A Unified Construction of the Glushkov, Follow,
and Antimirov Automata

Cyril Allauzen and Mehryar Mohri

Courant Institute of Mathematical Sciences
251 Mercer Street, New York, NY 10012, USA
{allauzen,mohri}@cs.nyu.edu
http://www.cs.nyu.edu/"{allauzen,mohri}

Abstract. A number of different techniques have been introduced in
the last few decades to create e-free automata representing regular ex-
pressions such as the Glushkov automata, follow automata, or Antimirov
automata. This paper presents a simple and unified view of all these
construction methods both for unweighted and weighted regular expres-
sions. It describes simpler algorithms with time complexities at least as
favorable as that of the best previously known techniques, and provides
a concise proof of their correctness. Our algorithms are all based on two
standard automata operations: epsilon-removal and minimization. This
contrasts with the multitude of complicated and special-purpose tech-
niques previously described in the literature, and makes it straightfor-
ward to generalize these algorithms to the weighted case. In particular,
we extend the definition and construction of follow automata to the case
of weighted regular expressions over a closed semiring and present the
first algorithm to compute weighted Antimirov automata.

1 Introduction

The construction of finite automata representing regular expressions has been
widely studied due to their multiple applications to pattern-matching and many
other areas of text processing [1,21]. The most classical construction, Thomp-
son’s construction [13, 24], creates a finite automaton with a number of states and
transitions linear in the length m of the regular expression. The time complex-
ity of the algorithm is also linear, O(m). But Thompson’s automaton contains
transitions labeled with the empty string € which create a delay in pattern match-
ing. Many alternative techniques have been introduced in the last few decades to
create e-free automata representing regular expressions, in particular, Glushkov
automata [11], follow automata [12], and Antimirov automata [2].

The Glushkov automaton, or position automaton, was independently intro-
duced by [11] and [16]. It has exactly n + 1 states but may have up to n? transi-
tions, where n is the number of occurrences of alphabet symbols appearing in the
expression. Thus, its size is quadratic in that of the Thompson automaton for
reasonable regular expressions for which m = O(n). However, when using bit-
parallelism for regular expression search, thanks to its smaller number of states,
the Glushkov automaton can be represented with half the number of machine
words required by the Thompson automaton [20, 21].

Automaton|Algorithm Complexity
Glushkov |rmeps(T’) O(mn)

Follow min(rmeps(7T)) O(mn)

Antimirov |fmeps(min(rmeps(7)))|O(m logm + mn)

Table 1. Simple algorithms for the construction of Glushkov, follow, and Antimirov
automata and their time complexity. T is the Thompson automaton. For an automaton
A, A denotes the automaton derived from A by marking alphabet symbols with their
position in the expression. When the symbols are marked, the same notation denotes
the operation that removes the marking. 7' is obtained by marking some e-transitions
in T, making it deterministic (the e-transitions marked are removed by the fmeps
operation).

Several techniques have been suggested for constructing the Glushkov au-
tomaton. In [3], the construction is based on the recursive definition of the fol-
low function and its complexity is in O(n?). The algorithm described by [4] is
based on an optimization of the recursive definition of the follow function and
its complexity is in O(m + n?). It requires the expression to be first rewritten
in star-normal form, which can be done non-trivially in O(m). Several other
quadratic algorithms have been given: that of [9] which is based on an optimiza-
tion of the follow recursion, and that of [22], based on the ZPC structure, which
consists of two mutually linked copies of the syntactic tree of the expression.

The Antimirov or partial derivatives automaton was introduced by [2]. Tt is
in general smaller than the Glushkov automaton with up to n + 1 states and up
to n? transitions. It was in fact proven by [8] (see [12] for a simpler proof) to
be the quotient of the Glushkov automaton for some equivalence relation. The
complexity of the original construction algorithm of [2] is O(m®). [8] presented
an algorithm whose complexity is O(m?).

Finally, the follow automaton was introduced by [12]. It is the quotient of
the Glushkov automaton by the follow equivalence: two states are equivalent if
they have the same follow and the same finality. The author gave an O(m + n?)
algorithm where some e-transitions are removed from the automaton at each step
of the Thompson construction as well as at the end. An O(m + n?) algorithm
using the ZPC structure was given in [7], which requires the regular expression
to be rewritten in star-normal form.

