Learning from Uncertain Data

Mehryar Mohri

AT&T Labs — Research
180 Park Avenue, Florham Park, NJ 07932, USA

mohri@research.att.com

Abstract. The application of statistical methods to natural language
processing has been remarkably successful over the past two decades.
But, to deal with recent problems arising in this field, machine learning
techniques must be generalized to deal with uncertain data, or datasets
whose elements are distributions over sequences, such as weighted au-
tomata. This paper reviews a number of recent results related to this
question. We discuss how to compute efficiently basic statistics from a
weighted automaton such as the expected count of an arbitrary sequence
and higher moments of that distribution, by using weighted transduc-
ers. Both the corresponding transducers and related algorithms are de-
scribed. We show how general classification techniques such as Support
Vector Machines can be extended to deal with distributions by using gen-
eral kernels between weighted automata. We describe several examples
of positive definite kernels between weighted automata such as kernels
based on counts of common n-gram sequences, counts of common factors
or suffixes, or other more complex kernels, and describe a general algo-
rithm for computing them efficiently. We also demonstrate how machine
learning techniques such as clustering based on the edit-distance can be
extended to deal with unweighted and weighted automata representing
distributions.

1 Introduction

The application of statistical methods to natural language processing has been
remarkably successful over the past two decades. Many of the components of
speech recognition systems, language models, pronunciation models, context-
dependency models, Hidden-Markov Models (HMMs), are statistical models [10,
25, 22]. Sophisticated statistical learning techniques have also been used in all
other areas of natural language processing from the design of high-accuracy
statistical parsers [3,4,26] and morphological analyzers to that of accurate text
classification systems [27,11].

As for all machine learning techniques, these methods heavily rely on data
and the availability of text and speech corpora in several areas has played a
critical role in their success. But, new machine learning techniques in natural
language processing must deal with uncertain data. To illustrate this, consider
the case of large-vocabulary speech recognition systems designed to transcribe
broadcast programs. A virtually unlimited amount of unlabeled audio data can

be collected from a television feed. An existing speech recognizer can be applied
to this data to produce, for each speech utterance, a set of uncertain alternative
transcriptions, typically represented by a weighted automaton [13]. Such an au-
tomaton can then be used as a label for the corresponding speech utterance and
constitute the input data for training acoustic or grammar models.

A similar situation can be found in the case of a complex information extrac-
tion system or a complex search engine. These systems are typically not fully
certain about the correct response. This may be because of the ambiguities af-
fecting the input query, which are quite common in natural language, or because
the complex information sources used by the system just cannot uniquely deter-
mine the response. Thus, they generate a range of alternative hypotheses with
some associated weights or probabilities used to rank these hypotheses. When
the accuracy of a system is relatively low, it is not safe to rely only on the best
hypothesis output by the system. It is then preferable to use instead the full
range of hypotheses and their weights since that set most often contains the
correct response.

These observations apply similarly to many other areas of natural language
processing and in fact to other domains such as computational biology. The
input data for many machine learning techniques in such contexts is uncertain
and can be viewed as a set of distributions. More specifically, in natural language
processing, these are distributions over sequences, such as sequences of words or
phonemes. Thus, statistical learning techniques must be generalized to deal with
distributions of strings, or sequences.

The data uncertainty and the distributions we are referring to here should
not be confused with the sampling distribution inherent to any learning prob-
lem — that distribution is typically assumed to be i.i.d. and the corresponding
assumptions hold similarly in our case. Here, each object of the input data is
a distribution. To further clarify the problem we are describing, consider the
toy classification problem of predicting gender based on height and weight. The
input data for this problem is typically a set of pairs (height, weight) for a large
sample of the population. The problem we are facing here is similar to having
instead for each member of that population not the exact height or weight but
a height or weight distribution.

It is possible to reformulate this problem as a classical machine learning
problem if we resort to an approximation. Indeed, we can extract random samples
from each distribution and use the samples to augment the feature set. The
sample sizes must be sufficiently large to be representative of each distribution.
But, this may dramatically affect the efficiency of the learning algorithm by
significantly increasing the size of the feature set, while still solving only an
approximate problem. In what follows, we are interested in exact solutions and
efficient algorithms exploiting the input distributions directly.

