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Abstract

We study the standard retrieval task of rank-
ing a fixed set of items given a previously un-
seen query and pose it as the half transduc-
tive ranking problem. The task is transduc-
tive as the set of items is fixed. Transduc-
tive representations (where the vector rep-
resentation of each example is learned) al-
low the generation of highly nonlinear embed-
dings that capture object relationships with-
out relying on a specific choice of features,
and require only relatively simple optimiza-
tion. Unfortunately, they have no direct out-
of-sample extension. Inductive approaches
on the other hand allow for the representa-
tion of unknown queries. We describe algo-
rithms for this setting which have the advan-
tages of both transductive and inductive ap-
proaches, and can be applied in unsupervised
(either reconstruction-based or graph-based)
and supervised ranking setups. We show em-
pirically that our methods give strong perfor-
mance on all three tasks.

1 Introduction

The task of ranking a set of objects (e.g. documents)
given a query is the core task of Information Retrieval.
In most setups, the set of objects to rank is fixed (or
slowly growing) while the set of submitted queries is
unknown. This environment gives rise to an inter-
esting learning problem, Half Transductive Ranking
(HTR), in which all the objects to rank are available at
training time, while the test queries are only revealed
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once the model is trained. At training time one may
or may not have examples of desired (query, object
ranking) pairs, but in either case unlike the objects
to be ranked, the queries at test time may not have
been seen before during the training phase. Hence,
this setup is partly transductive since the item set
is given in advance, and they are the only items the
model will ever need to rank. This setup should not
be confused with semi-supervised learning where one
considers using auxiliary unlabeled data for a rank-
ing task. For instance, supervised Latent Dirichlet
Allocation sLDA (Blei and McAuliffe, 2007) relies on
an additional categorical variable associated with each
document, while (Duh and Kirchhoff, 2008) considers
that some of the test queries (without relevance assess-
ment) are available during training. Our setup does
not require the availability of such information and
deals with both supervised and unsupervised tasks.

Although frequent in Information Retrieval, previous
literature mainly ignores the specific aspect of a fixed
set of objects and considers the inductive setup in
which the ranking model is learned to generalize to
both new objects and new queries. Most ranking mod-
els learn a scoring function which assigns a real valued
score to a feature vector describing a query/object
pair. Given a query, the function is applied to each
object and objects are ranked by decreasing scores.
Models relying on this paradigm include ranking per-
ceptrons or SVMs (Joachims, 2002), rankNet (Burges
et al., 2005) or ListNet (Cao et al., 2007), amongst
others. Hence, these approaches can be referred to
as learning a functional embedding. Methods such
as Latent Semantic Indexing (LSI) (Deerwester et al.,
1990) or Locality Preserving Projections (LPP) (He
and Niyogi, 2003) can also be included in this class of
algorithms.

In contrast, transductive approaches have been pro-
posed in the literature, where the learnt similarity
measure can only be assessed between objects given
at training time. These approaches, such as as Isomap
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(Balasubramanian et al., 2002), Locally Linear Em-
bedding (Roweis and Saul, 2000) or Laplacian Eigen-
maps (Belkin and Niyogi, 2003), perform nonlinear di-
mensionality reduction by learning a vector for each
object available during training. Compared to induc-
tive approaches, transductive strategies allow the gen-
eration of highly nonlinear embeddings, while relying
on simple optimization. Moreover, they focus on the
characteristics of the relationship between the objects
rather than relying on characteristics that might de-
pend on a specific choice of features.

Although appealing, these methods can hardly be ap-
plied in our case, as our setup is only half transductive:
all objects are available at training time but the test
queries are not. Of course, one could advocate for
using out-of-sample extensions that allow embedding
a new example into a learned space, see e.g. (Bengio
et al., 2003; Trosset and Priebe, 2008). Such a strategy
is however not desirable in a retrieval context since:
(i) it requires solving a (potentially expensive) opti-
mization problem after the submission of a new query,
which is the most time critical period for a retrieval
system; and (ii) a high quality representation of the
query is integral to the task and should not be seen as
an “extension” to the algorithm, hence one would like
to learn the transductive and inductive representations
jointly at training time.

