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Abstract

A key problem in a variety of applications is that
of domain adaptation from a public source do-
main, for which a relatively large amount of la-
beled data with no privacy constraints is at one’s
disposal, to a private target domain, for which a
private sample is available with very few or no
labeled data. In regression problems, where there
are no privacy constraints on the source or tar-
get data, a discrepancy minimization approach
was shown to outperform a number of other adap-
tation algorithm baselines. Building on that ap-
proach, we initiate a principled study of differ-
entially private adaptation from a source domain
with public labeled data to a target domain with
unlabeled private data. We design differentially
private discrepancy-based adaptation algorithms
for this problem. The design and analysis of our
private algorithms critically hinge upon several
key properties we prove for a smooth approxi-
mation of the weighted discrepancy, such as its
smoothness with respect to the `1-norm and the
sensitivity of its gradient. We formally show that
our adaptation algorithms benefit from strong gen-
eralization and privacy guarantees.

1 INTRODUCTION

In a variety of applications in practice, the amount of labeled
data available from the domain of interest is too modest to
train an accurate model. Instead, the learner must resort to
using labeled samples from an alternative source domain,
whose distribution is expected to be close to that of the target
domain. Additionally, typically a large amount of unlabeled
data from the target domain is also at one’s disposal.
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The problem of generalizing from that distinct source do-
main to a target domain for which few or no labeled data is
available is a fundamental challenge in learning theory and
algorithmic design known as the domain adaptation prob-
lem. We study a privacy-constrained and thus even more
demanding scenario of domain adaptation, motivated by the
critical data restrictions in modern applications: in practice,
often the labeled data available from the source domain is
public with no privacy constraints, but the unlabeled data
from the target domain is subject to privacy constraints.

Differential privacy has become the gold standard of privacy-
preserving data analysis as it offers formal and quantitative
privacy guarantees and enjoys many attractive properties
from an algorithmic design perspective [DR14]. Despite
the remarkable progress in the field of differentially pri-
vate machine learning, the problem of differentially private
domain adaptation is still not well-understood. Here, we
present new differentially private adaptation algorithms for
the scenario described above and provide formal guaran-
tees on their expected accuracy. Note that there has been
a sequence of publications that provide formal differen-
tially private learning guarantees assuming access to public
data [CH11, BNS13, BTT18, ABM19, NB20, BCM+20].
However, their results are not applicable to the adaptation
problem we study since they rely on the assumption that the
source and target domains coincide. Recently, [JCYS21]
proposed a differentially private correlation alignment ap-
proach for domain adaptation when both source and target
data are private. [WLZ+20] proposed algorithms for deep
domain adaptation for classification, however they do not
provide theoretical guarantees on the proposed algorithms.

The design of our algorithms and their guarantees bene-
fit from the theoretical analysis of domain adaptation by
a series of prior publications. [MMR09] and [CM14] in-
troduced the notion of discrepancy, which they used to
give a general analysis of single-source adaptation for ar-
bitrary loss functions. The notion of discrepancy is a di-
vergence measure tailored to domain adaptation (see also
[MM12, KM15, KM20]). Unlike other divergence mea-
sures between distributions such as the `1-distance, discrep-
ancy takes into account the loss function and the hypothesis
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set and, crucially, can be estimated from finite samples. The
authors presented Rademacher complexity learning bounds
in terms of the discrepancy for arbitrary hypothesis sets
and loss functions, as well as pointwise learning bounds
for kernel-based hypothesis sets. In the special case of the
zero-one loss, the notion of discrepancy coincides with the
dA-distance between distributions introduced by [KBG04]
and used in [BBCP06]. These authors used this notion to
derive learning bounds for the zero-one loss, (see also the
follow-up publications [BCK+08, BDBC+10]) in terms of a
quantity denoted by λH that depends on the hypothesis set
H and the distribution, but that cannot be estimated from
observations.

For regression problems with no privacy constraints on the
source or target data, [CM14] gave a discrepancy minimiza-
tion algorithm based on a reweighting of the losses of the
sample points. They further demonstrated that their algo-
rithm outperformed all other baselines in a variety of tasks.
Building on that approach, we design new differentially
private discrepancy-based algorithms for adaptation from a
source domain with public labeled data to a target domain
with unlabeled private data. In Section 3, we briefly present
some background material on the discrepancy analysis of
adaptation motivating that approach.

The design and analysis of our private algorithms crucially
hinge upon several key properties we prove for a smooth ap-
proximation of the weighted discrepancy, such as its smooth-
ness with respect to the `1-norm and the sensitivity of its
gradient. In Section 4, we describe that smooth approxi-
mation and give a detailed analysis of its crucial properties,
which enable the construction of our private algorithms.

In Section 5, we present a new, computationally efficient,
differentially private adaptation algorithm seeking to di-
rectly minimize the sum of the weighted empirical loss and
the discrepancy. With respect to the work of [MMR09] and
[CM14], our novel contribution is this one-stage algorithm
(and a differentially private counterpart) directly seeking to
miminize the learning bound, unlike that of previous work
that consisted of a two-stage method, first seeking a sample
reweighting that minimizes the empirical discrepancy, next
fixing the weights thereby obtained and solving a weighted
regression.

Since attaining the minimum in this case is generally in-
tractable, due to the non-convexity of the objective, instead,
our algorithm finds an approximate stationary point of this
objective. Our algorithm is comprised of a sequence of
Frank-Wolfe updates, where each update consists of a dif-
ferentially private update of the weights and a non-private
update of the predictor. In fact, our algorithm can be used
in much more general settings of private non-convex op-
timization over a product of domains with different ge-
ometries. We formally prove the privacy and convergence
guarantees of our algorithm in a general problem setting,

and then derive its generalization guarantees in the con-
text of adaptation. Our result in this section offers two
main contributions to the growing body of work on con-
vergence to stationary points in non-convex optimization
[FLLZ18, MWCC18, CDHS17, NP06, GL13, ACD+19].
First, to the best of our knowledge, our work is the first
to provide an algorithm with a strong convergence guaran-
tee when the non-convex objective is defined over a product
of domains with different geometries. Second, we achieve
this under the constraint of differential privacy, which re-
quires a different design and analysis paradigm than existing
non-private non-convex optimization algorithms.

In Section 6, we present new two-stage private adaptation
algorithms that can be viewed as private counterparts of the
discrepancy minimization algorithm of [CM14]. As with
that algorithm, the first stage aims at finding a reweighting
of the source sample that minimizes the discrepancy, and
the second stage aims at minimizing a regularized weighted
empirical loss based on the reweighting found in the first
stage. Since the second stage does not involve private data,
only the first stage requires a private solution. Our solutions
are based on private variants of Frank-Wolfe and Mirror-
Descent algorithms, and they are computationally efficient.
We describe these solutions in detail and give privacy and
learning bounds for both algorithms. We further compare
the benefits of these algorithms as a function of the sample
sizes.

Finally, in Section 7, we conduct a set of proof-of-concept
experiments showing that our algorithms yield good accu-
racy while attaining reasonable privacy guarantees.

We start with preliminary concepts and definitions relevant
to our analysis.

2 PRELIMINARIES

Let X ⊂ Rd denote the input space and Y the output space,
which we assume to be a measurable subset of R. We as-
sume that X is included in the `2 ball of radius r, Bd2(r). We
will also assume that Y is included in a bounded interval of
diameter Y > 0. Let H be a family of hypotheses mapping
from X to Y. We focus on the family of linear hypotheses
H = {x↦ w ⋅ x∶ ∥w∥ ≤ Λ}. We will be mainly interested in
the regression setting, though some of our results can be
extended to other contexts. For any h ∈ H, we denote by
`(h(x), y) = (h(x) − y)2 the familiar squared loss of h for
the labeled point (x, y) ∈ X × Y. We denote by M > 0 an
upper bound on the loss: `(h(x), y) ≤M , for all (x, y).

Learning scenario. We identify a domain with a distribu-
tion over X × Y and refer to the source domain as the one
corresponding to a distribution Q and the target domain,
the one corresponding to a distribution P. We assume that
the learner receives a sample S = ((x1, y1), . . . , (xm, ym))
of m labeled points drawn i.i.d. from a distribution Q
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over X × Y and that it also has access to a large sample
T = (x̃1, . . . , x̃n) of n unlabeled points drawn i.i.d. from
PX, the input marginal distribution associated to P. We
view the data from Q, that is sample S, as public data, and
the data from P, sample T , as private data.

The objective of the learner is to use the samples S and T to
select a hypothesis h ∈H with small expected loss with re-
spect to the target domain: L(P, h) = E(x,y)∼P[`(h(x), y)].
In the absence of any constraints, this coincides with the
standard problem of single-source domain adaptation, stud-
ied in a very broad recent literature, starting with the theo-
retical studies of [BBCP06, MMR09, CM14].

Discrepancy notions. Clearly, the success of adaptation de-
pends on the closeness of the distributions P and Q, which
can be measured according to various divergences. The
notion of discrepancy has been shown to be appropriate
measure of divergence between distributions in the context
of domain adaptation. We will distinguish the so-called Y-
discrepancy disY(P,Q), which can only be estimated when
sufficient labeled data is available from both distributions,
and the standard discrepancy dis(P,Q), which can be esti-
mated from finite unlabeled samples from both distributions:

DisY(P,Q) = max
h∈H

{L(P, h) −L(Q, h)}

Dis(P,Q) = max
h,h′∈H

{ E
x∼PX

[`(h(x), h′(x))]

− E
x∼QX

[`(h(x), h′(x))]}.

We will be using the two-sided versions of these expressions,
for example dis(P,Q) = max{Dis(P,Q),Dis(Q,P)},
though part of our analysis holds with one-sided definitions
too.

Matrix definitions. We will adopt the following matrix
definitions and notation. We denote by Md the set of
real-valued d × d matrices and by Sd the subset of Md

formed by symmetric matrices. We will denote by ⟨⋅, ⋅⟩
the Frobenius product defined for all M,M′ ∈ Md by
⟨M,M′⟩ = ∑di,j=1 MijM

′
ij = Tr(M⊺M′). For any matrix

M ∈ Sd, we denote by λi(M) the ith eigenvalue of M in de-
creasing order and will also denote by λmax(M) = λ1(M)
its largest eigenvalue, and by λmin(M) = λd(M) its small-
est eigenvalue. We also denote by λ(M) the vector of
eigenvalues of M. For any p ∈ [1,+∞], we will denote by
∥M∥(p) the p-Schatten norm of M defined by ∥M∥(p) =
∥λ(M)∥p = [∑di=1∣λi(M)∣p]

1
p . Note that p = +∞ corre-

sponds to the spectral norm: ∥M∥(∞) = ∥λ(M)∥∞, which
we also denote by ∥M∥2.

Smoothness. We will say that a continuously differentiable
function f defined over a vector space E is γ-smooth for
norm ∥⋅∥ if ∀x,x′ ∈ E, ∥∇f(x) − ∇f(x′)∥∗ ≤ γ∥x − x′∥,
where ∥⋅∥∗ is the dual norm associated to ∥⋅∥. When f is
twice differentiable, it is known that the condition on the

Hessian ∀x, z ∈ E, ∣z⊺∇2f(x)z∣ ≤ γ∥z∥2, implies that f is
∥⋅∥-γ-smooth [Sid19][Chapter 5; lemma 8].

Differential Privacy [DMNS06, DKM+06]. Fix ε, δ > 0.
A (randomized) algorithm A∶Zn → R is said to be (ε, δ)-
differentially private if for all pairs of datasets T,T ′ ∈ Z
that differ in exactly one entry, and every measurable O ⊆
R, we have: P (A(T ) ∈ O) ≤ eε ⋅ P (A(T ′) ∈ O) + δ. We
consider differentially private algorithms that have access
to an auxiliary public sample S in addition to their input
private dataset T . In that case, we view the public sample
S as being “hardwired” to the algorithm, and the constraint
of differential privacy is imposed only with respect to the
private dataset.