In most cases, such as those just discussed, the distributions can be rep-
resented by weighted automata, in fact acyclic, since their support is a large
but finite number of sequences. Dealing with objects represented by weighted

automata arises many new algorithmic questions. This paper discusses and re-
views a number of recent results related to these questions [7,6,21].

A general question for any statistical learning technique dealing with weighted
automata is that of collecting statistics. How can we count efficiently sequences
appearing in weighted automata? How do we take into account the weight or
probability associated to each path? We present simple algorithms for comput-
ing efficiently the expected count and even higher moments of the count of an
arbitrary sequence in a weighted automaton.

The application of discriminant classification algorithms to weighted au-
tomata arises other issues. We briefly describe a general kernel framework, ratio-
nal kernels, that extends kernel methods to the analysis of weighted automata.
These kernels can be computed efficiently and include many of the kernels intro-
duced in text classification and computational biology [9,30,16,14]. They have
been used successfully in applications such as spoken-dialog classification. We
give several examples of positive definite rational kernels and illustrate their
generality.

We also show how machine learning techniques such as clustering based on
the edit-distance can be generalized to deal with unweighted and weighted au-
tomata representing distributions. We extend the definition of the edit-distance
to automata and describe efficient algorithms for the computation of the edit-
distance and the longest common subsequence of two automata. We start with
some basic definitions and notation related to weighted automata and transduc-
ers.

2 Preliminaries

Definition 1 ([12]). A system (K,®,®,0,1) is a semiring if (K,®,0) is a
commutative monoid with identity element 0, (K, ®,1) is a monoid with iden-
tity element 1, @ distributes over @, and 0 is an annihilator for @: for all
acK,a®0=0®a=0.

Thus, a semiring is a ring that may lack negation. Some familiar examples
are the Boolean semiring B = ({0,1},V,A,0,1), or the probability semiring
R = (R4, +, x,0,1) used to combine probabilities. Two semirings often used in
natural language processing are: the log semiring £ = (R U {oo}, Biog, +, 00, 0)
[20] which is isomorphic to R via a log morphism with: Va,b € RU{c0}, a Biog b =
—log(exp(—a)+exp(—b)) (by convention: exp(—oco) = 0 and —log(0) = o0), and
the tropical semiring T = (R4 U {oo}, min, +, 00,0) which is derived from the
log semiring using the Viterbi approximation.

Definition 2. A weighted finite-state transducer T over a semiring K is an
S-tuple T = (X, A,Q,1,F,E,)\ p) where X is the finite input alphabet of the
transducer, A is the finite output alphabet, Q is a finite set of states, I C Q the
set of initial states, FF C Q the set of final states, E C Q x (X U {e}) x (AU
{e}) x K x @ a finite set of transitions, A : I — K the initial weight function,
and p : F'— K the final weight function mapping F to K.

A Weighted automaton A = (X,Q,I,F,E,)\, p) is defined in a similar way by
simply omitting the input or output labels. We denote by L(A) C X* the set of
strings accepted by an automaton A and similarly by L(X) the strings described
by a regular expression X.

Given a transition e € F, we denote by i[e] its input label, ple] its origin or
previous state and nle] its destination state or next state, wle] its weight, o[e]
its output label (transducer case). Given a state ¢ € @, we denote by E[q] the
set of transitions leaving q.

A pathm = ey - - - e, is an element of E* with consecutive transitions: nfe;_1] =
pleil, i = 2,...,k. We extend n and p to paths by setting: n[r] = n[ei] and
p[r] = ple1]. A successful path in a weighted automaton or transducer is a path
from an initial state to a final state. We denote by P(q,q’) the set of paths from
q to ¢’ and by P(q,x,q") and P(q,z,y,q’) the set of paths from ¢ to ¢’ with input
label # € X* and output label y (transducer case). These definitions can be ex-
tended to subsets R, R’ C Q, by: P(R,z,R’) = Uger, ¢cr' P(¢, 2, ¢"). The label-
ing functions ¢ (and similarly o) and the weight function w can also be extended
to paths by defining the label of a path as the concatenation of the labels of its
constituent transitions, and the weight of a path as the ®-product of the weights
of its constituent transitions: i[r] = ile1] - - - ilex], w[r] = wle1] ® - - - ® wlex]. We
also extend w to any finite set of paths IT by setting: w[lI] = @, .y w[n], and
even to an automaton or transducer M by w[M] = @, cy,, w[r], where Il
is the set of successful paths of M. An automaton A is regulated if the output
weight associated by A to each input string z € X*:

[Al(z) = @ Apl]) @ wlx] ® p(nx]) (1)

reP(I,x,F)

is well-defined and in K. This condition is always satisfied when A contains no
e-cycle since the sum then runs over a finite number of paths. It is also always
satisfied with k-closed semirings such as the tropical semiring [20]. [A](z) is
defined to be 0 when P(I,x, F) = {).

Similarly, a transducer T is regulated if the output weight associated by 1" to
any pair of input-output string (x,y) by:

[Tl@y)= @ Aolrl) @ wlr]® p(n[r]) (2)

neP(I,x,y,F)

is well-defined and in K. [T](x,y) = 0 when P(I, z,y, F) = . In the following, we
will assume that all the automata and transducers considered are regulated. We
denote by |M| the sum of the number of states and transitions of an automaton
or transducer M.

For any transducer T, we denote by IT5(T') the automaton obtained by pro-
jecting T on its output, that is by omitting its input labels.

3 Collecting Statistics

Statistical methods used in natural language processing are typically based on
very large amounts of data, e.g., statistical language models are derived from text
corpora of several million words. The first step for the creation of these models
is the computation of the counts of some sequences. For language models used
in speech recognition, these sequences are often n-gram sequences, but other
applications may require the computation of the counts of non-contiguous units
or even that of sequences given by a regular expression.

In new applications such as task adaptation, one needs to construct these
models from distributions of sequences. For example, one may need to construct
a language model based on the output of a speech recognition system, which is
an acyclic weighted automaton called a word or a phone lattice. In traditional
language modeling tasks, the count of the relevant sequences is computed from
the input text. To deal with distributions of sequences instead of just text, we
need to compute efficiently the expected count of a sequence or a set of sequences.’

A weighted automaton contains typically a very large set of alternative se-
quences with corresponding weights or probabilities. Collecting such statistics
cannot be done by counting the number of occurrences of the sequence consid-
ered in each path since the number of paths of even a small automaton may be
more than a billion. We present a simple and efficient algorithm for computing
efficiently the expected count and higher moments of the count of an arbitrary
sequence appearing in a weighted automaton.

3.1 Definition

Let A= (Q,I,F, X, 6, 0,\ p)be an arbitrary weighted automaton over the prob-
ability semiring and let X be a regular expression defined over the alphabet 3.
We are interested in counting the occurrences of the sequences € L(X) in A
while taking into account the weight of the paths where they appear.

When A is stochastic, i.e. when it is deterministic and the sum of the weights
of the transitions leaving any state is 1, it can be viewed as a probability dis-
tribution P over all strings X*.2 The weight [A](u) associated by A to a string
u € X* is then P(u). Thus, we define the expected count of the sequence z in A,
c(x), as:

c(x)= Y Juls Pu)= Y Juls [A](w) (3)

uey* ueX*

where |ul|, denotes the number of occurrences of z in the string u. We will
define the count of = as above regardless of whether A is stochastic or not. More

! Many modeling algorithms can be naturally generalized to deal with input distri-
butions by replacing the quantity X originally derived from text by its expectation
E[X] based on the probability distribution considered.

2 There exist a general weighted determinization and a weight pushing algorithm that
can be used to create a deterministic and stochastic automaton equivalent to an
input weighted automaton [17].

bre/l b:e/1 bre/l
ael/l
Can (a) G
0 X:X/1 oY X:x/1
(a)

Fig. 1. Weighted transducers over the probability semiring used for counting with the
alphabet X' = {a,b}. (a) Transducer T} used to compute the expected counts of the
sequences x € L(X). The transition weights and the final weight at state 1 are all equal
to 1. (b) Weighted transducer Tz used to compute cz(x), the second moment of the
counts of an aperiodic sequence xz € L(X).

b:e/1 b:e/1

()

ae/l
@ X: €12 @
(b)

generally, for m > 1, the m-th moment of the count of the sequence x is defined
by:
Cm(@) = Julf [A](u) (4)
ueX*
In many applications, the weighted automaton A is acyclic, e.g., it is the output
of a speech recognition system. But our algorithm is general and does not assume
A to be acyclic.