Some of these results have been extended to weighted regular expressions
over arbitrary semirings. The generalization of the Thompson construction triv-
ially follows from [23]. The Glushkov automaton can be naturally extended to
the weighted case [5], and an O(m?) construction algorithm based on the gener-
alization of the ZPC construct was given by [6]. The Antimirov automaton was
generalized to the weighted case by [15], but no explicit construction algorithm
or complexity analysis was given by the authors.

This paper presents a simple and unified view of all these e-free automata
(Glushkov, follow, and Antimirov) both in the case of unweighted and weighted
regular expressions. It describes simpler algorithms with time complexities at
least as favorable as that of the best previously known techniques, and pro-
vides concise proofs. Our algorithms are all based on two standard automata
operations: epsilon-removal and minimization, as summarized in Table 1.

This contrasts with the multitude of complicated and special-purpose tech-
niques and proofs described by others to construct these automata: no need for
fine-tuning some recursions, no requirement that the regular expression be in
star-normal form, and no need to maintain multiple copies of the syntactic tree.
Our analysis provides a better understanding of e-free automata representing
regular expressions: they are all the results of the application of some combina-
tions of epsilon-removal and minimization to the classical Thompson automata.
This makes it straightforward to generalize these algorithms to the weighted case
by using the generalization of e-removal and minimization [17,18]. It also results
in much simpler algorithms than existing ones.

In particular, this leads to a straightforward algorithm for the construction
of the Glushkov automaton of a weighted regular expression, and, in the case of
closed semirings, helps us generalize follow automata to the weighted case. We
also give the first explicit construction algorithm of the Antimirov automaton of
a weighted expression. When the semiring is k-closed, or, in the Glushkov case,
only null-k-closed for the regular expression considered, the complexity of our
algorithms is the same as in the unweighted case.

The paper is organized as follows. Section 2 introduces the definitions and a
brief description of the elementary algorithms used in the following sections. Sec-
tion 3 presents and analyzes our algorithm for the construction of the Glushkov
automaton, Section 4 the same for the follow automaton, and Section 5 for the
Antimirov automaton.

2 Preliminaries

Semirings. A system (K, ®, ®,0,1) is a semiring when (K, @, 0) is a commutative
monoid with identity element 0; (K, ®,1) is a monoid with identity element T1;
® distributes over ®; and 0 is an annihilator for ®: for all @ € K,a ® 0 =
0 ®a = 0. Thus, a semiring is a ring that may lack negation. Some familiar
semirings include the boolean semiring (B, V, A, 0, 1), the tropical semiring (R4 U
{00}, min, +, 00, 0), and the real semiring (R, +, x,0,1).

A semiring K is said to be closed if for all a € K, the infinite sum €, ; a”
is well-defined and in K, and if associativity, commutativity, and distributivity
apply to countable sums [19]. K is said to be k-closed if for all a € K, EBZJ;B
@i:o a™. More generally, we will say that Kis closed (k-closed) for an automaton
A, if the closedness (resp. k-closedness) axioms hold for all cycle weights of A.
In some semirings, e.g., the probability semiring (R, +, x,0,1), the equality
EB?;B a” = @i:o a™ may hold for the cycle weights of A only approximately,
modulo € > 0. A is then said to be e-k-closed for that semiring.

Weighted automata. A weighted automaton A over a semiring K is a 7-tuple
(X,Q, E,I,\ F,p) where: X is a finite alphabet; @ is a finite set of states; I C Q
the set of initial states; F' C @ the set of final states; E C Q x (X U{e}) xKx Q
a finite set of transitions; A : I — K the initial weight function; and p: FF — K
the final weight function mapping F' to K.

We denote by p[r] the origin and n[r] the destination state of a path = € E*
in an automaton A. i[r] denotes the label of 7, and w[n] its weight obtained

a” =

by ®-multiplying the weights of its constituent transitions. We also denote by
P(p, q) the set of paths from p to ¢ and by P(I,x, F) the set of paths from the
initial states I to the final states F'labeled with x € X*. The weight associated by
A to an input string z € X* is obtained by summing the weights of these paths
multiplied by their initial and final weights: [A}(z) = @ cp(.r) MolT]) @
w(r] @ p(n[r]). [A](x) is defined to be 0 when P(I,z, F) = ().