3 DISCREPANCY-BASED
GENERALIZATION BOUNDS

In this section, we briefly present some background material
on discrepancy-based generalization guarantees. A more
detailed discussion is presented in Appendix A. Let the
output label-discrepancy ηH(S, T̃ ) be defined as follows:

ηH(S, T̃ )= min
h0∈H

⎧⎪⎪⎨⎪⎪⎩
sup

(x,y)∈S
∣y − h0(x)∣ + sup

(x,y)∈T̃
∣y − h0(x)∣

⎫⎪⎪⎬⎪⎪⎭
,

where T̃ is the labeled version of T (i.e., T̃ is T associated
with its true, hidden labels). Note that dis(PX,q) measures
the difference of the distributions on the input domain. In
contrast, ηH(S, T̃ ) accounts for the difference of the output
labels in S and T . Note that under the covariate-shift and
separability assumption, we have ηH(S, T̃ ) = 0. In general,
adaptation is not possible when ηH(S, T̃ ) is large since
the labels received on the training sample would then be
very different from the target ones. Thus, we will assume,
as in previous work, that we have ηH(S, T̃ ) ≪ 1. Then,
the following learning bound, expressed in terms of the
empirical unlabeled discrepancy dis(P̂X,q), ηH(S, T̃ ), and
the Rademacher complexity of H, holds with probability
at least 1 − β for all h ∈ H and all distributions q over S
[CM14, CMMM19]:

L(P, h) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(P̂X,q)

+ ηH(S, T̃ ) + 2MRn(H) +M

¿
ÁÁÀ log 1

β

2n
. (1)

When H is the class of linear predictors and the support of
PX is included in the `2-ball of radius r, the Rademacher
complexity can be explicitly upper-bounded as follows:

Rn(H) ≤
√

r2Λ2

n
[MRT18]. [CM14] proposed an adap-

tation algorithm motivated by these learning bounds and
other pointwise guarantees expressed in terms of discrep-
ancy. Their algorithm can be viewed as a two-stage method
seeking to minimize the first two terms of this learning
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bound. It consists of first finding a minimizer q of the
weighted discrepancy (second term) and then minimizing
a regularized q-weighted empirical loss (first term) with re-
spect to h for that value of q. In Section 6, we design private
adaptation algorithms for a similar two-stage approach. We
first give a new, direct approach for private adaptation based
on a new differentially private non-convex optimization al-
gorithm, which we discuss in Section 5. This algorithm
can be viewed as a direct, single-stage approach for pri-
vate domain adaptation that seeks to find h and q directly
minimizing the first two terms of the bound.

The privacy and accuracy guarantees of our algorithms cru-
cially rely on a careful analysis of a smooth approximation
of the discrepancy term, which we present in the following
section.

4 DISCREPANCY ANALYSIS AND
SMOOTH APPROXIMATION

4.1 Analysis

For the squared loss and H = {x↦ w ⋅ x∶ ∥w∥ ≤ Λ}, the
weighted discrepancy term of the learning bound (1) can be
expressed in terms of the spectral norm of a matrix that is
an affine function of q.

Lemma 1 ([MMR09, CM14]). For any distribution q over
SX, the following equality holds:

dis(P̂ ,q) = 4Λ2∥M(q)∥2

= 4Λ2 max{λmax(M(q)), λmax(−M(q))},

where M(q) = M0 − ∑mi=1 qiMi and where M0 =
∑x∈X P̂X(x)xx⊺, and Mi = xix⊺i , i ∈ [m].

For completeness, a short proof of this result is given in
Appendix B. In view of that, the learning bound (1) suggests
seeking h ∈H and q ∈ ∆m to minimize the first two terms:

min
h∈H
q∈∆m

m

∑
i=1

qi`(h(xi), yi) + 4Λ2∥M(q)∥2. (2)

Note that the second term of the bound is sub-differentiable
but it is not differentiable both because of the underlying
maximum operator and because the maximum eigenvalue
is not differentiable at points where its multiplicity is more
than one. Furthermore, the first term of the objective func-
tion is convex with respect to h and convex with respect to
q, but it is not jointly convex in both.

Our private algorithms require bounded sensitivity of the
gradients as well as smoothness of the objective, which
would not hold given the first issue mentioned. Thus, in-
stead, we will define a uniform α-smooth approximation of
the second term, for which we analyze the smoothness and
gradient sensitivity in detail.

4.2 Softmax smooth approximation

A natural approximation of λmax(q) is based on the softmax
approximation: F (q) = 1

µ
log[∑di=1 e

µλi(M(q))]. Eigen-
values are not differentiable everywhere. However, F is
infinitely differentiable since it can be expressed as a com-
position of the log, the trace and the matrix exponential,
which are all infinitely differentiable and since M(q) is
an affine function of q: F (q) = 1

µ
log[Tr[exp(µM(q))]].

The matrix exponential can be computed in O(d3), using
an SVD of matrix M(q). The following inequalities follow
directly the properties of the softmax:

λmax(M(q))≤F (q)≤λmax(M(q))+ log(rank(M(q)))
µ

. (3)

Note that we have rank(M(q)) ≤ min (m + n, d). Thus,
for µ = log(m+n)

α
, F (q) gives a uniform α-approximation

of λmax(M(q)). The components of the gradient of F are
given by

[∇F (q)]j = −
⟨exp(µM(q)),Mj⟩
Tr(exp(µM(q))) , j ∈ [m] (4)

where ⟨⋅, ⋅⟩ denotes the Frobenius inner product. Both the
smoothness and sensitivity of ∇F will be needed for the
derivation of our algorithm. We now analyze these proper-
ties of function F , using function f which is defined for any
symmetric matrix M ∈ Sd as follows:

f(M) = 1

µ
log[

+∞
∑
k=0

µk

k!
⟨Mk, I⟩].

We have F (q) = f(M(q)). The following result provides
the desired smoothness result needed for F , which we prove
by using the µ-smoothness of f .

Theorem 1. The softmax approximation F is
µ(maxi∈[m]∥xi∥4

2)-smooth for ∥ ⋅ ∥1.

The proof is given in Appendix C.1. Next, we analyze
the sensitivity of ∇F , that is the maximum variation in `∞-
norm of ∇F (q) when a single point x in the sample of size
n drawn from P̂X is changed to another one x′.

Theorem 2. The gradient of the softmax approximation F
is 2µr2

n
maxi∈[m]∥xi∥2

2-sensitive.

Proof. For M(q)) and M′(q)) differing only by point x
and x′ in P̂X, we have:

∥M(q) −M′(q)∥2 = ∥ 1

n
[xx⊺ − x′x′⊺]∥

2
≤ 2r2

n
.

Note that we have F (q) = f(M(q)). Thus, the gradient of
F can be expressed as follows:

∇F (q) = −[⟨∇f(M(q)),Mi⟩]i∈[m].
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Thus, the sensitivity of the gradient of F can be bounded as
follows:

max
i∈[m]

∣⟨∇f(M(q)) −∇f(M′(q)),Mi⟩∣

≤ max
i∈[m]

∥∇f(M(q)) −∇f(M′(q))∥(1)∥Mi∥(∞)

≤ µmax
i∈[m]

∥M(q) −M′(q)∥(∞)∥Mi∥(∞)

= µmax
i∈[m]

∥M(q) −M′(q)∥2∥Mi∥2

≤ 2µr2

n
max
i∈[m]

∥xi∥2
2,

where the first inequality holds by Hölder’s inequality, the
second by the µ-smoothness of f , and the third by the defi-
nition of ∥ ⋅ ∥(∞). This completes the proof.

Note that the softmax function f is known to be convex
[BV14]. Since M(q) is an affine function of q and that
composition with affine functions preserves convexity, this
shows that F is also a convex function. The following
further shows that F is maxi∈[m]∥xi∥2

2-Lipschitz.
Theorem 3. For any q ∈ ∆m, the gradient of F is bounded
as follows: ∥∇F (q)∥∞ ≤ maxi∈[m]∥xi∥2

2.

The proof is given in Appendix C.1. In view of
the expression of the weighted discrepancy dis(P̂,q) =
max{λmax(M(q)), λmax(−M(q))}, the smooth approx-
imation F (q) of the maximum eigenvalue of M(q) leads
immediately to a smooth approximation F̃ (q) = f(M̃(q))
of dis(P̂,q), with

M̃(q) = [M(q) 0
0 −M(q)] .

Thus, F̃ inherits the key properties of F gathered in the
following corollary.
Corollary 1. The following properties holds for F̃ :

1. F̃ is convex and is a uniform log(2 min{m+n,d})
µ

-

approximation of q↦ dis(P̂ ,q).

2. F̃ is µ(maxi∈[m]∥xi∥4
2)-smooth for ∥ ⋅ ∥1.

3. ∥∇F̃ ∥∞ is 2µr2

n
maxi∈[m]∥xi∥2

2-sensitive.

4. for any q ∈ ∆m, ∥∇F̃ (q)∥∞ ≤ maxi∈[m]∥xi∥2
2.

The proof is given in Appendix C.2. In Appendix C.3, we
also present and analyze a p-norm smooth approximation
of the discrepancy. This approximation can be used to de-
sign private adaptation algorithms with a relative deviation
guarantee that can be more favorable in some contexts.

5 PRIVATE ADAPTATION ALGORITHM
VIA NON-CONVEX OPTIMIZATION

Here, we describe a novel private domain adaptation algo-
rithm for regression problems. Our algorithm is based on

a single-stage approach that consists of directly optimizing
an objective function based on the learning bound (1).

Let F̃T (q), q ∈ ∆m, denote the smooth approximation dis-
cussed in Section 4.2, where the additional subscript T is
used to emphasize the dependence on the private dataset
T . Then, by Lemma 1 and the results of Section 4.2, the
following objective function is a smooth approximation of
the first two terms of the learning bound (1):

LT (q,w) ≜
m

∑
i=1

qi(⟨w,xi⟩ − yi)2 + 4Λ2F̃T (q).

This is a non-convex function of (q,w) and no tractable
method is known for finding a global minimizer. Instead, our
algorithm returns an approximate stationary point, which is
the most reasonable alternative.

Note that, as shown in Section 4.2, LT (q,w) is smooth in
q with respect to ∥⋅∥1. By definition of the squared loss,
it is also smooth in w with respect to ∥⋅∥2. These smooth-
ness properties enable us to design our private solution.
Given the approximation guarantee (3), the data-dependent
terms in the learning bound (1) can thus be approximated
by LT (q,w). Hence, our strategy here is to find an approxi-
mate stationary point (q̂, ŵ) of LT via our private algorithm,
and then derive a learning bound in terms of LT (q̂, ŵ). The
following gives a formal definition of an approximate sta-
tionary point.
Definition 1 (α-approximate stationary point). Let
f ∶C → R be a differentiable function over a convex and
compact subset C of a normed vector space. Let α ≥
0. We say that u ∈ C is an α-approximate stationary
point of f if the stationarity gap of f at u, defined as
Gapf(u) ≜ max

v∈C
⟨−∇f(u), v − u⟩ is at most α.

We first give a generic differentially-private algorithm for
approximating a stationary point of a smooth non-convex
objective fT ∶Q×W → R, that is defined by a private dataset
T and satisfies certain smoothness and Lipschitz-continuity
conditions. Let p1, p2 ≥ 1. We assume that Q is a convex
set whose ∥⋅∥p1-diameter is bounded by Dq. We refer to Q
as a (Dq, ∥⋅∥p1)-bounded set in that case. Similarly, we will
assume that W is a convex (Dw, ∥⋅∥p2)-bounded set. We
now give formal definitions of the smoothness and Lipschitz-
continuity conditions we will be assuming.
Definition 2 (((γq, ∥⋅∥p1), (γw, ∥⋅∥p2))-Lipschitz function).
Let γq, γw ≥ 0. We say that f ∶Q × W → R is
((γq, ∥⋅∥p1), (γw, ∥⋅∥p2))-Lipschitz if for any w ∈ W ,
f(⋅,w) is γq-Lipschitz with respect to ∥⋅∥p1 over Q, and
for every q ∈ Q, f(q, ) is γw-Lipschitz with respect to ∥⋅∥p2
overW .