This paper proposes a direct solution to the Half
Transductive Ranking problem by directly optimizing
a ranking function which consists of a functional em-
bedding for queries and a transductive embedding for
objects. This approach hence benefits from the advan-
tages of the transductive approaches mentioned above,
while retaining the generalization ability of inductive
approaches for coping with new queries.

In the following, we present how the proposed ap-
proach can be applied in various contexts: in (i) an un-
supervised setup, only objects are available for train-
ing, (ii) a graph setup, both objects and proximity
information between objects are available for training,
(iii) a supervised setup, objects and training queries
along with corresponding relevance information are
available for training. For each setup, our experiments
demonstrate the effectiveness of our strategy compared
to alternative approaches: our method outperforms in-
ductive methods and provides the ability to use trans-
ductive methods where they would otherwise not ap-
ply. As a further advantage, our experiments also
stress the scalability of the proposed learning strat-
egy which allows learning a transductive representa-
tion, even when dealing with millions of transductive
objects.

The remainder of the paper is organized as follows:

Section 2 describes the proposed approach, Section 3
presents experimental results and Section 4 concludes.

2 Inductive, Transductive and Half
Transductive Ranking

We are given a fixed set of m items y1, . . . , ym. We
consider the task of ranking these items given a new
query x, unknown at training time.

The following presents inductive and transductive
ranking and then introduces the notion of half trans-
ductive ranking, which is a mixture of inductive and
transductive learning, that has the advantages of both
methods.

Inductive ranking A typical inductive approach
represents the query x and items yi using a joint fea-
ture representation Φ(x, yi) ∈ Rd and then one ranks
an item yi given x using, for instance, a linear function:

f(x, yi) = w · Φ(x, yi).

Examples of this approach include the margin rank-
ing perceptron (Collins and Duffy, 2001), e.g. applied
to re-ranking parse trees, or SVM-MAP (Yue et al.,
2007), and metric learning algorithms like (Weinberger
and Saul, 2008) can also be put in this class.

Ranking methods such as employing LSI as an embed-
ding step also fall under this category. In that case the
representations for query and target are separate bags
of words φ(x) and φ(yi) where the target yi is ranked
with:

f(x, yi) = φ(x)>W>Wφ(yi)

where W is a linear embedding1. In contrast to
methods like SVM-MAP, the parameters of LSI are
learnt with an unsupervised reconstruction objective.
Whether supervised or unsupervised learning is in-
volved, typically inductive methods are linear models
due to the computational cost of kernel methods when
ranking a large set of objects. For example, ranking
SVM or SVM-MAP are typically used in a linear setup
(Joachims, 2002; Yue et al., 2007). Nonlinear neural
networks have also been used over a relatively small
number of features (Burges et al., 2005; Salakhutdi-
nov and Hinton, 2007).

Transductive ranking A transductive approach as-
signs a vector vi ∈ Rn to each object yi that will be
learnt using a supervised or unsupervised signal and
crucially does not involve any feature representation
Φ(·) at all. In this sense, it can be said to be a non-
linear method. Ranking is then typically achieved by

1Typically W and φ(·) are normalized to make this a
cosine similarity.
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measuring the distances in the embedding space Rn

f(yi, yj) = ||vi − vj ||2

although other distance metrics than the 2-norm given
here can be used. Note that the query must be one of
the objects yi for this approach to make sense as only
these objects are embedded, hence the transductive
name (Vapnik, 1998). This technique provides a point-
to-point correspondence between the input space and
the intrinsic space in which the data lie. Such methods
have multiplied in recent years and are most commonly
rooted either in factor analysis (e.g. principal com-
ponent analysis) or multidimensional scaling, includ-
ing the following methods and their variants: kernel
PCA (Scholkopf et al., 1999), Isomap (Balasubrama-
nian et al., 2002), Locally Linear Embedding (Roweis
and Saul, 2000) and Laplacian Eigenmaps (Belkin and
Niyogi, 2003). For example the latter embeds points
by minimizing the function∑

ij

L(vi, vj , Aij) =
∑
ij

Aij ||vi − vj ||2

with respect to A, where A is a similarity (“affinity”)
matrix, under constraints that ensure a trivial solution
is not reached. An overall review of this family of
methods can be found in (Lee and Verleysen, 2007).