3.2 Algorithm

We describe an algorithm for computing the expected counts of the sequences
x € L(X). Let A; be a weighted automaton over the probability semiring rep-
resenting the weighted regular expression (or formal power series [12]) X*zX*.
Figure 1(a) shows a weighted transducer whose input automaton is A; if X =«
and X = {a, b}.

Lemma 1. For all u € X*, [A1](u) = |ule.

Proof. Let u € X*. For any occurrence of z in u, u can be decomposed into
U = urxug, with ug,ug € X*. Thus, for any occurrence of x in u, A; contains
one distinct path labeled with u and with weight 1. Since [A;](u) is the sum of
the weights of all these paths, this proves the lemma. a

Since X is regular, the weighted transduction defined by (X x {e})*(X x
X)(X x {e})* is rational. Thus, by the theorem of Schiitzenberger [28], there
exists a weighted transducer 77 defined over the alphabet X' and the probability
semiring realizing that transduction. Figure 1(a) shows the transducer 7; in the
particular case of X' = {a, b}.

Proposition 1. Let A be a weighted automaton over the probability semiring,
then:

[T5(A o Th)(x) = c(x)

b:e/l b:e/1 b:e/1 b:e/1

Fig. 2. Weighted transducer T3 used to compute c3(x), the third moment of the counts
of an aperiodic sequence x € L(X).

Proof. By definition of T3, for any v € X*, [T1](u,z) = [A1](x), and by
Lemma 1, [41](x) = |u|,. Thus, by definition of composition:

[MTo(A o Ty)](z) = Yo AW x fule = Y fule [A](w) = e()

weP(I,F), u=i[r] ueX*
This ends the proof of the proposition. a

The weighted automaton B = II3(A o T}) contains e-transitions. A general e-
removal algorithm can be used to compute an equivalent weighted automaton
with no e-transition [19]. The computation of [B](z) for a given z is done by
composing B with an automaton representing « and by using a simple shortest-
distance algorithm [20] to compute the sum of the weights of all the paths of the
result.

The proposition gives a simple algorithm for computing the expected counts
of X in a weighted automaton A based on several general and well-studied
algorithms: composition algorithm for weighted transducers [23], projection of
weighted transducers, e-removal of weighted transducers, forward-backward al-
gorithm or shortest-distance algorithm.

The algorithm is also based on the transducer 77 which is quite easy to
construct. The size of T is in O(|X| + |Ax|), where Ax is a finite automaton
accepting X. With a lazy implementation of 71, only one transition can be used
instead of | X, thereby reducing the size of the representation of T} to O(]Ax]).
The worst case complexity of composition is quadratic and that of projection is
linear, thus the time complexity of the construction of the automaton B giving
the expected counts of sequences z € L(X) is O(|A||Ax]).

One can compute other moments of the count of a sequence z in a similar way.
Indeed, let A,,,, m > 1, be the automaton obtained by composing or intersecting
A; with itself m — 1 times, and let T}, be a weighted transducer corresponding
to A, x {z}, then T, can be used to compute the m-th moment of the count
of z.

Corollary 1. Let A be a weighted automaton over the probability semiring, then:

[T (Ao Ty)](2) = em(z)

Proof. In view of lemma 1, [A1](u) = |u|. Thus, by definition of composition:
Vu € X% [An](u) = Julz’ (5)
The result follows. O

In the worst case, the size of the composition of an automaton with itself may
be quadratic in the size of the original automaton. But, it can be shown that
there exists a compact representation of A,, whose size is in O(m(|z| + X)),
thus the size of a lazy representation of T, is in O(m|z|). Figure 1(a) shows the
transducer T» and Figure 2 the transducer T3 for an aperiodic string =, when
the alphabet is reduced to X' = {a,b}.

These transducers can be used to compute efficiently the moments of the
counts of sequences appearing in weighted automata, which are needed for the
design of statistical models derived from distributions of sequences given by
weighted automata.