Shortest distance. Let A be a weighted automaton over K. The shortest dis-
tance from p to ¢ is defined as d[p, ¢] = ®WEP(;D,q) w[r]. It can be computed using
the generic single-source shortest-distance algorithm of [19] if K is k-closed for
A, or using a generalization of Floyd-Warshall [14,19] if K is closed for A.

Epsilon-removal. The general e-removal algorithm of [18] consists of first com-
puting the e-closure of each state p in A,

closure(p) = {(¢,w): w=de[p,q] = P win] #0}, (1)

m€P(p,q),i[nw]=€

and then, for each state p, of deleting all the outgoing e-transitions of p, and
adding out of p all the non-¢ transitions leaving each state ¢ € closure(p) with
their weight pre-®-multiplied by d.[p, q]. If K is k-closed for the e-cycles of A,*
then the generic single-source shortest-distance algorithm [19] can be used to
compute the e-closures.

Weight-pushing and weighted minimization. Weight-pushing [17] is a normal-
ization algorithm that redistributes the weights along the paths of A such that
Decpjy wlel+p(q) = 1 for every state ¢ € Q. We denote by push(A) the resulting
automaton. The algorithm requires that K be zero-sum free, weakly left-divisible
and closed or k-closed for A since it depends on the computation of d[g, F| for all
q € Q. It was proved in [17] that, if A is deterministic, i.e., if no two transitions
leaving any state share the same label and if it has a unique initial state, then
the weight-pushing followed by unweighted minimization with each pair (label,
weight) viewed as an alphabet symbol, leads to a minimal deterministic weighted
automaton equivalent to A, denoted by min(A).

Regular expressions. A weighted regular expression over the semiring K is
defined recursively by: @, € and a € X are regular expressions, and if « and 3 are
regular expressions then ko, ak for k € K, a4+ 3, a - § and o™ are also regular
expressions. We denote by null(«) the weight associated by « to the empty string
€. A weighted regular expression « is well-defined iff for every subterm of the form

8%, null(B)* is well-defined and in K. We will say that K is null-k-closed for « if

there exist k& > 0 such that for every subterm * of o, null(5)* = @?:0 null(3)%.

We denote by |af the length of a, and by |a|x the width of a, i.e., the number
of occurrences of alphabet symbols in a. Let pos(a) = {1,2,...,|a|s} be the
set of (alphabet symbol) positions in «. An unweighted regular expression can
be seen as a weighted expression over the boolean semiring (B, V, A, 0,1).
Thompson automaton. We denote by Ar(«) the Thompson automaton of «
and by 14, (a) and Fa,(q) its unique initial and final states. For i € pos(a),
we denote by p; and ¢; the states of Ap(«) such that the transition from p; to
q; is labeled with the alphabet symbol at the i-th position in a. The states p;

! For A to be well-defined, K needs to be closed for the e-cycles of A.

(b) (c) (d)

Fig. 1. (a) The Thompson automaton, (b) Glushkov automaton, (c) Follow automaton,

and (d) Antimirov automaton of the regular expression o = (a + b)(a* + ba™ + b*)
the running example used in [12]. In (d), state {0} corresponds to the derived term «,
{1,2} to 7 = (a* + ba™ +b")*, {6} to a*7, and {3,4,5} to b*r.

*
)

(states g;) are the only states having a non-e outgoing (resp. incoming) transition.
Figure 1(a) shows the Thompson automaton in the special case of the regular
expression a = (a + b)(a* + ba* + b*)*.

3 Glushkov Automaton

Let a be a weighted regular expression over the alphabet X' and the semiring K.
The Glushkov automaton of « is an e-free non-deterministic weighted automaton
representing « that has an initial state plus one state for each position in «, i.e.
each occurrence of an alphabet symbol in a. Figure 1(b) shows an example.