Definition 3 (((µq, ∥⋅∥p1), (µw, ∥⋅∥p2))-smooth function).
This notion is defined analogously. We say that f is
((µq, ∥⋅∥p1), (µw, ∥⋅∥p2))-smooth if for any w ∈W , f(⋅,w)
is µq-smooth with respect to ∥⋅∥p1 over Q, and for every
q ∈ Q, f(q, ) is µw-smooth with respect to ∥⋅∥p2 overW .
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Our private algorithm (Algorithm 1) takes as input an ob-
jective fT ∶Q ×W → R, where Q is a convex polyhedral
set with bounded ∥⋅∥1-diameter andW is a convex set with
bounded ∥⋅∥2-diameter. Thus, this covers our objective func-
tion LT as a special case.

The algorithm is comprised of a number rounds, where
in each round, two private Frank-Wolfe update steps are
performed; one for q and another for w. The privacy mecha-
nism for each is different due to the different geometries of
Q andW . We note that in the special case where fT = LT ,
there is no need to privatize the Frank-Wolfe step for w
due to the fact that such update step depends only on the
q-weighted empirical loss over the public data and the fact
that differential privacy is closed under post-processing (the
previous update step for q is carried out in a differentially
private manner).

When fT satisfies the Lipschitzness and smoothness prop-
erties defined above with respect to ∥⋅∥1 and ∥⋅∥2, we give
formal convergence guarantees to a stationary point in terms
of a high-probability bound on the stationarity gap of the
output (see Definition 1). Despite the different geometries of
Q andW , our final bound is roughly the sum of the bounds
we would obtain if we ran two separate Frank-Wolfe algo-
rithms (one over Q and the other overW). This is mainly
due to the hybrid Lipschitzness and smoothness conditions
(with respect to ∥⋅∥1 for q and with respect to ∥⋅∥2 for w),
which enable us to decompose the bound on the convergence
rate effectively into two terms: one for q and one for w.

Novelty of our algorithm: Convergence to stationary
points in non-private, non-convex optimization has received
significant attention recently, see, e.g., [FLLZ18, MWCC18,
CDHS17, NP06, GL13, ACD+19]. Our result in this sec-
tion offers two major contributions to this body of work.
First, to the best of our knowledge, our work is the first to
provide a strong convergence guarantee in scenarios where
the non-convex objective is defined over a product of do-
mains with different `p geometries. Second, we do this
while guaranteeing differentially privacy.

Theorem 4. Algorithm 1 is (ε, δ)-differentially private.
Suppose fT ∶Q × W → R is ((γq, ∥⋅∥1), (γw, ∥⋅∥2))-
Lipschitz and ((µq, ∥⋅∥1), (µw, ∥⋅∥2))-smooth. Assume
further that for all q ∈ Q, and w,w′ ∈ W ,
∥∇qfT (q,w) −∇qfT (q,w′)∥∞ ≤ γq,w∥w −w′∥2. Then,
for any β ∈ (0,1), there exists a choice of K and µ such
that, with probability at least 1 − β, the stationarity gap of
the output ŵ, GapfT (q̂, ŵ), is upper bounded by

5

¿
ÁÁÀD̄(σ0

q log( D̄J
σ0
q β

) +Dwσ0
w

√
d log( D̄

Dwσ0
wβ

)),

where

D̄ =
√

(Dqγq +Dwγw)(D2
qµq +D2

wµw + 2γq,wDqDw),

Algorithm 1 Private Frank-Wolfe for approximating sta-
tionary points of fT ∶ Q ×W → R
Require: Private dataset: T = (z1, . . . , zn) ∈ Zn, privacy

parameters (ε, δ), a convex (Dq, ∥⋅∥1)-bounded polyhe-
dral set: Q ⊂ Rm with J vertices V = (v1, . . . , vJ),
a convex (Dw, ∥⋅∥2)-bounded set W ⊂ Rd, a func-
tion fT (q,w), q ∈ Q,w ∈ W (defined via the
dataset T ), bound on the global ∥⋅∥∞-sensitivity of
∇qfT (q,w) ∶ τq > 0, bound on the global ∥⋅∥2-
sensitivity of ∇wfT (q,w) ∶ τw ≥ 0, step size: η, num-
ber of iterations: K.

1: Set σq ∶=
4τq

√
2K log( 1

δ )
ε

.

2: Set σw ∶= 4τw
√

2K log( 1
δ )

ε
.

3: Choose arbitrarily (q0,w0) ∈ Q ×W .
4: for k = 0 to K − 1 do
5: ∇kq ∶= ∇qfT (qk,wk).
6: Draw (bkv ∶ v ∈ V) independently ∼ Lap(σq).

7: vkq ∶= argmin
v∈V

{⟨∇kq , v⟩ + bkv}.

8: Gkq ∶= −(⟨∇kq , vkq − qk⟩ + bkv).
9: qk+1 ∶= (1 − η)qk + ηvkq .

10: ∇kw ∶= ∇wfT (qk,wk).
11: ∇̂kw ∶= ∇kw + gk, where gk ∼ N (0, σ2

wId).
12: ukw ∶= argmin

u∈W
⟨∇̂kw, u⟩.

13: Gkw ∶= −⟨∇̂kw, ukw −wk⟩.
14: wk+1 ∶= (1 − η)wk + ηukw.
15: end for
16: return (q̂, ŵ) = (qk∗ ,wk∗), where k∗ =

argmin
k∈[K]

(Gkq +Gkw).

σ0
q = σq√

K
, and σ0

w = σw√
K

(where σq, σw are as given in
steps 1 and 2 of Algorithm 1).

The proof of Theorem 4 is given in Appendix D.1. We
note that our adaptation objective LT (q,w) satisfies all the
conditions in Theorem 4.

Instantiating Algorithm 1 with LT (q,w): Our objective
function LT (q,w) = ∑mi=1 qi`(hw(xi), yi) + 4Λ2F̃T (q)
(where `(hw(xi), yi) = (⟨w,xi⟩ − yi)2 is the squared loss)
is an instance of fT in Theorem 4. Recall that we assume
W ⊆ Bd2(Λ), X ⊂ Bd2(r), and Y ⊆ [−Y,+Y ] for some
Y > 0. Also, recall that we denote the maximum norm of
the feature vectors in the public dataset, max

i∈[m]
∥xi∥2, by r̂.

First, note that Q in Algorithm 1 is instantiated with the
simplex ∆m, thus V is {e1, . . . ,em}. Second, since the pri-
vate dataset T only appears in F̃T , note that ∇wLT (q,w)
does not involve T . Thus, σw in Algorithm 1 can be
set to zero. That is, we do not need to privatize the
Frank-Wolfe steps over w. Third, note that the global
∥ ⋅ ∥∞-sensitivity of ∇qLT (q,w), τq, is the same as that of
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4Λ2∇qF̃ , which follows from Corollary 1 (Part 3), namely,
τq = 8Λ2µr2r̂2

n
, where µ is the approximation parameter

of the soft-max and r̂ = max
i∈[m]

∥xi∥2. Fourth, note that

LT (⋅, ⋅) is ((γq, ∥⋅∥1), (γw, ∥⋅∥2))-Lipschitz, where γq =
(Λr̂+Y )2+4Λ2r̂2, which follows from ∥∇qLT (q,w)∥∞ ≤
max
i∈[m]

`(hw(xi), yi) + 4Λ2∥∇qF̃ (q)∥∞ together with Corol-

lary 1 (Part 4), and γw = 2(Λr̂+Y )r̂, which follows directly
from the ∥⋅∥2-bound on the gradient of the squared loss
over Bd2(Λ). Moreover, LT (⋅, ⋅) is ((µq, ∥⋅∥1), (µw, ∥⋅∥2))-

smooth, where µq = 4Λ2µr̂4, which follows from the
fact that the smoothness of LT with respect to q is given
by the smoothness of 4Λ2F̃T , which follows from Corol-
lary 1 (Part 2), and µw = r̂2, which follows from the
fact that the squared loss `(hw(x), y) is ∥x∥2

2-smooth
with respect to ∥⋅∥2. Additionally, the condition on
∥∇qLT (q,w) − ∇qLT (q,w′)∥∞ in Theorem 4 is satis-
fied in our case with γq,w = 2r̂(Λr̂ + Y ), which fol-
lows from the fact that ∥∇qLT (q,w) − ∇qLT (q,w′)∥∞ =
maxi∈[m]∣`(hw(xi), yi)− `(hw′(xi), yi)∣ together with the
Lipschitzness property of the squared loss over Bd2(Λ). Fi-
nally, note that Dq = 2 and Dw = 2Λ.

As a result, we immediately obtain the following corollary.
Corollary 2. Let LT (q,w) = ∑mi=1 qi(⟨w,xi⟩ − yi)2 +
4Λ2F̃T (q) be the input objective to Algorithm 1. Let
β ∈ (0,1). Then, there exists a choice of K and η such that,
with probability at least 1 − β, the output of the algorithm
is an approximate stationary point of LT with stationarity
gap upper bounded as follows:

GapLT (q̂, ŵ) ≤ Õ( µ
3/4

√
εn

).

Here, Õ(⋅) hides poly-logarithmic factors in m.

In view of that, the learning bound (1) implies that with
probability ≥ 1 − 2β over the choice of the public and pri-
vate datasets and the algorithm’s internal randomness, the
expected loss of the predictor hŵ (defined by the output ŵ)
with respect to the target domain is bounded as

L(P, hŵ) ≤LT (q̂, ŵ) + Õ( 1

µ
+ 1√

n
) + ηH(S, T̃ ).

Note that (q̂, ŵ) is an approximate stationary point of LT .
In practice, (q̂, ŵ) can be an approximation of a good lo-
cal minimum of LT as demonstrated by our experiments.
In such situations, the bound above implies a good predic-
tion accuracy for the output predictor. Note also that this
bound is given in terms of the softmax approximation pa-
rameter µ. In general, this parameter should be treated as
a hyperparameter and tuned appropriately to minimize the
above bound. One reasonable choice of µ can be obtained
by balancing the bound on the stationarity gap with the er-
ror term log(m + n)/µ due to the softmax approximation.

The corresponding value of the parameter is then given by
µ = Õ((εn)2/7).

6 TWO-STAGE PRIVATE ADAPTATION
ALGORITHMS

Here, we discuss a two-stage approach to private adapta-
tion that consists of first privately obtaining q that (approxi-
mately) minimizes the empirical discrepancy and next fixing
q to that value and minimizing the empirical q-weighted
loss over h ∈H. In the absence of privacy constraints, this
coincides with the algorithm of [CM14], which has been
shown to both benefit from the theoretical guarantees and to
outperform all other baselines.

We give here two private algorithms based on that two-
stage paradigm. More specifically, the first stage consists of
privately finding an approximate minimizer q ∈ ∆m for an
`2-regularized version of the discrepancy:

min
q∈∆m

∥M(q)∥2 +
λ

2
∥q∥2

2 (5)

The second stage simply consists of fixing the solution q
obtained in the first stage and seeking h ∈H that minimizes
the q-weighted empirical loss:

min
w∈Bd2(Λ)

m

∑
i=1

qi`(⟨w,xi⟩, yi), (6)

where Bd2(Λ) is the Euclidean ball in R of radius Λ. Equiv-
alently, we can define an `2-regularized version of the
weighted empirical loss and minimize it over Rd; namely,
solve minw∈Rd ∑mi=1 qi`(⟨w,xi⟩, yi) + λ̃∥w∥2

2 where λ̃ > 0
is a hyperparameter. Regularization in the first stage is done
to ensure that the resulting weights q are not too sparse since
sparse solutions can lead to poor output model in the second
stage of the adaptation algorithm.