Half transductive ranking In this paper we pro-
pose a half transductive ranking algorithm that has
the advantage of both the inductive and transductive
approaches.

We start by, as in transductive approaches, defining a
vector vi for each item yi in the fixed set to be ranked.
We also introduce a function x → Wφ(x) which can
project any query, including queries available solely at
test time, from its feature vector φ(x). We then rely
on the dot-product as a scoring function,

f(x, yi) = v>i Wφ(x)

where W ∈ Rn×d, as well as v ∈ Rm×n are the pa-
rameters to be learned and d is the dimension of the
chosen functional feature space. The choice of the dot-
product as a scoring function simplifies gradient com-
putation for training. However, Euclidean distances or
other metrics could be used as well.

We next describe how to train these kind of models
under differing types of supervision.

2.1 Reconstruction-based 1
2TR

Linear unsupervised ranking methods trained based
on a reconstruction objective are very popular ap-
proaches, including LSI, pLSA and LDA. The task is to

learn a low dimensional “latent semantic” space where
the semantics (e.g. topics) captured are used to mea-
sure similarity for ranking. Such methods have been
shown to improve over using the original feature space
for ranking, despite the task being unsupervised. HTR
gives us the ability to define a nonlinear version of LSI
that is highly scalable to train.

To do this we minimize the following (nonlinear) re-
construction objective:

γ
∑

i

||V vi − φ(yi)||2

+
∑

k 6=l max(0, 1− v>k Wφ(yk) + v>k Wφ(yl)) (1)

with respect to V , W and v, where V ∈ Rd×n and
W ∈ Rn×d. In this unsupervised task, one is given ob-
jects yi at training time, but only has access to queries
x at test time. Hence training is done from the yi

objects only, which are used to model both queries
and documents (implicitly, this is what LSI is doing as
well). The first term of our objective takes the trans-
ductive point-wise representation vi and tries to recon-
struct its corresponding object yi from it using a linear
mapping V . The second term trains the inductive part
of the model: for any k, it ensures that vk is closer to
Wφ(yk), the corresponding functional projection, than
to any other functional projection Wφ(yl), l 6= k. At
test time, ranking with respect to a new query x is
performed according to its functional projection

f(x, yi) = v>i Wφ(x). (2)

The second term of this objective measures the margin
ranking loss that we are actually interested in. In this
perspective, the first term can be seen as a regularizer
which avoids trivial solutions: one can remark that
without this first term, setting vi = Wφ(yi) will can-
cel the margin ranking loss for an appropriate choice
of ‖W‖. Thus, the first term of (1) which forces recon-
struction of the object from the transductive represen-
tation can be seen as a regularizer that prevents this
overfitting from occurring. Note also that the recon-
struction error from the first term should be less than
a linear reconstruction, e.g. LSI, in the absence of fea-
tures shared between the objects to be reconstructed.
However, an algorithm utilizing the first term alone
would be a transductive method with no direct out-of-
sample extension.

We propose to train this model using stochastic gra-
dient descent, (see, e.g. (Burges et al., 2005)): it-
eratively, one picks a random triplet of objects with
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indices i, k and l and makes a gradient step:

V ← V + 2λγV
(
vi − φ(yi)

)
v>i

vi ← vi + 2λγV >(V vi − φ(yi))

W ← W + λvk

(
φ(yk)− φ(yl)

)>
,

if 1− v>k Wφ(yk) + v>k Wφ(yl) > 0
vk ← vk + λW

(
φ(yk)− φ(yl)

)
,

if 1− v>k Wφ(yk) + v>k Wφ(yl) > 0.