The formal definition of the Glushkov automaton is based on the functions
null, first, last, and follow. Table 2 gives the recursive definition of these func-
tions. null(@) € K is the weight associated by @ to the empty string e and is thus
the final weight of the initial state of the automaton. last(a) C pos(a) x K is the
set of positions with the corresponding final weights where a non-empty string
accepted by « can end. first(@) C pos(@) x K is the set of positions with the
corresponding weights that can be reached by reading one alphabet symbol from
the initial state. Similarly, follow(a, i) C pos(@) x K is the set of positions with
the corresponding weights that can be reached by reading one alphabet symbol
from the position i.

In these definitions, the union of two weighted subsets X, Y C pos(@) x K is
defined by X UY = {(i, (X, 1) ® (Y,4)) : (X,i) @ (Y,i) # 0}. For any weighted
subset X C pos(a) xK, weight k& € K, and position i, k® X denotes the weighted

[@] null(@) | first(@) | last(@) | follow (a, 1)

0 0 0 0 0

€ 1 0 0 0

a; |0 {G, D} {6, D} 0

kB |k ®null(8) k ® first(B) last (03) follow (3, 7)

Bk |null(8) ® k first(8) last(8) ® k follow (3, 7)

B+ ~null(8) @ null(v)|first(5) U first(vy) |last(5) U last(vy) { ﬁgﬁgggg: Z; g Z g gz:gg))

follow (3, 7)

null(8) ® first(~y) |last(8) @ null(y) U (last(3),) ® first(7y)

8-~ |null(8) ® null(vy) U first(3) U last(7y) if 4 € pos(B)
follow (v, %) if i € pos(7)

follow (3, 7)

B* |null(3)* null(B)* @ first(B)|last(8) ® null(3)* U (last(3"),4) @ first(y)

Table 2. Definition of the functions null, first, last, and follow. For convenience, we
also define follow (@, 0) = first(@) and lasto (@) as last(a) U {(0, null(@))} if null(a) # 0,
last(@) otherwise.

subset and (X, 4) the weight defined by:

{6 k@ w)|(i,w) € X}if k#0, + Jwif Jw: (i,w) € X,
kX = {@ otherwise, and (X, 1) = 0 otherwise.

X ®k is defined similarly. Let @ denote the weighted regular expression obtained
by marking each symbol of a with its position. The Glushkov or position au-
tomaton Ag(a) of a is defined by Ag(a) = (¥, posy(a), E,0,1, F, p) where its
states set is posy(a) = {0} U pos(a) and its transition set

E ={(i,a,w,j): (j,w) € follow(a, i) and pos(c, j) = a}. (2)

A state i € posy(a) is final iff there exist w € K such that (¢, w) € lasto(@) and
when it is final p(¢) = w. The following lemma shows that there exists a simple
relationship between the first, last, and follow functions and the e-closures of
the states in the Thompson automaton that admit a non-e incoming transition
(states ¢;).

Lemma 1. Let « be a weighted reqular expression and let A = Ar(«). Then

(i) (i,w) € first(@) iff (p;,w) € closure(l4);
(i1) (i,w) € follow(a, j) iff (p;,w) € closure(g;); and
(i) (i,w) € last(@) iff (Fa,w) € closure(q;).

Proof. Note that if « = a, a = € or a = (), then the properties trivially hold.
The proof is by induction on the length of the regular expression and is given in
the case @ = [- ~y. Other cases can be treated similarly.

Assume that the properties hold for all expressions shorter than «. Let
A = Ar(a), B = Ar(B) and C = Ar(y). If & = -, then closures(I4) =
closureg(Ip) U [B][e] ® closurec(I4), thus, since [B]le] = null(5), (i) holds

by induction. If j € pos(7y), then closures(g;) = closurec(g;). Otherwise, if
j € pos(f3), then

closure(g;) = closurep(g;) U (closureg(q;), Fg) ® closurec(I¢). (3)
Thus, by induction, both (ii) and (iii) hold. O
The following proposition follows directly from the lemma just presented.