In the second stage, no private data is involved. Thus, in this
section, we focus on private algorithms for the first stage.
We give two private algorithms for that discrepancy min-
imization stage. Our private algorithms seek to minimize
an `2-regularized version of the smooth approximation of
the discrepancy, F̃ , discussed in Section 4.2. To emphasize
its dependence on the private unlabeled dataset T , we will
use the notation F̃T . Thus, our algorithms seek to privately
minimize the following `2-regularized version of F̃T :

F̃λT ≜ F̃T (q) +
λ

2
∥q∥2

2.

As mentioned earlier, the regularization term is used to avoid
sparse solutions q that may impact the accuracy of the out-
put model in the second stage of the adaptation algorithm.
Our algorithms are based on private variants of the Frank-
Wolfe algorithm and the Mirror Descent algorithm. The
general structure of these algorithms follow known private
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constructions devised in the context of differentially private
empirical risk minimization [TGTZ15, BGN21, AFKT21].
However, we note that the guarantees of both algorithms
crucially rely on the smoothness and sensitivity properties
of the approximation proved in Section 4. Solving the opti-
mization with respect to the smooth approximation of the
discrepancy enables us to bound the sensitivity of the gra-
dients (see Theorem 2), which helps us devise private algo-
rithms for this problem.

We start with a formal description of our noisy Frank-Wolfe
algorithm (Algorithm 2), followed by a formal statement of
its guarantees.

Algorithm 2 Noisy Frank-Wolfe for minimizing (regular-
ized) smoothed discrepancy
Require: Private unlabeled dataset T = (x̃1, . . . , x̃n) ∈ Xn,

public unlabeled dataset SX = (x1, . . . , xm) ∈ Xm, pri-
vacy parameters (ε, δ), smooth-approximation param-
eter µ, regularization parameter λ, # of iterations K.

1: Let r = maxx∈X ∥x∥2.
2: Let r̂ = maxi∈[m]∥xi∥2.
3: Let ∆m be the (m−1)-dimensional probability simplex.

4: Define F̃λT (q) ≜ F̃T (q) + λ
2
∥q∥2

2, q ∈ ∆m.
5: Choose an arbitrary point q1 ∈ ∆m.

6: Set σ = 4µr2r̂2
√

2K log( 1
δ )

nε
.

7: for k = 1 to K do
8: Compute ∇F̃λT (qk) = ∇F̃T (qk) + λqk, where

∇F̃T (qk) is computed as described in Section 4.2.
9: Draw {bi,k}i∈[m] i.i.d. from Lap(σ).

10: Find jk = argmin
i∈[m]

{⟨ei,∇F̃λT (qk)⟩ + bi,k}, where

{ei}i∈[m] are the standard unit vectors in Rm.
11: Update qk+1 = (1 − ηk)qk + ηkejk , where ηk = 3

k+2
.

12: end for
13: return q̂ = qK .

Theorem 5. The Noisy Frank-Wolfe algorithm
(Algorithm 2) is (ε, δ)-differentially private. Let
q∗ ∈ argminq∈∆m

dis(P̂ ,q). Then, there exists a choice
of the parameters of Algorithm 2 such that, with high
probability over the algorithm’s internal randomness, the
output q̂ satisfies

dis(P̂ , q̂) ≤dis(P̂ ,q∗) + λ
2
∥q∗∥2

2 + Õ( 1

(εn)1/3 ),

where Õ(⋅) is hiding a poly-logarithmic factor in m.

As shown in Theorem 5, the smoothness we created in F̃T
enables us to use a private variant of the Frank-Wolfe algo-
rithm, whose optimization error scales only logarithmically
with m.

Next, we give a formal description of our noisy mirror de-
scent algorithm (Algorithm 3) followed by a formal state-
ment of its guarantees.

Algorithm 3 Noisy Mirror-Descent for minimizing F̃λT
Require: Private unlabeled dataset T = (x̃1, . . . , x̃n) ∈ Xn,

public unlabeled dataset SX = (x1, . . . , xm) ∈ Xm, pri-
vacy parameters (ε, δ), smooth-approximation parame-
ter µ, number of iterations K.

1: Let r = maxx∈X ∥x∥2.
2: Let r̂ = maxi∈[m]∥xi∥2.
3: Let ∆m be the (m−1)-dimensional probability simplex.

4: Let p = 1 + 1
log(m) .

5: Set σ = 4µr2r̂2
√

2Km log( 1
δ )

nε

6: Set η = 2
(r̂2+λ)

√
log(m)
K

.

7: Choose an arbitrary point q1 ∈ ∆m.
8: for k = 1 to K do
9: Compute ∇̂k = ∇F̃T (qk) + λqk + Zk, where Zk ∼

N (0, σ2Im).

10: Update qk+1 = arg min
q∈∆m

{⟨∇̂k,q − qk⟩ +
∥q−qk∥2p
η(p−1) }.

11: end for
12: return q̂ = 1

K ∑
K
k=1 qk

Theorem 6. The Noisy Mirror Descent algorithm (Al-
gorithm 3) is (ε, δ)-differentially private. Let q∗ ∈
argminq∈∆m

dis(P̂ ,q). There exists a choice of the param-
eters of Algorithm 3 such that with high probability over the
algorithm’s randomness, the output q̂ satisfies

dis(P̂ , q̂) ≤dis(P̂ ,q∗) + λ
2
∥q∗∥2

2 + Õ(m
1/4

√
εn

).

Note that, compared to the guarantees of the private Frank-
Wolfe algorithm in Theorem 5, the optimization error of
the Noisy Mirror Descent algorithm (Theorem 6) exhibits a
better dependence on n at the expense of worse dependence
on m. In Appendix E, we give full proofs of these theorems.

Implication on the learning guarantee: Note that by
standard stability arguments, the minimum weighted em-
pirical loss of the second stage when training with q∗ is
close to the minimum weighted empirical loss when train-
ing with q̂ when the discrepancy between q̂ and q∗ is small
[MMR09]. Theorems 5 and 6 precisely supply guaran-
tees for that closeness in discrepancy via the inequality
dis(q̂,q∗) ≤ dis(P̂, q̂) − dis(P̂,q∗), thereby guaranteeing
the closeness of the loss of our private predictor (output of
the second stage) to the minimum q∗-weighted empirical
loss. This, together with the learning bound (1), immedi-
ately provide a bound on the expected loss of our private
predictor.



Raef Bassily, Mehryar Mohri, Ananda Theertha Suresh

Figure 1: Value of the spectral norm ∥M(q)∥2 for the output
of noisy Frank-Wolfe (solid lines) and noisy Mirror descent
(dotted lines) discrepancy minimization as a function of the
number of samples from the private dataset n.

7 EMPIRICAL RESULTS

The objective of this section is to provide proof-of-concept
experiments to demonstrate that reasonable privacy guar-
antees can be achieved, when using our private domain
adaptation algorithms. We use a setting similar to that of
[CM14, Section 7.1] and demonstrate that the utility of pri-
vate adaptation degrades gracefully with increased privacy
guarantees and that the single-stage Frank-Wolfe algorithm
performs best most scenarios.

We carried out experiments with the following syn-
thetic dataset. Let d = 10 and σ2 = 1/(9d). We
chose PX to be a spherical Gaussian centered around
(−1/

√
2d,1/

√
2d, . . . ,−1/

√
2d,1/

√
2d) and with variance

σ2 in all directions. Let QX be a Gaussian distribution with
mean (1/

√
2d, . . . ,1/

√
2d) and with variance σ2 in all di-

rections. We defined the labeling function via f(x) = x ⋅ 1̄ if
1̄ ⋅ x > 0, ( 1

2
x ⋅ 1̄) otherwise, where 1̄ = (1/

√
d, . . . ,1/

√
d).

We chose the target distribution to be PX and the source
distribution as a mixture of PX and QX with the weight of
PX set to 25%. We fixed the number of source samples to
be 1,000 and varied the number of unlabeled target sam-
ples from 1,000 to 8,000. All experiments were repeated
ten times for statistical consistency. We set K = 1,000,
λ = 0.001, the privacy parameter δ = 1/8,000, and varied
ε in experiments. The standard deviations were calculated
over 10 runs in experiments.

In this setup, we first ran differentially private discrep-
ancy minimization using Algorithms 2 and 3. We plot-
ted ∥M(q)∥2 for different values of ε in Figure 1. The
performance of the noisy Frank-Wolfe algorithm degrades
smoothly with ε and improves with n. However the per-
formance of the noisy mirror decent algorithm is much
worse. This is in line with the theoretical guarantees as
m = Ω(n2/3) in these experiments and noisy Frank-Wolfe
algorithm has a better convergence guarantee in this regime.
We expect mirror descent to perform better with much larger
values of n. Furthermore, observe that the noisy mirror

Figure 2: Test error as a function of the number of samples
from the private dataset n. The solid lines correspond to
the single-stage algorithm, the dotted lines to the two-stage
mirror decent algorithm, and dashed lines to the two-stage
Frank Wolfe algorithm.

descent has a high standard deviation compared to Frank-
Wolfe algorithm as the noise added in mirror descent scales
polynomially in m, whereas it scales only logarithmically
in m for the Frank-Wolfe algorithm.

We next compared our single-stage (Algorithm 1) and the
two-stage differentially private algorithms with the model
trained only with the public dataset (Figure 2). As an oracle
baseline, we also plotted the model trained with the labeled
private dataset. Note that this model uses extra information
that is not available during training and is plotted for illustra-
tion purposes only. The single-stage Frank-Wolfe algorithm
without privacy admits the same performance as the model
trained on the labeled private dataset. It performs better
than the two-stage Frank-Wolfe algorithm, however the gap
decreases as the privacy guarantee ε improves. The perfor-
mance of the mirror descent algorithm without differential
privacy is similar to that of Frank-Wolfe algorithm, however
as theory indicates, the performance degrades quickly with
the privacy parameter. Similar to Figure 1, the performance
of the noisy mirror descent algorithm is much worse and
has a high standard deviation.

8 CONCLUSION

We presented new differentially private adaptation algo-
rithms with formal theoretical guarantees. Our analysis can
form the basis for the study of privacy for other related adap-
tation scenarios, including scenarios where a small amount
of (private) labeled data is also available from the target
domain and those with multiple sources. Our single-stage
private algorithm is further likely to be of independent in-
terest for private optimization of other similar objective
functions. The solutions we presented are for regression
problems, as with the non-private algorithm of [CM14]. We
leave it to future work to leverage similar ideas and tech-
niques to derive principled private adaptation algorithms
from a public source for classification problems.
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New analysis and algorithm for learning with
drifting distributions. In Nader H. Bshouty,
Gilles Stoltz, Nicolas Vayatis, and Thomas
Zeugmann, editors, Proceesings of ALT, vol-
ume 7568 of Lecture Notes in Computer Sci-
ence, pages 124–138. Springer, 2012.

[MMR09] Yishay Mansour, Mehryar Mohri, and Afshin
Rostamizadeh. Domain adaptation: Learn-
ing bounds and algorithms. In COLT 2009
- The 22nd Conference on Learning Theory,
Montreal, Quebec, Canada, June 18-21, 2009,
2009.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and
Ameet Talwalkar. Foundations of Machine
Learning. Adaptive computation and machine
learning. MIT Press, 2018. Second edition.

[MWCC18] Cong Ma, Kaizheng Wang, Yuejie Chi, and
Yuxin Chen. Implicit regularization in non-
convex statistical estimation: Gradient descent
converges linearly for phase retrieval and ma-
trix completion. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th In-
ternational Conference on Machine Learning,
volume 80 of Proceedings of Machine Learn-
ing Research, pages 3345–3354. PMLR, 10–
15 Jul 2018.

[NB20] Anupama Nandi and Raef Bassily. Privately
answering classification queries in the agnos-
tic pac model. In Algorithmic Learning The-
ory, pages 687–703, 2020.

[Nes07] Yurii Nesterov. Smoothing technique and
its applications in semidefinite optimization.
Math. Program., 110:245–259, 2007.