We choose the (fixed) learning rate λ which minimizes
the training error. Convergence (or early stopping) is
assessed with a validation set. Stochastic training is
highly scalable and is easy to implement for our model.
Moreover, it exhibits good properties toward avoiding
poor local optima for non-convex optimization prob-
lems (Bottou, 2004). In our experiments, we initialized
the matrices V , W and v randomly using a normal dis-
tribution with mean zero and standard deviation one.

2.2 Graph-based 1
2TR

Graph-based unsupervised learning such as kernel
PCA, Isomap, Locally Linear Embedding and Lapla-
cian Eigenmaps are popular transductive unsupervised
learning approaches, that are inherently nonlinear.
For each object yi an embedding vector vi is learnt
such that the given graph of object relationships is
maintained in the new space. These methods hence
suffer from the out-of-sample problem – they can only
be applied to the set of objects y1, . . . , ym that they
are trained with.

The HTR algorithm can be trained in a similar way to
these algorithms, but yields a natural out-of-sample
extension. Here, we consider the half transductive
analog of Laplacian Eigenmaps2. Consider that for
each pair of objects yi and yj we are given the value
Aij ∈ {0, 1} which indicates whether these two ob-
jects are adjacent (i.e. A is their adjacency matrix).
We then learn an embedding that tries to preserve this
matrix by minimizing:

γ
∑
i,j

L(vi, vj , Aij) +
∑
i,j

L(Wφ(yi), vj , Aij) (3)

with respect to W and v, where

L(z, z′, Aij) =

{
||z − z′||1 if Aij = 1,
max(0, 1− ||z − z′||1) if Aij = 0

(4)
Again, the first term of equation (3) is a classic trans-
ductive manifold-learning type loss function parame-
terized by v, and the second term trains the model to

2Our approach is not identical to Laplacian Eigenmaps,
e.g. here we chose the 1-norm for the matching function
due to the simplicity of the gradient updates.

work for new out-of-sample data, parameterized by W .
At test time one employs equation (2).

We again use stochastic training. Given a random pair
with indices i, j we make an update:

vi ← vi + λγg(vi − vj)
vj ← vj − λγg(vi − vj)− λg(Wφ(yi)− vj) (5)
W ← W + λg(φ(yi)− vj)>

where

g(x) =


−sgn(x) if Aij = 1,
sgn(x) if Aij = 0 and ||x||1 < 1,
0 otherwise.

and sgn(x) = [sgn(x1), sgn(x2), ..., sgn(xn)]> for a n-
vector x. We iterate between picking a random pos-
itive and negative pair (i.e. with Aij equal to 1 and
0).

2.3 Supervised 1
2TR

We next consider the “Learning to Rank” (Joachims,
2002; Herbrich et al., 2000) setting where one is given
a set of objects y1, . . . , ym, as before, as well as a set
of known preference relations:

(x, yp, yn) ∈ R

expressed as a set of tuples R (labeled data), where
each tuple contains a query x, a relevant target yp

and an non-relevant (or lower ranked) target yn. We
would like to learn a function f(·) such that f(x, yp) >
f(x, yn), expressing that yp should be ranked higher
than yn.

The standard solution to this kind of task is to use
a functional approach typically using a linear model
based on a few hand chosen input features, or nonlin-
ear over a few hand-chosen features, and then training
using an SVM or similar model, see e.g. (Joachims,
2002; Burges et al., 2005).

We propose the following nonlinear half transductive
method. We minimize the following:

γ
∑

(x,yp,yn)∈R

R
(
k(x, yp), k(x, yn)

)
+

∑
(x,yp,yn)∈R

R
(
v>p Wφ(x), v>n Wφ(x)

)
(6)

where
R(z, z′) = max(0, 1− z + z′),

and
k(x, y) = φ(y)>W>Wφ(x)

yielding a final ranking model (2) as before.
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Hence, once again we have an objective with two
terms. The second term ensures that relevant objects,
using the nonlinear transductive embedding, are highly
ranked given their functionally embedded queries. The
first term is a regularizer that embeds the objects func-
tionally as well. This controls the capacity of the
model as when γ is increased the model becomes more
linear.