4 Classification

Classification is a key task in many natural language processing applications.
In document or text classification, it may consist of assigning a specific topic
to each document, or to a set of sentences. Typically, features such as some
specific sequences are extracted from these sentences and used by a machine
learning algorithm. In spoken-dialog systems, the task consists of assigning to
each speech utterance a category, out of a finite set, based on the output of a
speech recognizer for that utterance. Due to the word error rate of conversational
speech recognizers, it is preferable to use to full output of the recognizer which
is a weighted automaton containing a large set of alternative transcriptions with
their corresponding weights.

Recently, we introduced a general kernel framework based on weighted trans-
ducers, rational kernels, to extend kernel methods to deal with weighted au-
tomata [7, 6]. These kernels can be used in combination with a statistical learning
technique such as Support Vector Machines (SVMs) [2,8,29] for efficient clas-
sification of weighted automata. This section briefly introduces rational kernels
and describes several examples of positive definite rational kernels that can be
used in a variety of applications.

4.1 Definition
Let {2 denote the set of weighted automata over the alphabet 3.

Definition 3. K : 2 X {2 — R is a rational kernel if there exists a weighted
transducer T' and a function ¢ : R — R such that for all X,Y € (2:

KX, Y)=¢Ww[XoToY]) (6)

Fig. 3. (a) Weighted transducer Ts mapping any sequence z to the set of suffixes of x.
(b) Weighted transducer Ty mapping any sequence x to the set of factors of x.

No special assumption is made about the function % in this definition. In most
cases of interest, however, ¢ is simply the identity function. Since the worst cost
complexity of composition is quadratic, assuming that i) can be computed in
constant time, the cost of the computation of K(X,Y) is in O(|T||X||Y]). This
complexity can be improved to be linear in |X| and |Y| in the case of automata
representing strings by using failure functions.

Rational kernels define a general set of kernels based on weighted transducers
that can be computed efficiently using composition. But not all rational kernels
are positive definite symmetric (PDS), or equivalently verify Mercer’s condition
[1], a condition that guarantees the convergence to a global optimum of dis-
criminant classification algorithms such as Support Vector Machines (SVMs).
A kernel K is a PDS kernel iff the matrix K(z;,2;); j<n for all n > 1 and all
{z1,...,z,} C X is symmetric and all its eigenvalues are non-negative. There
exists however a systematic method for constructing a PDS kernel. Assume that
the function ¢ in the definition of rational kernels is a continuous morphism.
Then, the following result [6] shows that one can in fact construct a PDS ratio-
nal kernel from an arbitrary weighted transducer T'. The construction is based
on the composition of T' with its inverse T~ !, that is the transducer obtained
from T by swapping input and output labels of each transition.

Proposition 2 ([6]). Let T be a weighted finite-state transducer and assume
that the weighted transducer T oT ™1 is well-defined, then T o T~ defines a PDS
rational kernel over X* x X*.

4.2 Examples of Rational Kernels

A kernel can be viewed as a measure of similarity between two elements. A
common method used for the definition of kernels is based on the idea that
two sequences are similar if they share many common subsequences of some
kind. This idea can be generalized to weighted automata by considering the
expected counts of the subsequences of the paths of an automaton instead of the

al0.5 /2 b/l
®

Fig. 4. Result of the application of the transducer Ts to an acceptor for the sequence
abab. This weighted automaton contains all the suffixes of the string abab with their
multiplicities.

counts. We present several examples of construction of PDS rational kernels for
automata.

Suffiz kernel. The transduction from X* to X* which associates to each string
the set of its suffixes is rational. Figure 3(a) shows a weighted transducer, Ty,
realizing that transduction. By Proposition 2, we can use T, to define a PDS
rational kernel K, measuring the similarity of two weighted automata X and Y
based on the expected counts of the common suffixes of the sequences of X and
Y by

KJ(X,)Y)=w[X o(TyoT,) oY] (7)

We can define similarly a PDS rational kernel based on prefixes. Figure 4 shows
the result of the application of the transducer T to the input sequence abab
after e-removal and determinization.

Factor kernel. Similarly, the transduction from X* to X* which associates to
each string the set of its factors is rational.® Figure 3(b) shows a weighted trans-
ducer, T}, realizing that transduction. By Proposition 2, we can use T’ to define
a PDS rational kernel Ky measuring the similarity of two weighted automata X
and Y based on the expected counts of the common factors of the sequences of
X and Y.