[NJLS09] Arkadi Nemirovski, Anatoli Juditsky,
Guanghui Lan, and Alexander Shapiro.
Robust stochastic approximation approach to
stochastic programming. SIAM Journal on
optimization, 19(4):1574–1609, 2009.

[NP06] Yurii Nesterov and Boris Polyak. Cubic reg-
ularization of newton method and its global
performance. Mathematical Programming,
108:177–205, 2006.

[NY83] A.S. Nemirovsky and D.B. Yudin. Problem
Complexity and Method Efficiency in Opti-
mization. A Wiley-Interscience publication.
Wiley, 1983.

[Sid19] Aaron Sidford. Introduction to opti-
mization theory - MS&E213 / CS269O.



Principled Approaches for Private Adaptation from a Public Source

Stanford Course Notes, 2019. https:
//web.stanford.edu/˜sidford/
courses/19fa_opt_theory/.

[TGTZ15] Kunal Talwar, Abhradeep Guha Thakurta, and
Li Zhang. Nearly optimal private lasso. Ad-
vances in Neural Information Processing Sys-
tems, 28:3025–3033, 2015.

[WLZ+20] Qian Wang, Zixi Li, Qin Zou, Lingchen Zhao,
and Song Wang. Deep domain adaptation with
differential privacy. IEEE Transactions on
Information Forensics and Security, 15:3093–
3106, 2020.

https://web.stanford.edu/~sidford/courses/19fa_opt_theory/
https://web.stanford.edu/~sidford/courses/19fa_opt_theory/
https://web.stanford.edu/~sidford/courses/19fa_opt_theory/


Raef Bassily, Mehryar Mohri, Ananda Theertha Suresh

Contents of Appendix

A Background on discrepancy-based generalization bounds 14

B Discrepancy analysis and bounds 15

C Smooth approximations 16

C.1 Softmax approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.2 Properties of F̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.3 p-norm approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D Proofs of Section 5 23

D.1 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D.2 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E Proofs of Section 6 26

E.1 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E.2 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



Principled Approaches for Private Adaptation from a Public Source

A Background on discrepancy-based generalization bounds

In this section, we briefly present some background material on discrepancy-based generalization guarantees.

The following learning bound was given by [CMMM19]: for any β > 0, with probably at least 1 − β over the draw of a
sample S ∼ Qm, for any distribution q over SX, for all h ∈H, the following inequality holds:

L(P, h) ≤
m

∑
i=1

qi`(h(xi), yi) + disY(P̂,q) + 2Rn(` ○H) +M

¿
ÁÁÀ log 1

β

2n
. (7)

This bound is tight in the sense that for the hypothesis reaching the maximum in the definition of the Y-discrepancy, the
bound coincides with the standard Rademacher complexity bound on P̂ [CMMM19]. The bound suggests choosing h ∈H
and the distribution q to minimize the right-hand side. The first term of the bound is not jointly convex with respect to h
and q. Instead, the algorithm suggested by [CM14] (see also [MMR09]) consists of a two-stage procedure: first choose
q to minimize the q-weighted empirical discrepancy, next fix q and choose h to minimize the q-weighted empirical loss
∑mi=1 qi`(h(xi), yi).

In practice, we do not have labeled data from P or too few to be able to accurately minimize the Y-discrepancy, since
otherwise adaptation would not be even necessary and we could directly use labeled data from P for training. Instead, we
upper bound the Y-discrepancy in terms of the discrepancy dis(PX,q) and the output label-discrepancy ηH(S, T̃ ) defined
as follows:

ηH(S, T̃ ) = min
h0∈H

⎧⎪⎪⎨⎪⎪⎩
sup

(x,y)∈S
∣y − h0(x)∣ + sup

(x,y)∈T̃
∣y − h0(x)∣

⎫⎪⎪⎬⎪⎪⎭
,

where T̃ is the labeled version of T (i.e., T̃ is T associated with its true, hidden labels). Note that dis(PX,q) measures the
difference of the distributions on the input domain. In contrast, ηH(S, T̃ ) accounts for the difference of the output labels in
S and T . We will assume that ηH(S, T̃ ) ≪ 1. Note that under the covariate shift assumption and separable case, we have
ηH(S, T̃ ) = 0. In general, adaptation is not possible when ηH(S, T̃ ) can be large since the labels received on the training
sample can be different from the target ones.

We will say that a loss function ` is γ-admissible if ∣`(h(x), y) − `(h′(x), y)∣ ≤ γ∣h(x) − h′(x)∣ for all (x, y) ∈ X × Y and
h ∈H [CMMM19]. Note that this is a slightly weaker condition than that of γ-Lipschitzness of the loss with respect to its
first argument.

Theorem 7. Let ` be a γ-admissible loss. Then, the following upper bound holds:

disY(P,Q) ≤ dis(PX,q) + γ ηH(supp(P), supp(Q)).

The proof is given in Appendix B. Note that the squared loss is 2M -admissible: since the function x↦ x2 is 2-Lipschitz
on [0,1], we have ∣`(h(x), y) − `(h′(x), y)∣ =M ∣ `(h(x),y)

M
− `(h′(x),y)

M
∣ ≤ 2M ∣h(x) − h′(x)∣. Thus, the learning bound (7)

can be expressed in terms of the discrepancy and the Rademacher complexity of H as follows, using the fact Rn(` ○H) ≤
2MRn(H) [MRT18][Prop. 11.2]:

L(P, h) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(P̂X,q) + ηH(S,S′) + 2MRn(H) +M

¿
ÁÁÀ log 1

β

2n
.

In this work, we focus on the family of linear hypotheses H = {x↦ w ⋅ x∶ ∥w∥ ≤ Λ} and we assume that the support of PX is

included in the `2 ball of radius r. Thus, the Rademacher complexity can be explicitly upper bounded as: Rn(H) ≤
√

r2Λ2

n
[MRT18].
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B Discrepancy analysis and bounds

Theorem 7. Let ` be a γ-admissible loss. Then, the following upper bound holds:

disY(P,Q) ≤ dis(PX,q) + γ ηH(supp(P), supp(Q)).

Proof. For any hypothesis h0 in H, we can write

disY(P̂,q) = sup
h∈H

∣ E
(x,y)∼P̂

[`(h(x), y)] −
m

∑
i=1

qi`(h(xi), yi)∣

≤ sup
h∈H

∣ E
x∼P̂

[`(h(x), h0(x))] −
m

∑
i=1

qi`(h(xi), h0(xi))∣

+ sup
h∈H

∣ E
(x,y)∼P̂

[`(h(x), y)] − E
x∼P̂

[`(h(x), h0(x))]∣

+ sup
h∈H

∣
m

∑
i=1

qi`(h(xi), h0(xi)) −
m

∑
i=1

qi`(h(xi), yi)∣

≤ dis(P̂X,q) + γ E
(x,y)∼P̂

[∣y − h0(x)∣] + γ
m

∑
i=1

qi∣yi − h0(xi)∣

≤ dis(P̂X,q) + γ
⎧⎪⎪⎨⎪⎪⎩

sup
(x,y)∈supp(P̂)

∣y − h0(x)∣ + sup
(x,y)∈supp(Q̂)

∣y − h0(x)∣
⎫⎪⎪⎬⎪⎪⎭

= dis(P̂X,q) + γηH(supp(P), supp(Q)),

which completes the proof.

Lemma 1 ([MMR09, CM14]). For any distribution q over SX, the following equality holds:

dis(P̂ ,q) = 4Λ2∥M(q)∥2

= 4Λ2 max{λmax(M(q)), λmax(−M(q))},

where M(q) =M0 −∑mi=1 qiMi and where M0 = ∑x∈X P̂X(x)xx⊺, and Mi = xix⊺i , i ∈ [m].

Proof.

dis(P̂ ,q) = max
∥w∥,∥w′∥≤Λ

E
x∼q

∣[[(w −w′) ⋅ x]2] − E
x∼P̂X

[[(w −w′) ⋅ x]2]∣

= max
∥w∥,∥w′∥≤Λ

∣∑
x∈X

[P̂ (x) − q(x)][(w −w′) ⋅ x]2∣

= max
∥u∥≤2Λ

∣∑
x∈X

[P̂ (x) − q(x)][u ⋅ x]2∣

= max
∥u∥≤2Λ

∣u⊺[∑
x∈X

(P̂ (x) − q(x))xx⊺]u∣

= 4Λ2 max
∥u∥≤1

∣u⊺[M0 −
m

∑
i=1

qiMi]u∣

= 4Λ2 max
∥u∥≤1

∣u⊺M(q)u∣

= 4Λ2 max
∥u∥=1

∣u⊺M(q)u∣

= 4Λ2 max{λmax(M(q)), λmax(−M(q))}.

This completes the proof.
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C Smooth approximations

C.1 Softmax approximation

Proposition 1. Assume that f is γ-smooth with respect to ∥ ⋅ ∥2, then F is γ(maxi∈[m]∥xi∥4
2)-smooth with respect to ∥ ⋅ ∥1.

Proof. For any q,q′ ∈ ∆(m), the following upper bound on the spectral norm of M(q) −M(q′) holds:

∥M(q) −M(q′)∥2 = ∥
m

∑
i=1

(qi − q′i)xix⊺i ∥
2

(8)

≤
m

∑
i=1

∣qi − q′i∣∥xix⊺i ∥2

≤ ∥q − q′∥1 max
i∈[m]

∥xix⊺i ∥2
(Hölder’s ineq.)

= ∥q − q′∥1 max
i∈[m]

∥xi∥2
2. (xix⊺i admits a single non-zero eigenvalue, ∥xi∥2

2)

We have F (q) = f(M(q)), thus the gradient of F can be expressed as follows:

∇F (q) = −[⟨∇f(M(q)),Mi⟩]i∈[m].

Thus, for any q,q′ ∈ ∆(m), we have:

∥∇F (q) −∇F (q′)∥∞ = max
i∈[m]

∣⟨∇f(M(q)) −∇f(M(q′)),Mi⟩∣

≤ max
i∈[m]

∥∇f(M(q)) −∇f(M(q′))∥(1)∥Mi∥(∞) (Hölder’s ineq.)

≤ γ max
i∈[m]

∥M(q) −M(q′)∥(∞)∥Mi∥(∞) (γ-smoothness of f )

= γ max
i∈[m]

∥M(q) −M(q′)∥2∥Mi∥2 (definition of ∥ ⋅ ∥(∞))

≤ γ max
i∈[m]

{∥q − q′∥1 max
i∈[m]

∥xi∥2
2}∥xi∥

2
2 (inequality (8))

= γ(max
i∈[m]

∥xi∥4
2)∥q − q′∥1.

This completes the proof.

We will use the following bound for the Hessian of f .

Lemma 2 ([Nes07]). The following upper bound holds for the Hessian of f for any two symmetric matrices M,U ∈ Sd:

⟨∇2f(M)U,U⟩ ≤ µ∥U∥2
2,

where ∥U∥2 = ∥λ(U)∥∞ denotes the spectral norm of U.

Theorem 1. The softmax approximation F is µ(maxi∈[m]∥xi∥4
2)-smooth for ∥ ⋅ ∥1.

Proof. In view of Lemma 2, f is ∥ ⋅ ∥2-µ-smooth. The result thus follows by Proposition 1.

Theorem 2. The gradient of the softmax approximation F is 2µr2

n
maxi∈[m]∥xi∥2

2-sensitive.

Proof. For M(q)) and M′(q)) differing only by point x and x′ in P̂X, we have:

∥M(q) −M′(q)∥2 = ∥ 1

n
[xx⊺ − x′x′⊺]∥

2
≤ 2r2

n
. (9)



Raef Bassily, Mehryar Mohri, Ananda Theertha Suresh

Thus, following the proof of Proposition 1, the sensitivity is bounded by

max
i∈[m]

∣⟨∇f(M(q)) −∇f(M′(q)),Mi⟩∣ ≤ max
i∈[m]

∥∇f(M(q)) −∇f(M′(q))∥(1)∥Mi∥(∞) (Hölder’s ineq.)

