ Bci. Either OPT fixes vi at least

once during this interval or incurs the total loss. Either way we have that the loss incurred by OPT is at least

min (ci,∑
t∈I0

δti→i) ≥
∑t∈I0 δ

t
i→i

B
. (31)

Next consider an interval Ir between two successive fixes. The loss incurred by the algorithm for vertex vi during this interval is
at most

∑
t∈Ir

δti→i + 2ci ≤ (B + 2)ci.

If OPT fixes vi at least once during this interval then it incurs a cost of ci. If vi remains unfixed in OPT during the course of the
interval then OPT incurs a loss of at least ci. This is because vertex vi went from being unfixed to fixed during the second half of
the interval and hence a total loss of at least ci must have arrived for the vertex vi during this interval.

Finally, suppose vertex vi is fixed in OPT before the start of the interval and remains so throughout. Since vi goes from being
fixed to unfixed during the first half of the interval, we must have ∑t∈Ir ∑j∈N(i) δ

t
j→i ≥ ci. Furthermore, since vi is fixed by OPT

during this interval, OPT must incur a loss on all neighbors of j. In particular, from (27) we have

∑
t∈Ir

˜̀
i(t) ≥ ∑

t∈Ir

∑
j∈N(i)

δtj→i I(s
∗
t (j) = 0) (32)

≥ ci. (33)

In either of the three cases we have that the loss∑t∈Ir ˜̀
i(t) incurred by OPT is at least a 1/(B+2) fraction of the loss incurred by

the algorithm. Summing over all the vertices and the corresponding intervals, we get that the total loss incurred by the algorithm
can be bounded by

Loss(A) ≤ (B + 2)
T

∑
t=1

k

∑
i=1

˜̀
i(t) ≤ 2(B + 2)Loss(OPT).

E Experiments
In this appendix we provide more detail of the experiments discussed in Section 4 and also report additional results with the
algorithm for the stochastic setting.

E.1 Experiments with Simulated Data
We first evaluated the performance of our stochastic setting algorithms (Section 3) on simulated data. We generated the graph G
from the Erdős-Rényi model: G(k, p) and set p = 2 logk

k
, to ensure connectivity. We generated correlation sets (C) of size two

by picking αk pairs of vertices at random and adding them to C, where α is a parameter. Hence, on average, each vertex is in
α correlation sets. We also added to C singleton sets for each vertex in G. The fixing cost of a vertex was sampled uniformly
in [1,5]. Parameters governing the loss distribution were drawn from a Beta distribution. We approximated the oracle for
the optimization in (2) via a linear programming relaxation. Our algorithms of Figure 3 and Figure 9 admit complementary
guarantees. The former admits a higher regret as a function of T , but only a polynomial dependence on α, i.e., the average
number of correlation sets a vertex participates in. The latter incurs a smaller regret of Õ(

√
T) as a function of T at the expense

of an exponential dependence on α. Figure 11 shows an empirical illustration of this: for smaller values of α, the Õ(
√
T)

regret algorithm performs significantly better, while for larger values of α the Õ(T 2/3) regret algorithm is more desirable. We
choose to compare the performance of our two proposed stochastic algorithms as we are not aware of any existing baselines for
simultaneously optimizing multiple diverse metrics. Additionally, we focus on experiments with the stochastic model as it is
hard to approximate the best offline algorithm in the adversarial setting of Appendix D.

We consider a simulated environment where the conflict graph G is generated from the Erdős-Renyi model: G(k, p) where we
set p = 2 logk

k
. This ensures that with high probability G is connected. Next we generate correlation sets C consisting of pairs of

vertices in G sampled uniformly at random. For a parameter α > 0 that we vary, we choose αk pairs of vertices at random and
add them as correlation sets in C. Hence on average, each vertex participates in α correlation sets. We also add to C singleton sets
for each vertex in G. The fixing cost of each vertex is samples uniformly at random in the range [1,5].

Next we describe the choice of parameters governing the loss distribution of the different states in the MDP. For a correlation
set {i} of size one corresponding to vertex vi, we sample a parameter γ1i from the beta distribution Beta(0.5,0.5). For a given
state s with s(i) = 1, the loss generated due to {i} is drawn from an exponential distribution with mean γ1i . For a given state s
with s(i) = 0, the loss generated due to {i} is drawn from an exponential distribution with mean λγ1i , where λ > 1 is a parameter

Figure 11: Cumulative loss of the Algorithms of Figure 3 and Figure 9 on a graph with k = 100 criteria. α = 1,3,4 determines
the number of random pairs of vertices, αk, added into correlation sets.

that we vary. For a correlation set {i, j} of size two, we generate two parameters γ1,1i,j and γ1,0i,j from the beta distribution
Beta(0.5,0.5) such that γ1,0i,j > γ1,1i,j . For a given state s with s(i) = 1 and s(j) = 1, the loss generated due to {i, j} is drawn
from an exponential distribution with mean γ1,1i,j . For states where s(i) = 0 and s(j) = 1 or vice-versa, the loss is generated from
an exponential distribution with mean γ1,0i,j . Finally, for states where both s(i) = 0 and s(j) = 0, the loss is generated from an
exponential distribution with mean λγ1,0i,j .