Gappy n-gram kernels. Measures of similarity are often based on common n-
gram sequences. Since the set of n-gram sequences over a finite alphabet is a
regular language, by Proposition 1, there exists a simple weighted transducer
that can be used to compute the expected counts of m-gram sequences of a
weighted automaton A. That transducer can be slightly modified to compute
the expected counts of non-contiguous or gappy n-grams using a decay factor
A, 0 < X < 1, penalizing long gaps. Figure 5 shows a weighted transducer
over the alphabet X' = {a,b}, T\, that computes the expected counts of gappy
trigrams with a decay factor A as defined by [16]. By Proposition 2, the composed
transducer 10Ty ! defines a PDS kernel measuring the similarity of two weighted
automata based on the expected counts of their common gappy n-grams.

3 A factor f of a string z is a subsequence of with contiguous symbols. Thus, if f is
a factor of x, z can be written as x = 1 fzs for some z1,x2 € 3.

Fig. 5. Weighted transducer T over the probability semiring computing the expected
counts of gappy trigrams with a decay factor 0 < A < 1.

More powerful n-gram kernels. The results of Section 3 can be used to design
more complex PDS rational kernels. The previous examples were all based on the
expected counts of some subsequences. By Corollary 1, one can use a weighted
transducer to compute other moments of the counts of n-gram sequences. That
transducer can be composed with its inverse to construct a PDS rational kernel.
Thus, we can define more general rational kernels based on both the expectation
and the variance of common n-gram sequences between two automata. These
kernels are likely to lead to a more refined classification.

We have reported elsewhere the results of experiments using SVMs with
n-gram kernels in a spoken-dialog classification task [7]. The results show the
benefits of the use of kernels applied to weighted automata over the use of just
the best paths of these machines.

5 Clustering

The significant increase in size of text and speech datasets, in some cases data
generated by continuous streams, has created an even stronger need for cluster-
ing, in particular because of its use for data summarization. Clustering consists
of grouping objects of a large dataset into classes based on a metric, or a sim-
ilarity measure. Many of the kernels presented in the previous section can be
used as a similarity measure for clustering algorithms. Another metric relevant
to clustering often used in natural language processing applications is that of
the edit-distance, that is the minimal cost of a series of edit operations (symbol
insertions, deletions, or substitutions) transforming one sequence into the other
[15], e.g., the accuracy of a speech recognition system for an input speech utter-
ance is often measured by the edit-distance between the output of the recognizer
and the correct transcription.

To use the notion of edit-distance and apply clustering algorithms to uncer-
tain data where each element is represented by a set of alternatives, we need to
extend the edit-distance to that of a distance between two languages, the sets of
sequences accepted by two automata and provide an efficient algorithm for its
computation. Let d(z,y) denote the edit-distance between two strings = and y
over the alphabet Y. A natural extension of the definition of the edit-distance
which coincides with the usual definition of the distance between two subsets of
a metric space is given by the following.

Fig. 6. (a) Weighted transducer T. over the tropical semiring computing the edit-
distance of two strings or automata. (b) Weighted transducer T over the tropical
semiring computing the longest common subsequence of two strings of two automata.

Definition 4 ([21]). The edit-distance of two languages X C X* and Y C X*
is denoted by d(X,Y) and defined by:

dX,Y)=inf{d(z,y) :z€ X,y Y} (8)

This definition can be naturally generalized to (unweighted) automata: the edit-
distance of two automata A; and As is that of the languages accepted by these
automata d(L(A1), L(As2)). The general problem of the computation of the edit-
distance between two languages is not trivial. In fact, it can be proven that this
problem is undecidable for arbitrary context-free languages [21]. But the edit-
distance of two automata can be computed efficiently using a weighted trans-
ducer over the tropical semiring [24, 21].
Let U be the weighted transducer over the tropical semiring defined by:

Va,be DU {e}, [[U]](a,b)—{l if (a 7) (9)

0 otherwise
and define T, by T, = U*. Figure 6(a) shows that transducer for X = {a, b}.