≤ µmax
i∈[m]

∥M(q) −M(q′)∥(∞)∥Mi∥(∞) (µ-smoothness of f )

= µmax
i∈[m]

∥M(q) −M(q′)∥2∥Mi∥2 (definition of ∥ ⋅ ∥(∞))

≤ 2µr2

n
max
i∈[m]

∥xi∥2
2.

This completes the proof.

Proposition 2. The following inequality holds for the spectral norm of the Hessian of F :

∥∇2F ∥2 ≤ µ∥
m

∑
i=1

xix
⊺
i ∥

2

≤ µ[
m

∑
i=1

∥xi∥2
2].

Proof. The second-partial derivatives of F (q) can be expressed as follows:

∂2S

∂qi∂qj
= −⟨ ∂

∂qj
∇f(M(q)),Mi⟩

= +⟨∇2f(M(q))Mj ,Mi⟩.

Thus, using the shorthand M = ∑mi=1 XiMi, for any X ∈ Rm, we can write:

X⊺∇2FX =
d

∑
i,j=1

XiXj⟨∇2f(M(q))Mj ,Mi⟩

= ⟨∇2f(M(q))(
d

∑
j=1

XjMj),(
d

∑
i=1

XiMi)⟩

= ⟨∇2f(M(q)) (M), (M)⟩
≤ µ∥M∥2

2 (Lemma 2)

= µ(∥
m

∑
i=1

Xixix
⊺
i ∥

2

)
2

= µ(max
∥u∥≤1

∣
m

∑
i=1

Xiu
⊺xix

⊺
i u∣)

2

(def. of spectral norm)

= µ(max
∥u∥≤1

∣
m

∑
i=1

Xi(u⊺xi)2∣)
2

≤ µ
⎛
⎝

max
∥u∥≤1

∥X∥
¿
ÁÁÀ

m

∑
i=1

(u⊺xi)2
⎞
⎠

2

(Cauchy-Schwarz ineq.)

= µ
⎛
⎝
∥X∥

¿
ÁÁÀmax

∥u∥≤1

m

∑
i=1

(u⊺xi)2
⎞
⎠

2

= µ∥
m

∑
i=1

xix
⊺
i ∥

2

∥X∥2.

This completes the proof.

Theorem 3. For any q ∈ ∆m, the gradient of F is bounded as follows: ∥∇F (q)∥∞ ≤ maxi∈[m]∥xi∥2
2.



Principled Approaches for Private Adaptation from a Public Source

Proof. By inequality (4), for any i ∈ [m], we have

∣[∇F (q)]i∣ = ∣ ⟨exp(µM(q)),Mi⟩
Tr(exp(µM(q))) ∣

= x
⊺
i exp(µM(q))xi

Tr(exp(µM(q)))

≤ ∥xi∥2
2

max∥u∥2=1 u
⊺ exp(µM(q))u

Tr(exp(µM(q)))

= ∥xi∥2
2

λmax(exp(µM(q)))
Tr(exp(µM(q))) ≤ ∥xi∥2

2.

This completes the proof.

C.2 Properties of F̃

Corollary 1. The following properties holds for F̃ :

1. F̃ is convex and is a uniform log(2 min{m+n,d})
µ

-approximation of q↦ dis(P̂ ,q).

2. F̃ is µ(maxi∈[m]∥xi∥4
2)-smooth for ∥ ⋅ ∥1.

3. ∥∇F̃ ∥∞ is 2µr2

n
maxi∈[m]∥xi∥2

2-sensitive.

4. for any q ∈ ∆m, ∥∇F̃ (q)∥∞ ≤ maxi∈[m]∥xi∥2
2.

Proof. The results follow directly the definition of F̃ and Theorems 1, 2, 3 and the discussion above. In particular, since
F̃ (q) = f(M̃(q)), the gradient of F̃ can be expressed as follows in terms of f :

∇F̃ (q) = −⟨∇f(M̃(q)),diag(Mi,−Mi)⟩.

Thus, for any i ∈ [m], we have:

[∇F̃ (q)]
i
= −

⟨exp(µM̃(q)),diag(Mi,−Mi)⟩
Tr(exp(µM̃(q)))

.

In particular, we can write:

∣[∇F̃ (q)]
i
∣

= − x⊺i [exp(µM(q)) − exp(−µM(q))]xi
Tr(exp(µM(q))) +Tr(exp(−µM(q)))

≤ ∥xi∥2
2 max
∥u∥22=1

∣ u⊺[exp(µM(q)) − exp(−µM(q))]u
Tr(exp(µM(q))) +Tr(exp(−µM(q))) ∣

≤ ∥xi∥2
2

λmax(exp(µM(q))) + λmax(exp(−µM(q)))
Tr(exp(µM(q))) +Tr(exp(−µM(q)))

≤ ∥xi∥2
2.

This completes the proof.

In the following, we further give explicit proofs of some of these statements.

Proposition 3. Assume that f is γ-smooth with respect to ∥ ⋅ ∥2, then F̃ is γ(maxi∈[m]∥xi∥4
2)-smooth with respect to ∥ ⋅ ∥1.
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Proof. For any q,q′ ∈ ∆(m), the following upper bound on the spectral norm of M(q) −M(q′) holds:

∥M̃(q) − M̃(q′)∥2 = ∥diag(M(q) −M(q′),−[diag(M(q) −M(q′))]∥2 (10)
= ∥M(q) −M(q′)∥2 (11)

= ∥
m

∑
i=1

(qi − q′i)xix⊺i ∥
2

(12)

≤
m

∑
i=1

∣qi − q′i∣∥xix⊺i ∥2

≤ ∥q − q′∥1 max
i∈[m]

∥xix⊺i ∥2
(Hölder’s ineq.)

= ∥q − q′∥1 max
i∈[m]

∥xi∥2
2. (xix⊺i admits a single non-zero eigenvalue, ∥xi∥2

2)

We have F (q) = f(M(q)), thus the gradient of F can be expressed as follows:

∇F (q) = −[⟨∇f(M(q)),Mi⟩]i∈[m].

Thus, for any q,q′ ∈ ∆(m), we have:

∥∇F̃ (q) −∇F̃ (q′)∥∞ = max
i∈[m]

∣⟨∇f(M̃(q)) −∇f(M̃(q′)),diag(Mi,−Mi)⟩∣

≤ max
i∈[m]

∥∇f(M̃(q)) −∇f(M̃(q′))∥(1)∥diag(Mi,−Mi)∥(∞) (Hölder’s ineq.)

≤ γ max
i∈[m]

∥M̃(q) − M̃(q′)∥(∞)∥Mi∥(∞) (γ-smoothness of f )

= γ max
i∈[m]

∥M̃(q) − M̃(q′)∥
2
∥Mi∥2 (definition of ∥ ⋅ ∥(∞))

≤ γ max
i∈[m]

{∥q − q′∥1 max
i∈[m]

∥xi∥2
2}∥xi∥

2
2 (inequality (10))

= γ(max
i∈[m]

∥xi∥4
2)∥q − q′∥1.

This completes the proof.

Proof. For M(q)) and M′(q)) differing only by point x and x′ in P̂X, we have:

∥M̃(q) − M̃′(q)∥2 = ∥M(q) −M′(q)∥2 (13)

= ∥ 1

n
[xx⊺ − x′x′⊺]∥

2
≤ 2r2

n
. (14)

Thus, following the proof of Proposition 3, the sensitivity is bounded by

max
i∈[m]

∣⟨∇f(M̃(q)) −∇f(M̃′(q)),diag(Mi,−Mi)⟩∣

≤ max
i∈[m]

∥∇f(M̃(q)) −∇f(M̃′(q))∥(1)∥diag(Mi,−Mi)∥(∞) (Hölder’s ineq.)

≤ µmax
i∈[m]

∥M̃(q) − M̃(q′)∥(∞)∥Mi∥(∞) (µ-smoothness of f )

= µmax
i∈[m]

∥M(q) −M(q′)∥2∥Mi∥2 (definition of ∥ ⋅ ∥(∞))

≤ 2µr2

n
max
i∈[m]

∥xi∥2
2.

This completes the proof.
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C.3 p-norm approximation

Here, we described an alternative approximation for which we also prove smoothness and gradient sensitivity guarantees.
This approximation can be used to design private adaptation algorithms with a relative deviation guarantee that can be more
favorable in some contexts, since, as we shall see, the approximation guarantee is modulo a multiplicative term. Unless the
softmax approximation, however, here we approximate the square of the norm-2 of the matrix.

A smooth approximation of ∥M(q)∥2
2 = ∥λ(M(q))∥2

∞ can be defined as follows:

G(q) = Tr[M(q)2p]
1
p = [

d

∑
i=1

λi(M(q))2p]
1
p

,

for p sufficiently large. The following inequalities hold for this approximation:

∥λ(M(q))∥2

∞ ≤ G(q) ≤ [rank(M(q))]
1
p ∥λ(M(q))∥2

∞.

The gradient of the smooth approximation is given for all i ∈ [1,m] by:

[∇G(M(q))]i = −2⟨M2p−1(q),Mi⟩Tr[M2p(q)] 1
p−1. (15)

We can write G(q) = g(M(q)) where g is defined for all M ∈ Sd by

g(M) = Tr[M2p]
1
p = ⟨M2p, I⟩

1
p .

The following result provides the desired smoothness result needed for G, which we prove by using the smoothness property
of g.

Theorem 8. The p-norm approximation function G is (2p − 1)(maxi∈[m]∥xi∥4
2)-smooth for ∥ ⋅ ∥1.

The proof is given in Appendix C.3. Next, we present a sensitivity bounds for G.

Theorem 9. Assume that the support of P is included in the `2 ball of radius r. Then, the gradient of the p-norm
approximation G is 2(2p−1)r2

n
maxi∈[m]∥xi∥2

2-sensitive.

The proof is given in Appendix C.3.

Proposition 4. Assume that g is γ-smooth with respect to the norm ∥ ⋅ ∥(2p):

∀M,M′ ∈ Sd, ∥∇g(M) −∇g(M′)∥(r) ≤ γ∥∇g(M) −∇g(M′)∥(2p),

with 1
r
+ 1

2p
= 1. Then, G is γ(maxi∈[m]∥xi∥4

2)-smooth:

∀q,q′ ∈ Rd, ∥∇G(q) −∇G(q′)∥∞ ≤ γ(max
i∈[m]

∥xi∥4
2)∥q − q′∥1.

Proof. The proof is similar to that of Proposition 1. For any q,q′ ∈ ∆(m), the following upper bound on the norm-(2p) of
M(q) −M(q′) holds:

∥M(q) −M(q′)∥(2p) = ∥
m

∑
i=1

(qi − q′i)xix⊺i ∥
(2p)

(16)

≤
m

∑
i=1

∣qi − q′i∣∥xix⊺i ∥(2p)

≤ ∥q − q′∥1 max
i∈[m]

∥xix⊺i ∥(2p) (Hölder’s ineq.)

= ∥q − q′∥1 max
i∈[m]

∥xi∥2
2. (xix⊺i admits a single non-zero eigenvalue, ∥xi∥2

2)

We have G(q) = g(M(q)), thus the gradient of G can be expressed as follows:

∇G(q) = −[⟨∇g(M(q)),Mi⟩]i∈[m].
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Thus, for any q,q′ ∈ ∆(m), we have:

∥∇G(M(q)) −∇G(M(q′))∥∞ = max
i∈[m]

∣⟨∇g(M(q)) −∇g(M(q′)),Mi⟩∣

≤ max
i∈[m]

∥∇g(M(q)) −∇g(M(q′))∥(r)∥Mi∥(2p) (Hölder’s ineq.)

≤ γ max
i∈[m]

∥M(q) −M(q′)∥(2p)∥Mi∥(2p) (γ-smoothness of f )

≤ γ max
i∈[m]

{∥q − q′∥1 max
i∈[m]

∥xi∥2
2}∥xi∥

2
2 (inequality (16))

= γ(max
i∈[m]

∥xi∥4
2)∥q − q′∥1.