Proposition 1. Let o be a weighted reqular expression. Then
Ag(a) = rmeps(Ar(a)). (4)

Proof. The only states potentially accessible in rmeps(Ar(@)) are the states g;,
1 > 0, since they are the only states with non-e incoming transitions. A state
q; is final with weight w in rmeps(Ar(@)) iff (Fa, (), w) € closure(g;), that is,
by Lemma 1, iff (¢, w) € lasto(@). (g;,a:, w, g;) is a transition in rmeps(Ar(@))
iff (p;,w) € closure(g;), that is, by Lemma 1, iff (¢,w) € follow(@, j). Thus,
Ag (@) = rmeps(Ar(@)). O

This proposition suggests a natural algorithm to compute the Glushkov au-
tomaton. The following lemma helps determine its complexity.

Lemma 2. Let A be the Thompson automaton of a weighted regular expression
over a k-closed semiring and let s be a state of A. Then, the shortest-distance
algorithm of [19] can be used to compute the shortest distances from the source
state s to all states of A in linear time.

Proof. We give a sketch of the proof. The complexity of the single-source shortest-
distance algorithm of [19] depends on the queue discipline used, that is the order
in which states are extracted from the queue. One can use a queue discipline that
takes advantage of the specific structure of the Thompson automaton. Each sub-
term of the form S+ or §* defines a sub-automaton with an entry state and an
exit state. The appropriate queue discipline enforces that each sub-automaton
be fully visited before being exited. The algorithm of [19] can also be modified to
store the shortest-distance through the sub-automaton of a 5* subterm once it
has been computed and avoid a subsequent revisit. With that queue discipline,
the complexity of the algorithm is linear. O

Theorem 1. Let o be a weighted reqular expression over a semiring K null-
k-closed for o and let m = |a| and n = |a|g. Then, the Glushkov automaton
of a can be constructed in time O(mn) by applying e-removal to its Thompson
automaton.

Proof. If K is null-k-closed for «, then K is k-closed for all the paths considered
during the computation of the e-closures and, by Lemma 2, each e-closure can
be computed in linear time, that is in O(m). Since n + 1 closures need to be
computed, the total complexity is in O(mn + n?) = O(mn). O

In the unweighted case, the unpublished manuscript of [10] showed that the
Glushkov automaton could be obtained by removing the e-transitions from the
Thompson automaton using a special-purpose e-removal algorithm.

4 Follow Automaton

The follow automaton of an unweighted regular expression a, denoted by Ap(«)
was introduced by [12]. Figure 1(c) shows an example. It is the quotient of Ag(«)
by the equivalence relation =p defined over posy(«) by:

i {1,j} Clastg(@) or {i,7} Nlasto(@) = 0, and (5)
=R follow (@, i) = follow(a, 5).

Proposition 2. For any reqular expression «, the following identities hold:
Ap(@) = min(Ag(@)) and Ap(a) = min(Ag(@)).

Note that it is mentioned in [12] that minimization could be used to construct
the follow automata but the authors claim that the complexity of minimization
would be in O(n? log n) making this approach less efficient. The following lemma
shows that minimization has in fact a better complexity in this case. Observe
that Ag(@) is deterministic.

Lemma 3. The time complexity of Hopcroft’s minimization algorithm applied
to Ag(@) is linear in the size of Ag(@): it is in O(n?) where n = |a|s.

Proof. We give a sketch of the proof. The log|Q| factor in Hopcroft’s algorithm
corresponds to the number of times the incoming transitions at a given state
q are used to split a subset (tentative equivalence class). In Ag (@), transitions
sharing the same label have all the same destination state (the automaton is
1-local), thus each incoming transition of a state ¢ can only be used to split a
subset once. The number of transitions in Ag (@) is at most n?. O

The lemma holds in fact for all 1-local automata. This leads to a simple algorithm
for constructing the follow automaton of a regular expression « based on:

Ap(a) = min(rmeps(Ar(@))). (6)

The complexity of this algorithm is in O(mn) which is the same as that of the
more complicated and special-purpose algorithms of [12, 7). When the semiring K
is weakly divisible, zero-sum free, and closed, we can define the follow automaton
of a weighted regular expression « as: Ap(a) = min(4g(@)).