Proposition 3 ([24, 21]). Let Ay and Ay be two (unweighted) finite automata
over the alphabet Y. Then,

d(Al, AQ) = U)[Al e} Te O AQ] (10)

Proof. By definition of U, A; o T, o A5 contains a successful path corresponding
to each alignment of a sequence accepted by A; and a sequence accepted by
Ay and the weight of that path is exactly the cost of that alignment, i.e. the
number of mismatches in that alignment. Since A; o T, o A5 is defined over the
tropical semiring, w[A; o T, o As] is the minimum alignment cost, which is the
edit-distance.]

Note that the best path of A; o T, o Ay provides also the best alignment of
the two automata A; and As. The proposition leads to an efficient algorithm
for computing the edit-distance of two automata based on the composition algo-
rithm and a classical single-source shortest-paths algorithm. This computation

can be done on-the-fly since composition admits a natural on-the-fly implemen-
tation. Since the worst case complexity of composition is quadratic, and since
the transducer T, can be constructed on-demand (not all symbols of X' might
be needed for a specific choice of A; and As), the time and space complexity of
the construction of A; 0T, 0 Ay is O(|A1||Az2|). When A; and As are acyclic, the
result of composition is also an acyclic transducer and the shortest path can be
found using the classical linear-time single-source shortest paths algorithm [5].
Thus, the total time complexity of the algorithm is O(] 41| Az|).

The notion of edit-distance can be similarly extended to measure the similar-
ity between two distributions of sequences given by weighted automata. It can
be defined as the expected edit-distance of the strings accepted by A; and As.

Definition 5 ([21]). Let Ay and Az be two acyclic weighted automata over the
probability semiring. Then the edit-distance of A; and As is denoted by d(A;, As)
and defined by:

d(A1, Ag) = Zd(m,y)[[Al]](x)[[Ag]](y) (11)

It can be shown that this generali?gd definition of the edit-distance can also be
computed ezactly using standard weighted automata algorithms such as weighted
determinization, synchronization, and e-removal [21].

A notion closely related to the edit-distance of two strings is that of the
longest common subsequence, that is the longest subsequence of symbols (not
necessarily contiguous) common to two strings. Let les(x,y) denote the longest
common subsequence of z and y. This definition can be naturally extended to
two languages or two finite automata.

Definition 6. The longest common subsequence of two languages X C X* and
Y C X* is denoted by les(X,Y) and defined by:

les(X,Y) =sup {les(z,y) :x € X,y Y} (12)

The longest common subsequence of two finite automata Ay and Ag over the al-

phabet X is denoted by lcs(A1, A2) and defined by les(Ay, As) = les(L(A1), L(Ag)).
Let U’ be the weighted transducer over the tropical semiring defined by:
Va € X, [U'](a,€e) = [U'](e,a) =0 (13)
[U'](a,a) = -1 (14)
and define Ty by Ts = U’*. Figure 6(b) shows that transducer for X' = {a, b}.

Proposition 4. Let Ay and Az be two (unweighted) finite automata over the
alphabet .. Then,
les(Aq, Ag) = —w[Ay o Ty 0 As] (15)

Proof. The proof is similar to that of Proposition 4. A; o Ts o Ay contains a
path corresponding to each subsequence common to a string accepted by A;
and a string accepted by Ao, and the weight of that path is the negative length
of that subsequence. Since A; o Ts o A5 is defined over the tropical semiring,

-w[Ay o Ts o Ag] is the maximum length of a common subsequence, which is
ZCS(Al,AQ). O

As in the case of the edit-distance, the longest common subsequence of two
acyclic automata A; and As can be computed in O(]A;||Az|) using the compo-
sition algorithm and a linear-time single-source shortest path algorithm.

6 Conclusion

We discussed several algorithms related to the use of statistical learning tech-
niques in natural language processing when the input data is given as a set of dis-
tributions over strings, each compactly represented by a weighted automaton. We
described efficient algorithms for computing the expected count of an arbitrary
sequence and other moments of that distribution from a weighted automaton.
We also demonstrated how several general similarity measures between weighted
automata can be efficiently computed using algorithms based on weighted trans-
ducers.? This extends machine learning techniques such as SVMs and clustering
to deal with distributions.

References

1. Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic Analysis
on Semigroups. Springer-Verlag: Berlin-New York, 1984.

2. B. E. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop of Computational Learning
Theory, volume 5, pages 144-152, Pittsburg, 1992. ACM.