This completes the proof.

We will use the following bound for the Hessian of g.

Lemma 3 ([Nes07]). The following upper bound holds for the Hessian of f for any two symmetric matrices M,U ∈ Sd:

⟨∇2g(M)U,U⟩ ≤ (2p − 1)∥λ(U)∥2
2p,

where ∥λ(U)∥2
2p = (Tr[U2p])

1
p .

Theorem 8. The p-norm approximation function G is (2p − 1)(maxi∈[m]∥xi∥4
2)-smooth for ∥ ⋅ ∥1.

Proof. In view of Lemma 3, g is ∥ ⋅ ∥(2p)-(2p − 1)-smooth. The result thus follows by Proposition 4.

Theorem 9. Assume that the support of P is included in the `2 ball of radius r. Then, the gradient of the p-norm
approximation G is 2(2p−1)r2

n
maxi∈[m]∥xi∥2

2-sensitive.

Proof. For M(q)) and M′(q)) differing only by point x and x′ in P̂X, we have:

∥M(q) −M′(q)∥2 = ∥ 1

n
[xx⊺ − x′x′⊺]∥

2
≤ 2r2

n
. (17)

Thus, following the proof of Proposition 4, the sensitivity is bounded by

max
i∈[m]

∣⟨∇g(M(q)) −∇g(M′(q)),Mi⟩∣ ≤ max
i∈[m]

∥∇g(M(q)) −∇g(M′(q))∥(r)∥Mi∥(2p) (Hölder’s ineq.)

≤ (2p − 1) max
i∈[m]

∥M(q) −M(q′)∥(2p)∥Mi∥(2p) (γ-smoothness of f )

≤ 2(2p − 1)r2

n
max
i∈[m]

∥xi∥2
2. (inequality (17))

This completes the proof.

Proposition 5. The following inequality holds for the spectral norm of the Hessian of F :

∥∇2G∥2 ≤ (2p − 1)[
m

∑
i=1

∥xi∥2
2].

Proof. As in the proof of Proposition 2, we have:

∂2G

∂qi∂qj
= −⟨ ∂

∂qj
∇f(M(q)),Mi⟩ = +⟨∇2g(M(q))Mj ,Mi⟩.



Principled Approaches for Private Adaptation from a Public Source

Thus, using the shorthand M = ∑mi=1 XiMi, for any X ∈ Rm, we can write:

X⊺∇2GX =
d

∑
i,j=1

XiXj⟨∇2g(M(q))Mj ,Mi⟩

= ⟨∇2f(M(q))(
d

∑
j=1

XjMj),(
d

∑
i=1

XiMi)⟩

= ⟨∇2f(M(q)) (M), (M)⟩
≤ (2p − 1)∥M∥2

(2p) (Lemma 3)

= (2p − 1)
⎛
⎝
∥
m

∑
i=1

Xixix
⊺
i ∥

(2p)

⎞
⎠

2

= (2p − 1)
⎛
⎝

Tr
⎛
⎝
[
m

∑
i=1

Xixix
⊺
i ]

2p⎞
⎠
⎞
⎠

1
p

≤ (2p − 1)(
m

∑
i=1

∣Xi∣∥xix⊺i ∥(2p))
2

≤ (2p − 1)∥X∥2
2

m

∑
i=1

∥xix⊺i ∥
2

(2p)

= (2p − 1)∥X∥2
2

m

∑
i=1

∥xi∥2
2.

This completes the proof.
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D Proofs of Section 5

D.1 Proof of Theorem 4

Theorem 4. Algorithm 1 is (ε, δ)-differentially private. Suppose fT ∶Q × W → R is ((γq, ∥⋅∥1), (γw, ∥⋅∥2))-
Lipschitz and ((µq, ∥⋅∥1), (µw, ∥⋅∥2))-smooth. Assume further that for all q ∈ Q, and w,w′ ∈ W ,
∥∇qfT (q,w) −∇qfT (q,w′)∥∞ ≤ γq,w∥w −w′∥2. Then, for any β ∈ (0,1), there exists a choice of K and µ such that, with
probability at least 1 − β, the stationarity gap of the output ŵ, GapfT (q̂, ŵ), is upper bounded by

5

¿
ÁÁÀD̄(σ0

q log( D̄J
σ0
q β

) +Dwσ0
w

√
d log( D̄

Dwσ0
wβ

)),

where

D̄ =
√

(Dqγq +Dwγw)(D2
qµq +D2

wµw + 2γq,wDqDw),

σ0
q =

σq√
K
, and σ0

w = σw√
K

(where σq, σw are as given in steps 1 and 2 of Algorithm 1).

The statement holds with the following choice of K and µ:

K =
√

2D̄

σ0
q log( D̄J

σ0
q β

) +Dwσ0
w

√
d log( D̄

Dwσ0
wβ

)
η =

¿
ÁÁÀ 2(Dqγq +Dwγw)

(D2
qµq +D2

wµw + 2γq,wDqDw)K
,

where D̄ =
√

(Dqγq +Dwγw)(D2
qµq +D2

wµw + 2γq,wDqDw), σ0
q = σq√

K
, and σ0

w = σw√
K

(where σq, σw are as given in
steps 1 and 2).

Proof. The privacy proof follows by combining the guarantees of the Report-Noisy-Min mechanism (steps 1, 7, and 8) and
the Gaussian mechanism (steps 2 and 11) together with the application of the advanced composition theorem of differential
privacy over the K rounds of the algorithm.

We now prove the convergence (stationarity gap) guarantee. By the smoothness of fT , we have

fT (qk+1,wk+1)

≤ fT (qk,wk+1) + ⟨∇kq ,qk+1 − qk⟩ + ⟨∇qfT (qk,wk+1) −∇qfT (qk,wk),qk+1 − qk⟩ + µq

2
∥qk+1 − qk∥2

1

≤ fT (qk,wk+1) + ⟨∇kq ,qk+1 − qk⟩ + γq,w∥wk+1 −wk∥2∥qk+1 − qk∥1 +
µq

2
∥qk+1 − qk∥2

1

≤ fT (qk,wk) + ⟨∇kq ,qk+1 − qk⟩ + ⟨∇kw,wk+1 −wk⟩ + γq,w∥wk+1 −wk∥2∥qk+1 − qk∥1 +
µq

2
∥qk+1 − qk∥2

1

+ µw
2

∥wk+1 −wk∥2
2

≤ fT (qk,wk) + η⟨∇kq , vkq − qk⟩ + η⟨∇kw, ukw −wk⟩ + γq,wη2DqDw +
η2µqD

2
q

2
+ η

2µwD
2
w

2

≤ fT (qk,wk) + η⟨∇kq , vkq − qk⟩ + η⟨∇̂kw, ukw −wk⟩ + η⟨∇kw − ∇̂kw, ukw −wk⟩ + γq,wη2DqDw +
η2µqD

2
q

2
+ η

2µwD
2
w

2

Define vk∗ ≜ argmin
v∈V

⟨∇kq , v⟩ and αk ≜ ⟨∇kq , vkq −vk∗⟩. Also, define uk∗ ≜ argmin
u∈W

⟨∇kw, u⟩. Hence, noting that ⟨∇̂kw, ukw −wk⟩ ≤

⟨∇̂kw, uk∗ −wk⟩ (which follows from the definition of ukw in Step 12 in Algorithm 1), the bound on fT (qk+1,wk+1) above
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can be further upper bounded as

fT (qk,wk) + η⟨∇kq , vkq − qk⟩ + η[⟨∇̂kw, uk∗ −wk⟩ + ⟨∇kw − ∇̂kw, ukw −wk⟩] + γq,wη2DqDw

+
η2µqD

2
q

2
+ η

2µwD
2
w

2

≤fT (qk,wk) + η⟨∇kq , vkq − qk⟩ + η[⟨∇kw, uk∗ −wk⟩ + ⟨∇̂kw −∇kw, uk∗ −wk⟩ + ⟨∇kw − ∇̂kw, ukw −wk⟩]

+ γq,wη2DqDw +
η2µqD

2
q

2
+ η

2µwD
2
w

2

≤fT (qk,wk) + η⟨∇kq , vkq − qk⟩ + +η[⟨∇kw, uk∗ −wk⟩ + ⟨∇̂kw −∇kw, uk∗ − ukw⟩] + γq,wη2DqDw

+
η2µqD

2
q

2
+ η

2µwD
2
w

2

≤fT (qk,wk) + η[⟨∇kq , vk∗ − qk⟩ + αk] + η[⟨∇kw, uk∗ −wk⟩ + ⟨∇̂kw −∇kw, uk∗ − ukw⟩] + γq,wη2DqDw

+
η2µqD

2
q

2
+ η

2µwD
2
w

2

≤fT (qk,wk) + η[⟨∇kq , vk∗ − qk⟩ + ⟨∇kw, uk∗ −wk⟩] + ηαk + ηDw∥∇̂kw −∇kw∥2 + γq,wη2DqDw

+
η2µqD

2
q

2
+ η

2µwD
2
w

2

Note ⟨∇kq , vk∗ − qk⟩ + ⟨∇kw, uk∗ −wk⟩ = −GapfT (q
k,wk). Moreover, with standard bounds on then tail of Laplacian and

Gaussian random variables, with probability at least 1 − β, for all k ∈ [K], αk ≤ σq log(2JK/β) and ∥∇̂kw − ∇kw∥2 ≤
σw

√
d log(2K/β). We will condition on this event for the rest of the proof. Hence, the bound becomes:

fT (qk,wk) − ηGapfT (q
k,wk) + ησq log(2JK

β
) + ηDwσw

√
d log(2K

β
) + γq,wη2DqDw +

η2µqD
2
q

2
+ η

2µwD
2
w

2

Rearranging terms, and then averaging over k ∈ [K], we get

1

K

K

∑
k=1

GapfT (q
k,wk) ≤ fT (q

0,w0) − fT (qK+1,wK+1)
ηK

+ η[γq,wDqDw +
µqD

2
q

2
+ µwD

2
w

2
] (18)

+ σq log(2JK

β
) +Dwσw

√
d log(2K

β
)

≤ Dqγq +Dwγw

ηK
+ η[γq,wDqDw +

µqD
2
q + µwD2

w

2
] (19)

+
√
K

⎡⎢⎢⎢⎣
σ0
q log(2JK

β
) +Dwσ

0
w

√
d log(2K

β
)
⎤⎥⎥⎥⎦
. (20)

Optimizing this bound in η and K results in the settings of K and η in the theorem statement. Substituting with these
settings and simplifying, we get that the average gap is upper bounded by A/2, where A is the bound in the theorem; namely,

A = 5

¿
ÁÁÀD̄(σ0

q log( D̄J
σ0
q β

) +Dwσ0
w

√
d log( D̄

Dwσ0
wβ

)).

Now, to conclude the proof, we show that GapfT (q̂, ŵ) ≤ 1
K ∑

K
k=1 GapfT (q

k,wk) + A/2. By the definition of q̂, ŵ and
using a similar analysis as above (and using the tail bounds on the Gaussian and Laplace r.v.s as before), observe that
GapfT (q̂, ŵ) can be upper bounded as

GapfT (q̂, ŵ) = GapfT (q
k∗ ,wk

∗
)

≤ min
k∈[K]

GapfT (q
k,wk) + σq log(2JK

β
) +Dwσw

√
d log(2K

β
)

≤ 1

K

K

∑
k=1

GapfT (q
k,wk) +

√
K

⎡⎢⎢⎢⎣
σ0
q log(2JK

β
) +Dwσ

0
w

√
d log(2K

β
)
⎤⎥⎥⎥⎦
.
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Observe that the term
√
K [σ0

q log( 2JK
β

) +Dwσ
0
w

√
d log( 2K

β
)] above is the last term in (20). Hence, by substituting with

the values of K and η, we can show that this term is upper bounded by A/2. This leads to the following:

GapfT (q̂, ŵ) ≤ 1

K

K

∑
k=1

GapfT (q
k,wk) +A/2,

which completes the proof.