In general, computation of the optimal state in (2) requires time exponential in k. In our experiments we approximate the
optimal state by a linear programming relaxation of the optimization in (2) and use the appropriately rounded linear programming
relaxation solution as a proxy for the optimal state.

Figure 12: The figure shows the total accumulated loss incurred by the Algorithms in Figure 3 and Figure 9 on a graph with
k = 50 criteria. The parameter α controls the total number of correlation sets. For each value of α, we add αk random pairs of
vertices into correlation sets.

For general m, our proposed algorithms in Figure 3 and Figure 9 have complementary strengths. While the algorithm in
Figure 3 incurs a higher regret as a function of the number of time steps T , its running time has a polynomial dependence on
the parameter α, i.e., the number of correlation sets that a vertex participates in, on average. The algorithm in Figure 9 incurs
a smaller regret of Õ(

√
T) as a function of T at the expense of an exponential dependence on α. In Figures 12 and 13 we

empirically demonstrate this behavior where for small values of α, the Õ(
√
T)-regret algorithm is much better, whereas for

higher values of α the Õ(T 2/3)-regret algorithm is more desirable.
For the case of m = 1 however, i.e., singleton correlation sets, the algorithm in Figure 9 achieves a smaller regret and runs in

polynomial time and hence is expected to outperform the explore-exploit based algorithm from Figure 3. As can be seen from

Figure 13: The figure shows the total accumulated loss incurred by the Algorithms in Figure 3 and Figure 9 on a graph with
k = 100 criteria. The parameter α controls the total number of correlation sets. For each value of α, we add αk random pairs of
vertices into correlation sets.

Figure 14 this is indeed the case and the Õ(
√
T) regret algorithm significantly outperforms the Õ(T 2/3) regret algorithm.

E.2 Experiments with a Real-World Dataset
In this section we demonstrate via experiments how our framework and algorithms can be applied to real world data. In order to
do this we study the UCI Adult dataset (Kohavi 1996). The dataset comprises of 48852 examples each represented using 124
features, after binarizing categorical features. Each data point corresponds to a person and the label is a 0/1 value representing
whether the income of the person is more or less than $50,000. The dataset contains information about sensitive attributes such
as race and gender. We will simulate an online scenario where a classifier is making predictions on the income of individuals.
At each time step a batch of complaints arrive, the system incurs a loss and responds by transitioning to a different state (and
updating the classifier). We next describe how we instantiate various components of our stochastic model from Section 3.
Graph G: We take race as a sensitive attribute that takes values in {black,white}, to obtain two sub-populations and consider two
natural criteria namely the true positive rate and the AUC score. This leads to four vertices tprw, tprb, aucw, aucb. Furthermore,
we add the classifier accuracy as another criterion. This leads to total 5 vertices in the graph.
Losses and Correlation Sets: We consider correlation sets of size one, and hence the total loss incurred at any state is the sum
of the losses incurred by each criterion. For the accuracy criterion we simply define the loss to be the error of the system (the
classifier). We next describe how we define the loss for the tprw criterion. We first compute the overall true positive rate of the
classifier and also the true positive rate on the white population. If the two deviate by more than a threshold τ , then we penalize
the classifier linearly in the violation. Therefore the loss for tprw is defined as: max(0, ∣tproverall − tprw ∣ − τ). The loss for all
other criteria is defined the same way. In our experiments we choose τ = 0.005.
Incompatibilities and State Transitions: To generate incompatibilities among criteria we compute a set of valid and invalid states
as follows. For each state s ∈ {0,1}5, we solve a constrained optimization problem on a training set to compute a classifier. We
then evaluate the classifier on the test set to compute the loss of each criterion. If the loss of any criterion is more than a specific
threshold then we consider the state as an invalid state, otherwise the state is valid. In our experiments we set a threshold of 0.4
for the accuracy criterion. For the considered criteria we present results for two thresholds, 2τ and 6τ , the first one resulting in 4
valid states and other second one resulting in 7 valid states. To solve a constrained optimization problem we use the tensorflow
constrained optimization toolkit (Cotter et al. 2018; Cotter, Jiang, and Sridharan 2018). We use the default parameter settings
provided by the toolkit. The toolkit is released under Apache license 2.0. If a state s has accuracy criterion set to 1, then we
optimize for model accuracy subject to constraints for the other criteria that are set to 1 in s. If the accuracy criterion is set to 0
then we optimize for a constant loss function subject to constraints. Recall that our proposed algorithms function by fixing a
criterion and as a result moving to another state. We obtain these state transitions as follows. If the algorithm asks to fix criterion
vi in state s, we set s(i) = 1 to go to the next state s′. While s′ is invalid, we unfix the criterion (not including vi) with the

Figure 14: The figure shows the total accumulated loss incurred by the Algorithms in Figure 3 and Figure 4 for the case of m = 1
and varying graph sizes.

highest loss in the state s′ to reach another state.
Fixing Cost: We simply take the fixing cost of each criterion to be 1.
Simulating Complaints: We divide the dataset into a set of 16000 examples that we use to update our classifier at each time step
and the remaining test set to simulate the arrival of complaints. At each time step, we randomly select a batch of examples from
the test set to generate complaints. This set of complaints is used to compute the loss of a given state at a given time step.
Benchmark and Results: We compare our Algorithm from Figure 4 with an offline optimal solution that has been computed
to find the state with the minimum average loss over the arrival sequence of complaints. The results are averaged over 10
independent runs.