Theorem 2. Let o be a weighted reqular expression over K. If K is k-closed for
the Thompson automaton of a, then the follow automaton of a can be computed
in O(mn) by applying epsilon-removal followed by weighted minimization to the
Thompson automaton of a.

Proof. The shortest-distance computation required by weight-pushing can be
done in O(m) in the case of Ap(@) and is preserved by e-removal. The weighted
automaton push(Ag(@)) is 1-local when considered as a finite automaton over
pairs (label, weight), thus Lemma 3 can be applied. a

5 Antimirov Automaton

The definition of the Antimirov automaton of a regular expression is based on
that of the partial derivatives of reqular expressions, which are multisets of pairs
of the form (w, «) where w € K is a weight and « a weighted regular expression
over K. For any weight £ € K and any regular expression 3, we define the
following operations:

E®(w,a)=(kwa) (w,a)@k=(w,ak) (wa) f=wa-F), (7)

which can be naturally extended to multisets of pairs (w, o). By multisets, we
mean that {(w,a)} U{(w,a’)} = {(w, @), (w,a’)}. The partial derivative of «
with respect to a € X is the multiset of pairs (w, &) defined recursively by:

Bale) =08,(1)=10 9a(B +7) = 0a(8) U da(7)

9,(b) =eif a=0b,) otherwise 0.(B-7v) =0.(8) v U null(ﬁ) ® 0a ()
Oa (k) = k ® 4 () 9a(B) =null(8)” @ 0a(B) - B~
9a(Bk) = 0a(B) @ k.

The partial derivative of o with respect to the string s € X* is denoted by
0s(a) and recursively defined by 954 () = 04(9s(x)). Let D(a) = {8 : (w,B) €
O0s(a) with s € X¥* and w € K}. Note that for D(«) to be well-defined, we
need to define when two expressions are the same. Here, we will only allow the
following identities: 0 -a = a-0 =0, 0+ a = a+0 = 0, 0o = a0 = 0,
ceca=a-€=a, la=al =aq, k(ka) = (k® k)a, (ak)k’ = a(k ® k') and
(@+p) y=a y+p5:7°

The Antimirov or partial derivatives automaton Aa(a) of av is then the au-
tomaton defined by A4(a) = (X, D(a), E,a,1, F,null) where E = {(3,a,w,~):
W =By)co.p W'} and F = {B € D(a): null(3) # 0}. Figure 1(d) shows the
Antimirov automaton for a specific regular expressmn

Let ¥ = YU {el €2, €l e2}. We denote by AT() the weighted automa-

ton over X obtained by recursively marking some of the e-transitions of the
Thompson automaton Ar(a) as follows: if & = 8+ v, we label by €& (%)
the e-transition from 4, (a) t0 La,(5) (resp. Ta,(y)); if @ = 3%, we label by el
(¢2) the two e-transitions to Ia,.(g) (resp. Fa, (a)). Observe that AT() can be
Vlewed as an automaton recogmzmg the expression & over b5 recurswely defined
by(Z) 0, €=¢,a=a, kﬁ kﬁ, ﬁk ﬁk ﬁ+7—6+ﬁ+€+%ﬁ V= ﬁ 7 and
B = (lBy e

For i € posy(a), we use the same notation g; (with go = I) for the correspond-
ing states in Ar(a), Ar(a) and rmeps(Ar(«)). For a state ¢ in rmeps(Ar(a)),
we define by L(q) the language recognized from ¢ considering rmeps(Ar(«)) as

an unweighted automaton over pairs (symbol,weight). Lemma 4 follows from our
marking of the e-transitions.

2 These identities are the trivial identities considered in [15] except for the last two
which were added to simplify our presentation. Any larger set of identities can be
handled with our method by rewriting « in the corresponding normal form.

Lemma 4. Fori € posy(«), L(q;) uniquely defines a reqular expression over X,
denoted by §; (or &% in the presence of ambiguity).

Lemma 5. For all i € posy(a) and j € pos(a), we have for p;, g; in Ar(a)
that:

(pj,w) € closure(q;) iff (w,d;) € 0a(d;). (8)

Proof. The proof is by induction on the length of the regular expression. If a = a,
o =€ or a = (), then the properties trivially hold. We give the proof in the case
« = [3 -, other cases can be treated similarly.