D.2 Proof of Corollary 2

Corollary 2. Let LT (q,w) = ∑mi=1 qi(⟨w,xi⟩ − yi)2 + 4Λ2F̃T (q) be the input objective to Algorithm 1. Let β ∈ (0,1).
Then, there exists a choice of K and η such that, with probability at least 1−β, the output of the algorithm is an approximate
stationary point of LT with stationarity gap upper bounded as follows:

GapLT (q̂, ŵ) ≤ Õ( µ
3/4

√
εn

).

Here, Õ(⋅) hides poly-logarithmic factors in m.

Given Theorem 4, the stationarity gap is more precisely bounded as

GapLT (q̂, ŵ) ≤
32(1 + 2µr̂2) 1

4 (Λr̂) 3
2 r

√
(Λr̂ + Y )µ log(mn

β
) log

1
4 (1/δ)

√
εn

,

when we choose K and η as follows:

K = εn(Λr̂ + Y )
√

1 + 2µr̂2

4Λr̂r2µ log(mn
β

)
√

log( 1
δ
)

η =
√

2(Λr̂ + Y )
Λr̂

√
(1 + 2µr̂2)K

.

Thus, the learning bound (1) implies that with probability ≥ 1 − 2β over the choice of the public and private datasets and the
algorithm’s internal randomness, the expected loss of the predictor hŵ (defined by the output ŵ) with respect to the target
domain is bounded as follows:

L(P, hŵ) ≤LT (q̂, ŵ) + 2 log(m + n)
µ

+ 2Λr(Λr + Y )2

√
n

+ (Λr + Y )2

¿
ÁÁÀ log 1

β

2n
+ ηH(S, T̃ ).
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E Proofs of Section 6

E.1 Proof of Theorem 5

Theorem 5. The Noisy Frank-Wolfe algorithm (Algorithm 2) is (ε, δ)-differentially private. Let q∗ ∈ argminq∈∆m
dis(P̂ ,q).

Then, there exists a choice of the parameters of Algorithm 2 such that, with high probability over the algorithm’s internal
randomness, the output q̂ satisfies

dis(P̂ , q̂) ≤dis(P̂ ,q∗) + λ
2
∥q∗∥2

2 + Õ( 1

(εn)1/3 ),

where Õ(⋅) is hiding a poly-logarithmic factor in m.

The above theorem follows as a corollary of the following theorem.

Theorem 10. Algorithm 2 is (ε, δ)-differentially private. Let β ∈ (0,1). With probability 1 − β over the algorithm’s
randomness (the Laplace noise), the output q̂ satisfies

F̃λT (q̂) ≤ min
q∈∆m

F̃λT (q) +
2(µr̂4 + λ)

K
+

8µr2r̂2
√

2K log( 1
δ
) log(K) log(mK

β
)

εn
.

The proof relies on the smoothness property of F̃λT and the sensitivity bound on ∇F̃T (q). Using the approximation guarantee
of F̃T given in Corollary 1 together with Theorem 10 above, we reach the result of Theorem 5. The discrepancy guarantee
in Theorem 5 can be more precisely stated as the following corollary of Theorem 10.

Corollary 3. Let q∗ ∈ argmin
q∈∆m

dis(P̂ ,q). Let β ∈ (0,1). There exists a choice of K and µ in Algorithm 2 for which the

following holds: assuming w.l.o.g. that λ ≤ µr̂4, with probability at least 1 − β, the output q̂ satisfies

dis(P̂ , q̂) ≤ dis(P̂ ,q∗) + λ
2
∥q∗∥2

2 + Õ(Λ4r̂4/3r2/3

(εn)1/3 ),

where Λ is the ∥⋅∥2-bound on the predictors in H.

Proof of Theorem 10 For the privacy guarantee of Algorithm 2, first note that the global ∥⋅∥∞-sensitivity of ∇F̃λT (with
respect to replacing any data point in the private dataset) is the same as that of ∇F̃T , which is bounded by 2µr2r̂2

n
as

established in Corollary 1 (Part 3). Hence, by the setting of the scale of the Laplace noise and the privacy guarantee of

the Report-Noisy-Max mechanism [DR14, BLST10], it follows that a single iteration of Algorithm 2 is ( ε√
8K log( 1

δ )
,0)-

differentially private. The advanced composition theorem of differential privacy [DR14] thus implies that the algorithm is
(ε, δ)-differentially private.

We now prove the convergence guarantee. Let q̃ ∈ argmin
q∈∆m

Sλ(q). First, by Corollary 1 (Part 2), F̃T is µr̂4-smooth with

respect to ∥⋅∥1. Note also that λ
2
∥q∥2

2 is λ-smooth over q ∈ ∆m with respect to ∥⋅∥1. This follows from the fact that for any
q,q′ ∈ ∆m,

∥∇(λ
2
∥q∥2

2) −∇(λ
2
∥q′∥2

2)∥∞ = λ∥q − q′∥∞ ≤ λ∥q − q′∥1.

Hence, we get that the objective F̃λT is (µr̂4 + λ)-smooth with respect to ∥⋅∥1 over ∆m. Thus, by standard analysis of the
Noisy Frank-Wolfe algorithm (see, e.g., [TGTZ15, BGM21]), we have

F̃λT (q̂) − F̃λT (q̃) ≤
2(µr̂4 + λ)

K
+

K

∑
k=1

ηkαk,

where αk ≜ ⟨∇F̃λT (qk),ejk⟩− min
i∈[m]

⟨∇F̃λT (qk),ei⟩. By the tail properties of the Laplace distribution together with the union

bound, we get that with probability ≥ 1 − β, for all k ∈ [K], αk ≤ σ log(Km/β) = 4µr2r̂2
√

2K log( 1
δ ) log(Km/β)

nε
. Hence,
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given the setting of ηk, with probability ≥ 1 − β, the above bound simplifies to

F̃λT (q̂) − F̃λT (q̃) ≤
2(µr̂4 + λ)

K
+

8µr2r̂2
√

2K log( 1
δ
) log(K) log(Km/β)
nε

,

which completes the proof.

Proof of Corollary 3. The result can be obtained with the following choices of K and µ:

K = r̂4/3(εn)2/3

3r4/3 log1/3( 1
δ
) log2/3(n) log2/3(mn

β
)

µ =
√

K log(m + n)
8r̂4

.

E.2 Proof of Theorem 6

Next, we give an alternative private algorithm for minimizing the regularized smooth approximation of the discrepancy,
F̃λT . Compared to the guarantees of the private Frank-Wolfe algorithm, the optimization error of this algorithm exhibits
a better dependence on n at the expense of worse dependence on m. In particular, the excess error with respect to the
minimum discrepancy scales as Õ(m1/4

√
n

) (see Corollary 4). Whenm = Õ(n2/3), Algorithm 3 benefits from more favorable
generalization error guarantees than Algorithm 2.

Theorem 6. The Noisy Mirror Descent algorithm (Algorithm 3) is (ε, δ)-differentially private. Let q∗ ∈
argminq∈∆m

dis(P̂ ,q). There exists a choice of the parameters of Algorithm 3 such that with high probability over
the algorithm’s randomness, the output q̂ satisfies

dis(P̂ , q̂) ≤dis(P̂ ,q∗) + λ
2
∥q∗∥2

2 + Õ(m
1/4

√
εn

).

The above theorem follows as a corollary of the following theorem.

Theorem 11. Algorithm 3 is (ε, δ)-differentially private. Let β ∈ (0,1). If we set

K = (r̂2 + λ)2ε2n2

128µ2r̂4r4m log( 2m
β

) log( 1
δ
)
.

then with probability at least 1 − β over the algorithm’s randomness (Gaussian noise), the output q̂ satisfies

F̃λT (q̂) ≤ min
q∈∆m

F̃λT (q) +
46(λ + r̂2)µr2r̂2 log( 2m

β
)
√
m log( 1

δ
)

εn
.

Using the approximation guarantee of F̃T given in Corollary 1 together with Theorem 11 above, we reach the result of
Theorem 6. The discrepancy guarantee in Theorem 6 can be more precisely stated as the following corollary of Theorem 11.

Corollary 4. Let q∗ ∈ arg min
q∈∆m

dis(P̂ ,q). Let β ∈ (0,1). In Algorithm 3, set K as in Theorem 11. Then, there exists a

choice of µ such that the following holds: assuming w.l.o.g. that λ = O(r̂2), with probability at least 1 − β, the output q̂
satisfies

dis(P̂ , q̂) ≤ dis(P̂ ,q∗)) + λ
2
∥q∗∥2

2 + Õ(Λ2rr̂2m1/4
√
εn

),

where Λ is the ∥⋅∥2-bound on the predictors in H.

Proof of Theorem 11 First, we show that Algorithm 3 is (ε, δ)-differentially private. Note that for any q ∈ ∆m the
∥⋅∥2-sensitivity of ∇F̃λT can be upper bounded as ∥∇F̃λT (q) − ∇F̃λT ′(q)∥2 = ∥∇F̃T (q) − ∇F̃T ′(q)∥2 ≤ √

m∥∇F̃T (q) −
∇F̃T ′(q)∥∞ ≤ 2µr2r̂2

√
m

n
, where the last inequality follows from the sensitivity bound in Corollary 1. Thus, given the setting

of the Gaussian noise in the algorithm, the privacy guarantee of the Gaussian mechanism [DKM+06, DR14] together with
the Moments Accountant technique [ACG+16] show the claimed privacy guarantee.



Principled Approaches for Private Adaptation from a Public Source

Next, we prove the convergence guarantee. The analysis here is similar to the analysis of noisy mirror descent in

[BGN21, AFKT21]. First, it is known that Φ(q) ≜ ∥q∥2p
p−1

, where p = 1 + 1
log(m) , is 1-strongly convex with respect to ∥⋅∥1

(see, e.g., [NY83]). Moreover, DΦ ≜ max
q,q′

∣Φ(q) −Φ(q′)∣ ≤ 2 log(m). Note also that F̃λT is γ ≜ (r̂2 + λ)-Lipschitz w.r.t ∥⋅∥1,

which follows from the Lipschitz property of F̃T (Corollary 1) and the fact that λ
2
∥q∥2

2 is λ-Lipschitz with respect to ∥⋅∥1

over ∆m. Hence, by standard analysis of (noisy) mirror descent [NY83, NJLS09], we have (letting q̃ = argmin
q∈∆m

F̃λT (q))

F̃λT (q̂) − F̃λT (q̃) ≤
DΦ

2ηK
+ ηγ

2

2
+ η

2K

K

∑
k=1

∥Zk∥2
∞

≤2 log(m)
ηK

+ η(λ + r̂
2)2

2
+ η

2K

K

∑
k=1

∥Zk∥2
∞

where {Zk ∶ k ∈ [K]} are i.i.d. from N (0, σ2Im). By a concentration argument in non-Euclidean norms [JN08, Theorem
2.1], with probability ≥ 1 − β, we have 1

K ∑
K
k=1∥Zk∥2

∞ ≤ 4σ2 log( 2m
β

). Hence, with probability ≥ 1 − β, we have

F̃λT (q̂) − F̃λT (q̃) ≤
2 log(m)
ηK

+ η(λ + r̂
2)2

2
+ 2ησ2 log(2m

β
)

Thus, given the setting of σ (Step 5 of Algorithm 3), optimizing the bound above in η and K yields η = 2
(r̂2+λ)

√
log(m)
K

and

K = (r̂2+λ)2ε2n2

128µ2r̂4r4m log( 2m
β ) log( 1

δ )
. Plugging these values in the above bound yields the claimed bound.

Proof of Corollary 4. The following is the choice of µ yielding the statement of the corollary:

µ =
√
εn log1/4(m + n)

4rr̂
√

(λ + r̂2) log( 2m
β

)[m log( 1
δ
)]1/4 .
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