The results are shown in Figure 15 and Figure 16. We show results for two values of the threshold parameters and in each case
plot the loss of the algorithm as compared to the benchmark, as well as the states chosen by the algorithm, as a function of the
number of time steps. As can be seen from Figure 15 our algorithm quickly converges to the offline optimal solution after an
initial exploration phase. To get a better understanding of the performance of the algorithm in the initial phases, in Figure 16 we
plot the same setting as in the case of Figure 15, but with x-axis on a log-scale. For the case of threshold being 0.01, one can see
that the state 0 results in much higher loss and, during exploration, the algorithm alternates in a periodic pattern between states 1
and 3 that have similar loss. A similar pattern holds for the case of the threshold being 0.03. It is important to note that the choice
of the loss functions was important in this case and that we did not weight each criterion by the volume of the complaints. This
demonstrates that our algorithms, when combined with a good choice of the loss function, can be useful in practice.

Compute Resources. All our experiments were performed on a machine containing a Tesla P100 GPU with 80 GB of RAM
and four CPUs.

Hyperparameters. For the case of simulated data the hyperparameters have been mentioned in Section E.1. For the case of
real data, apart from the hyperparameters mentioned in Section E.2, we used the default learning rates and optimizers provided by
the tensorflow constrained optimization toolkit (Cotter et al. 2018; Cotter, Jiang, and Sridharan 2018). We performed a random
train/test split as detailed in Section E.2.

Assets. We used publicly available code from the tensorflow constrained optimization toolkit1 and the publicly available UCI
Adult Dataset2.

1License at: https://github.com/google-research/tensorflow_constrained_optimization/blob/master/README.md.
2https://archive.ics.uci.edu/ml/datasets/adult.

https://github.com/google-research/tensorflow_constrained_optimization/blob/master/README.md
https://archive.ics.uci.edu/ml/datasets/adult

Figure 15: The figure shows the performance of the Algorithm in Figure 4 on the UCI Adult dataset. We present results for two
threshold values, and in each case plot the loss of the offline solution and the online algorithm as well as the states chosen by the
online algorithm, as a function of the time steps.

Figure 16: The figure shows the performance (x-axis on a log scale) of the Algorithm in Figure 4 on the UCI Adult dataset. We
present results for two threshold values, and in each case plot the loss of the offline solution and the online algorithm as well as
the states chosen by the online algorithm, as a function of the time steps.

F Further Discussion on the COMPAS Example
Throughout the main sections, we have mentioned that the choice of the loss function is important in the effectiveness of our
model. We briefly discussed this in Section 3. Below, we present a more detailed discussion of the effect of the loss function on
our model, by using the COMPAS scenario from Section 1 as an example.

Loss function – COMPAS illustration. Consider the COMPAS example with a graph G with four criteria namely, false positive
rate on population A, false positive rate on population B, AUC score for population A and AUC score for population B. We
want to understand what kinds of loss functions will result in an overall suboptimal system when our model and algorithms
from Section 3. Suppose our algorithm take an action to fix a criterion and reach a state where the true positive rates and
the AUC scores associated with the four criteria are: [0.1,0.8,0.5,0.5]. Then a poor choice of the loss function would be
f1 ⋅ 0.1 + f2 ⋅ 0.8 + f3 ⋅ 0.5 + f4 ⋅ 0.5, where fi represents the fraction of complaints that trigger criterion i. Such a choice of
the loss function will make our system vulnerable to the loudest voices in the system and as a result might not lead to a good
solution at all. A more reasonable choice of the loss is 0.1 + 0.8 + 0.5 + 0.5, that weighs each criteria equally and does not take
into account the underlying size of the population. Another alternative is λ1∣0.1− 0.8∣+λ2(∣0.5− 0.5∣), that aims at keeping both
the discrepancy in the false positive rate and the AUC scores small. Finally, the choice we make in our experiments of penalizing
each criterion for the deviation from the value over the entire population, i.e., max(0, ∣tproverall − tprw ∣ − τ), also leads to good
solutions empirically.

Another case where additive losses are a poor choice is if the criteria in G is not chosen carefully. For instance, consider a
scenario in the COMPAS example where all except one of the criteria correspond to the performance of the system on population
A. An additive loss would then naturally force the system to disproportionately favor population A over a period of time.

	Introduction
	Conflict Resolution Model
	Stochastic Setting
	Experiments
	Conclusion
	Related work
	Stochastic Setting
	Case m = 2
	General cCse

	Beyond T23 Regret
	Adversarial Setting
	Experiments
	Experiments with Simulated Data
	Experiments with a Real-World Dataset

	Further Discussion on the COMPAS Example