Let A= Ar(a), B=Ap(B) and C = Ap(y). If ¢; is in C, then 6% = ¢, and
closure(g;) = closurec(g;). Therefore, if (w,p;) € closurea(g;), p; is in C' and
then 6% = 4. Hence (8) recursively holds.

If ¢; is in B, then 6 = 51-6 -~ and we have:

0a(87) = 0a(8) v U null(3)) © () (9)
closure (g;) = closurep(g;) Unull(6”) @ closurec(I¢). (10)

By induction, we have (p;, w) € closureg(q;) iff (w,éf) € 8,(67), and (pj,w) €
closurec(Ic) iff (w,d]) € 9a(dg) = Oa(7). Hence (8) follows. O

Note that §o = «, thus Lemma 5 implies that the §; are the derived terms of
a, more precisely, ¢ — d; is a surjection from pos,(a) onto D(«). This leads us
to the following result, where ming is unweighted minimization when each pair
(label, weight) is treated as regular symbol and rmeps denotes the removal of
the marked €’s.
Proposition 3. We have A4(a) = fmeps(ming(rmeps(Ar(a)))).
Proof. Note that rmeps(Ar(«)) is deterministic. During minimization, two states
¢; and ¢; are merged iff L(¢;) = L(g;), that is, by Lemma 4, iff §; = ;. Thus,

there is a bijection between D(«) and the set of states of ming(rmeps(Ar(a)))
having an incoming transition with label in X, and thus also between D(«) and

the set of states of A = tmeps(ming(rmeps(Ar(a)))). Lemma 5 ensures that the
transitions of A are consistent with the definition of A4(«). O

Theorem 3. Let a be a weighted reqular expression over K. If K is null-k-closed
for a, then the Antimirov automaton of o can be computed in O(mlogm + mn)
using e-removal and minimization.

Theorem 3 follows from the fact that rmeps(A/T-(E)) has O(m) states and
transitions. In the unweighted case, this complexity matches that of the more
complicated and best known algorithm of [8].

In the weighted case, the use of minimization over (label,weight) pairs is sub-
optimal since states that would be equivalent modulo a ®-multiplicative factor
are not merged. When possible, using weighted minimization instead would lead
to a smaller automaton in general. For example, if K is closed, we can defined

the normalized Antimirov automaton of o as rm/e\ps(minK(rmeps(A/T-(E)))). This
automaton is always smaller than the Antimirov automaton and the automaton
of unitary derived terms of [15].> When K is k-closed, it can be constructed in
O(mlogm + mn).

Remark. When the condition about k-closedness (null-k-closedness for «) of
K is relaxed to the closedness of K (resp. that « is well-defined), all our construc-
tion algorithms can still be used by replacing the generic single-source shortest-
distance algorithm with a generalization of the Floyd-Warshall algorithm [14,
19], leading to a complexity of O(m?). It is not hard however to maintain the
quadratic complexity by modifying the generic single-source shortest-distance
algorithm to take advantage of the special topology of the Thompson automa-
ton.

In the unweighted case, every regular expression can be straightforwardly
rewritten in e-normal form such that m = O(n). In that case, our O(mn) and
O(mlogm +mn) complexities become O(m + n?) which coincides with what is
often reported in the literature.

6 Conclusion

We presented a simple and unified view of e-free automata representing un-
weighted and weighted regular expressions. We showed that standard unweighted
and weighted epsilon-removal and minimization algorithms can be used to create
the Glushkov, follow, and Antimirov automata and that the time complexity of
our construction algorithms is at least as favorable as that of the best previously
known algorithm.

This provides a better understanding of the e-free automata representing
regular expressions. It also suggests using other combinations of epsilon-removal
and minimization for creating e-free automata. For example, in some contexts,
it might be beneficial to use reverse-epsilon-removal rather than epsilon-removal
[18]. Note also that the Glushkov automaton can be constructed on-the-fly since
Thompson’s construction and epsilon-removal both admit an on-demand imple-
mentation.