The gradient updates for this setting, given a random
triple with (x, yp, yn), are as follows:

W ← W + λγWφ(x)
(
φ(yp)− φ(yn)

)>
,

if 1− k(x, yp) + k(x, yn) > 0
W ← W + λ

(
vp − vn

)
φ(x)>,

if 1− v>p Wφ(x) + v>n Wφ(x) > 0
vn ← vn − λWφ(x),

if 1− v>p Wφ(x) + v>n Wφ(x) > 0.

vp ← vp + λWφ(x),
if 1− v>p Wφ(x) + v>n Wφ(x) > 0.

Like for the other settings, these updates ensure a good
scalability. Indeed, the training algorithm only ac-
cesses the W matrix and two rows vp and vn of the v
matrix. This means that the v matrix could be stored
over distributed storage and scale to very large trans-
ductive sets. In the next section, we actually present
an example where the transductive set contains more
than a million items.

3 Experiments

We now present experiments in the three setups de-
scribed above: (i) an unsupervised reconstruction
setup, only objects are available for training (Section
3.1), (ii) an unsupervised graph setup, objects and
proximity information between objects are available
for training (Section 3.2); and (iii) a supervised setup,
objects and training queries along with corresponding
relevance information are available for training (Sec-
tion 3.3).

3.1 Reconstruction-based 1
2TR

In order to evaluate unsupervised learning, we choose
a labeled dataset. The Reuters Corpus Volume II
is an archive of 804,414 newswire stories that have
been manually categorized into 103 topics. The cor-
pus covers four major groups: corporate/industrial,
economics government/social, and markets. The topic
classes form a tree which is typically of depth 3. Fol-
lowing (Salakhutdinov and Hinton, 2007), we define
the relevance of one document to another to be the
fraction of the topic labels that agree on the two paths
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Figure 1: Half Transductive LSI (HALFTRANS) mod-
els documents with a nonlinear semantic represen-
tation and outperforms standard (linear) LSI and
TFIDF schemes on the RCV2 benchmark.

from the root to the two documents. Hence, at test
time, the model takes a novel query document and
ranks the training items such that the items sharing
the larger number of topics with the query should ap-
pear on top.

The data was randomly split into 402,207 training and
402,207 test articles. The training set was further ran-
domly split into 302,207 training and 100,000 valida-
tion documents. The data was preprocessed so that
common stopwords were removed, and we considered
the top 30,000 most frequent words3.

We compare tf-idf with cosine similarity (TFIDF),
LSI4 and half transductive (nonlinear) LSI as defined
in equation (1). Hyperparameters such as the em-
bedding dimension are chosen using the validation
set. The results are given in Figure 1. The results
show that half transductive LSI (embedding dimen-
sion n = 100) outperforms the baselines, including
standard LSI (also with n = 100). The modeling of
documents with a nonlinear semantic representation
in half transductive LSI might explain this outcome.

3.2 Graph-based 1
2TR

To evaluate our graph-based model, we rely on the
USPS dataset of hand-written digits5 which consists

3Note that (Salakhutdinov and Hinton, 2007) used only
2,000 words, probably motivated by computational issues,
which yields rather unrealistic, poor results.

4We use the SVDLIBC software http://tedlab.mit.
edu/~dr/svdlibc/ and the cosine similarity in the latent
concept space.

5http://www.cs.toronto.edu/~roweis/data.html
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of 16x16 pixel digits (10 classes) with 7,329 examples
for training and 1,969 examples for testing which has
been used in for embedding algorithms before (Saul
and Roweis, 2003). Our setup constructs an embed-
ding from the training set, and the test set is used for
evaluating the quality of the learnt embedding. Given
an embedded test point, we measure whether the near-
est embedded train point shares the same label. Our
evaluation hence measures the performance of a one
nearest neighbor classifier over the learned space.