3. Eugene Charniak. Statistical parsing with a context-free grammar and word statis-
tics. In AAAI/TAAI pages 598-603, 1997.

4. Michael Collins. Three Generative, Lexicalised Models for Statistical Parsing. In
35th Meeting of the Association for Computational Linguistics (ACL ’96), Pro-
ceedings of the Conference, Santa Cruz, California, 1997.

5. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press: Cambridge, MA, 1992.

6. Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Positive Definite Rational
Kernels. In Proceedings of The Sizteenth Annual Conference on Computational
Learning Theory (COLT 2008), Washington D.C., August 2003.

7. Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational Kernels. In Ad-
vances in Neural Information Processing Systems (NIPS 2002), volume 15, Van-
couver, Canada, March 2003. MIT Press.

8. Corinna Cortes and Vladimir N. Vapnik. Support-Vector Networks. Machine
Learning, 20(3):273-297, 1995.

9. David Haussler. Convolution Kernels on Discrete Structures. Technical Report
UCSC-CRL-99-10, University of California at Santa Cruz, 1999.

10. Frederick Jelinek. Statistical Methods for Speech Recognition. The MIT Press,
Cambridge, Massachusetts, 1998.

4 Efficient implementations of many of the general algorithms that we used are incor-
porated in two software libraries, the AT&T FSM library [24] and the GRM Library
[18], whose binary executables are available for download for non-commercial use.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

Thorsten Joachims. Text categorization with support vector machines: learning
with many relevant features. In Claire Nédellec and Céline Rouveirol, editors,
Proceedings of ECML-98, 10th European Conference on Machine Learning, pages
137-142, Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE.

Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Number 5
in EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
Germany, 1986.

Fabrice Lefevre, Jean-Luc Gauvain, and Lori Lamel. Towards task-independent
speech recognition. In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2001), 2001.

Christina Leslie, Eleazar Eskin, Jason Weston, and William Stafford Noble. Mis-
match String Kernels for SVM Protein Classification. In Advances in Neural In-
formation Processing Systems 15 (NIPS 2002). MIT Press, March 2003.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics - Doklady, 10:707-710, 1966.

Huma Lodhi, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text clas-
sification using string kernels. In Todd K. Leen, Thomas G. Dietterich, and Volker
Tresp, editors, Advances in Neural Information Processing Systems 18 (NIPS
2000), pages 563-569. MIT Press, 2001.

Mehryar Mohri. Finite-state transducers in language and speech processing. Com-
putational Linguistics, 23:2, 1997.

Mehryar Mohri. Weighted Grammar Tools: the GRM Library. In Jean claude
Junqua and Gertjan van Noord, editors, Robustness in Language and Speech
Technology, pages 165—186. Kluwer Academic Publishers, The Netherlands, 2001.
http://www.research.att.com/sw/tools/grm.

Mehryar Mohri. Generic Epsilon-Removal and Input Epsilon-Normalization Algo-
rithms for Weighted Transducers. International Journal of Foundations of Com-
puter Science, 13(1):129-143, 2002.

Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Prob-
lems. Journal of Automata, Languages and Combinatorics, 7(3):321-350, 2002.
Mehryar Mohri. Edit-Distance of Weighted Automata: General Definitions and
Algorithms. International Journal of Foundations of Computer Science, 2003.
Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted Finite-State Trans-
ducers in Speech Recognition. Computer Speech and Language, 16(1):69-88, 2002.
Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted automata
in text and speech processing. In ECAI-96 Workshop, Budapest, Hungary, 1996.
Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. The Design Principles
of a Weighted Finite-State Transducer Library. Theoretical Computer Science,
231:17-32, January 2000. http://www.research.att.com/sw/tools/fsm.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

Brian Roark. Probabilistic top-down parsing and language modeling. Computa-
tional Linguistics, 27(2):249-276, 2001.

Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for
text categorization. Machine Learning, 39(2/3):135-168, 2000.

Marcel Paul Schiitzenberger. On the definition of a family of automata. Informa-
tion and Control, 4, 1961.

Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, NY, 1998.
Chris Watkins. Dynamic alignment kernels. Technical Report CSD-TR-98-11,
Royal Holloway, University of London, 1999.