Acknowledgments. This project was sponsored in part by the Department of the
Army Award Number W23RY X-3275-N605. The U.S. Army Medical Research Acqui-
sition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and
administering acquisition office. The content of this material does not necessarily reflect
the position or the policy of the Government and no official endorsement should be
inferred. This work was also partially funded by the New York State Office of Science
Technology and Academic Research (NYSTAR).

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques and
Tools. Addison Wesley: Reading, MA, 1986.

3 This automaton can be viewed in our approach as the result of a simpler form of
reweighting than weight-pushing, the reweighting used by weighted minimization.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

V. M. Antimirov. Partial derivatives of regular expressions and finite automaton

constructions. Theoretical Computer Science, 155(2):291-319, 1996.

G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48(3):117-126, 1986.

A. Briiggemann-Klein. Regular expressions into finite automata. Theoretical Com-
puter Science, 120(2):197-213, 1993.

P. Caron and M. Flouret. Glushkov construction for series: the non commutative
case. International Journal of Computer Mathematics, 80(4):457-472, 2003.

. J.-M. Champarnaud, E. Laugerotte, F. Ouardi, and D. Ziadi. From regular

weighted expressions to finite automata. In Proceedings of CIAA 2003, volume
2759 of Lecture Notes in Computer Science, pages 49-60. Springer-Verlag, 2003.
J.-M. Champarnaud, F. Nicart, and D. Ziadi. Computing the follow automaton
of an expression. In Proceedings of CIAA 2004, volume 3317 of Lecture Notes in
Computer Science, pages 90-101. Springer-Verlag, 2005.

J.-M. Champarnaud and D. Ziadi. Computing the equation automaton of a regular
expression in 0(52) space and time. In Proceedings of CPM 2001, volume 2089 of
Lecture Notes in Computer Science, pages 157-168. Springer-Verlag, 2001.

C.-H. Chang and R. Page. From regular expressions to DFA’s using compressed
NFA’s. Theoretical Computer Science, 178(1-2):1-36, 1997.

D. Giammarresi, J.-L. Ponty, and D. Wood. Glushkov and Thompson construc-
tions: a synthesis. http://www.cs.ust.hk/tcsc/RR/1998-11.ps.gz, 1998.

V. M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys,
16:1-53, 1961.

L. Ilie and S. Yu. Follow automata. Information and Computation, 186(1):146-162,
2003.

S. C. Kleene. Representations of events in nerve sets and finite automata. In C. E.
Shannon, J. McCarthy, and W. R. Ashby, editors, Automata Studies, pages 3—42.
Princeton University Press, 1956.

D. J. Lehmann. Algebraic structures for transitives closures. Theoretical Computer
Science, 4:59-76, 1977.

S. Lombardy and J. Sakarovitch. Derivatives of rational expressions with multi-
plicity. Theoretical Computer Science, 332(1-3):142-177, 2005.

R. McNaughton and H. Yamada. Regular expressions and state graphs for au-
tomata. IEEE Transactions on Electronic Computers, 9(1):39-47, 1960.

M. Mohri. Finite-State Transducers in Language and Speech Processing. Compu-
tational Linguistics, 23:2, 1997.

M. Mohri. Generic e-removal and input e-normalization algorithms for weighted
transducers. International Journal of Foundations of Computer Science, 13(1):129—
143, 2002.

M. Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems.
Journal of Automata, Languages and Combinatorics, 7(3):321-350, 2002.

G. Navarro and M. Raffinot. Fast regular expression search. In Proceedings of
WAE’99, volume 1668 of Lecture Notes in Computer Science, pages 198-212.
Springer-Verlag, 1999.

G. Navarro and M. Raffinot. Flexible pattern matching. Cambridge University
Press, 2002.

J.-L. Ponty, D. Ziadi, and J.-M. Champarnaud. A new quadratic algorithm to
convert a regular expression into automata. In Proceedings of WIA’96, volume
1260 of Lecture Notes in Computer Science, pages 109-119. Springer-Verlag, 1997.
M.-P. Schiitzenberger. On the definition of a family of automata. Information and
Control, 4:245-270, 1961.

K. Thompson. Regular expression search algorithm. Communications of the ACM,
11(6):365-375, 1968.