We compare Laplacian Eigenmaps (Belkin and Niyogi,
2003) and Laplacian Eigenmaps with out-of-sample
extension (Bengio et al., 2003) to our half transduc-
tive approach. As standard Laplacian Eigenmaps has
no out-of-sample extension, we learn a transductive
embedding on all 9298 examples (train and test) at
once, and report error rates on the test set in this
setting. This gives us an idea of what kind of error
rate we would like our out-of-sample extended meth-
ods to achieve. For the other methods, including ours,
we only train on the training set. We report results
for an embedding dimension of 100, although other
choices (10, 50) yield similar conclusions. For our half
transductive approach (3), we report results for two
feature choices, i.e. linear features φ(x) = x and
RBF features φ(x) = (K(x, y1), . . . ,K(x, ym)) where
K(x′, y′) = exp(− ||x

′−y′||2
2σ2 ) and y1, . . . , ym are the

training examples.

Table 1 reports the test error. It shows that our half
transductive method provides good out-of-sample per-
formance – as good as Laplacian Eigenmaps trained in
the unfair setup granting access to the test points at
training time. Our algorithm needs no out-of-sample
extension, yielding an elegant solution to this problem.
Figure 2 depicts the embedding given by half trans-
duction with embedding dimension n = 2 for training
points (left) and test points (right), which can clearly
be seen to agree well.

Table 1: Empirical results for graph-based unsuper-
vised learning on USPS.

Algorithm 1-NN Loss
Laplacian Eigenmaps (train+test) 0.0513
Laplacian Eigenmaps + O.S.E 0.0510
1/2-Transductive LE (Linear) 0.0673
1/2-Transductive LE (RBF) 0.0508

3.3 Supervised 1
2TR

For our supervised learning to rank experiments, we
do not rely on benchmark databases like LETOR (Liu
et al., 2007) since embedding algorithms cannot be
evaluated: LETOR only provides features describ-

ing the match of document/query pairs and does not
provide separate features describing each document
and each query. TREC on the other hand offers a
much smaller dataset ( 500 queries). We propose an
approach which learns rich document/query relation-
ships from bag-of-word features. This is a challenging
learning problem which requires many query / docu-
ment pairs. Unfortunately, large datasets are avail-
able only within search companies. To the best of
our knowledge, Wikipedia is the closest publicly avail-
able resource that allows reporting reproducible re-
sults. Therefore, we employ Wikipedia and use its
link structure to build a large scale ranking task.

We follow the setup of (Bai et al., 2009): the dataset
consists of 1,828,645 English Wikipedia documents
and 24,667,286 links6 which is randomly split into two
portions, 70% for training and validation, 30% for test-
ing. The link structure is used to provide relevance
labels considering the following task: given a query
document x, rank the other documents such that if x
links to y then y should be highly ranked. Of course,
links between train and test documents are considered
unavailable at training time.

In these experiments, we compare HTR to several al-
ternatives: (i) a margin ranking perceptron – similar
to a ranking SVM – with the following feature repre-
sentation:

Φ((i−1)D+j)(x, y) = (xy>)ij (7)

where Φs(·) is the sth dimension in our feature space,
D is the dictionary size, and x, y are bag-of-words vec-
tors, (ii) tf-idf with cosine similarity (TFIDF), (iii)
Query Expansion (Zighelnic and Kurland, 2008), (iv)
LSI, (v) a margin ranking perceptron relying on the
Hash Kernels with hash size h (Shi et al., 2009), and
(vi) Supervised Semantic Indexing (SSI) (Bai et al.,
2009).

For all methods, hyperparameters – such as the em-
bedding dimension n ∈ {50, 100, 200, 500, 1000}, or
h ∈ {1M, 3M, 6M} – are chosen using a validation set.
For the HTR algorithm we used linear functional fea-
tures, φ(x) = x. The Margin Perceptron model and
SSI can be seen as the inductive alternatives to the
proposed HTR algorithm. For each method, we mea-
sure the ranking loss (the percentage of non-relevant
documents appearing above a relevant one), precision
at 10 (P@10, the percentage of top 10 items which are
relevant) and mean average precision7 (MAP, the aver-

6Links to calendar years are not considered as they pro-
vide little information while being very frequent.

7For computational reasons, MAP and P@10 were mea-
sured by averaging over a fixed set of 100 test queries for
which all relevant documents and 10,000 non-relevant doc-
uments were ranked.
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(b) Half transductive test set embedding

Figure 2: Half transductive embedding of digits from USPS. The left plot shows the transductive embedding
learnt on the training data, and the right plot shows the functional embedding of the test data (which has also
been learnt solely from the training data). A random subsample of 1/10 of the training and 1/5 of the testing
data is shown.

Table 2: Empirical results for document-document ranking on Wikipedia (limited dictionary size of D =30,000
words).

Algorithm Rank-Loss MAP P@10
TFIDF 1.62% 0.329±0.010 0.163±0.006
Query Expansion 1.62% 0.330±0.010 0.163±0.006
LSI 1.28% 0.346±0.011 0.170±0.007
Margin Ranking Perceptron (Bai et al., 2009) 0.41% 0.477±0.011 0.212±0.007
SSI (Bai et al., 2009) 0.301% 0.517±0.011 0.229±0.007
1/2-Transductive Ranking 0.202% 0.557±0.012 0.241±0.007

aged of the precision measured at each position where
a relevant document appears).

We report results in two settings, (i) where we we used
only the top 30,000 most frequent words in order to
compare the margin ranking perceptron which would
otherwise not fit in memory; and (ii) where we used all
2.5 million words in Wikipedia. The results are given
in Tables 2 and 3. HTR outperforms all other rank-
ing methods. TFIDF, Query Expansion and LSI are
not trained from the supervised signal, and perform
worst. The margin ranking perceptron, SSI and Hash
Kernels are trained from the supervised signal (prefer-
ence relations) and perform better, but still can only
model linear relationships via their linear embedding.
The nonlinear embedding provided by HTR captures
nonlinear features of documents, resulting in superior
retrieval performance. Regarding hyperparameter val-
idation, we noticed that our approach is not very sen-
sitive to the embedding dimension, i.e. 200 yields the
best performance but the other experimented values
gave similar results. The regularization parameter γ

in (6) is however important, e.g. if it is set to γ = 0
a test ranking loss of 0.38% is obtained in the limited
dictionary case.

4 Conclusions

In this work we studied the task of ranking a known
(fixed) set of items with respect to a previously un-
seen query. Although this is a common setting in In-
formation Retrieval, to our knowledge, it has not been
defined and studied as the Half Transductive Rank-
ing problem before. This work proposes several natu-
ral algorithms within this framework. In contrast to
semi-supervised learning, our framework does not use
auxiliary unlabeled data to complement a supervised
task, but proposes to rely on non-linear embedding
through transduction as a key point. For the ranking
items available during training, transductive represen-
tations learning a parameter vector for each item allow
the generation of highly nonlinear embeddings that fo-
cus on the relationships between the items rather than
focusing on a specific choice of features. For unknown
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Table 3: Empirical results for document-document ranking on Wikipedia (unlimited dictionary size, all D = 2.5M
words).

Algorithm Rank Loss MAP P@10
TFIDF 0.842% 0.432±0.012 0.193±0.007
Query Expansion 0.842% 0.432±0.012 0.193±0.007
LSI 0.721% 0.433±0.012 0.193±0.007
SSI 0.158% 0.547±0.012 0.239±0.008
Hash Kernels 1.37% 0.335±0.01 0.164±0.007
1/2-Transductive Ranking 0.106% 0.613±0.012 0.256±0.008

(new) queries, functional representations allow their
embedding with good generalization properties.

The algorithms we propose combine the advantages
of transductive and inductive techniques, resulting in
strong performance in various setups, spanning both
unsupervised and supervised tasks.
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