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Abstract

We present a new class of density estimation
models, Structural Maxent models, with fea-
ture functions selected from a union of possi-
bly very complex sub-families and yet benefit-
ing from strong learning guarantees. The de-
sign of our models is based on a new principle
supported by uniform convergence bounds and
taking into consideration the complexity of the
different sub-families composing the full set of
features. We prove new data-dependent learning
bounds for our models, expressed in terms of the
Rademacher complexities of these sub-families.
We also prove a duality theorem, which we use
to derive our Structural Maxent algorithm. We
give a full description of our algorithm, including
the details of its derivation, and report the results
of several experiments demonstrating that its per-
formance improves on that of existing L;-norm
regularized Maxent algorithms. We further sim-
ilarly define conditional Structural Maxent mod-
els for multi-class classification problems. These
are conditional probability models also making
use of a union of possibly complex feature sub-
families. We prove a duality theorem for these
models as well, which reveals their connection
with existing binary and multi-class deep boost-
ing algorithms.
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1. Introduction

Maximum entropy models, commonly referred to as Max-
ent models, are density estimation methods used in a
variety of tasks in natural language processing (Berger
et al., 1996; Rosenfeld, 1996; Pietra et al., 1997; Malouf,
2002; Manning & Klein, 2003; Ratnaparkhi, 2010) and in
many other applications, including species habitat model-
ing (Phillips et al., 2004; 2006; Dudik et al., 2007; Elith
etal., 2011).

Maxent models are based on the density estimation princi-
ple advocated by Jaynes (1957), which consists of selecting
the distribution that is the closest to the uniform distribution
or to some other prior, while ensuring that the average value
of each feature matches its empirical value. When close-
ness is measured in terms of the relative entropy, Maxent
models are known to coincide with Gibbs distributions, as
in the original Boltzmann models in statistical mechanics.

One key benefit of Maxent models is that they allow the
use of diverse features that can be selected and augmented
by the user, while in some other popular density estima-
tion techniques such as n-gram modeling in language pro-
cessing, the features are inherently limited. The richness
of the features used in many tasks as well as small sample
sizes have motivated the use of regularized Maxent mod-
els where the L;-norm (Kazama & Tsujii, 2003) or the
Lo-norm (Chen & Rosenfeld, 2000; Lebanon & Lafferty,
2001) of the parameter vector defining the Gibbs distribu-
tion is controlled. This can be shown to be equivalent to
the introduction of a Laplacian or Gaussian prior over the
parameter vector in a Bayesian interpretation (Williams,
1994; Goodman, 2004). Group sparsity regularizations can
also be used with for example L;- and Ly-norms: the pa-
rameter vector is partitioned into blocks with Ls-norm used
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within blocks and L;-norm for combining blocks (Huang
& Zhang, 2010).

An extensive theoretical study of these regularizations and
the introduction of other more general ones were presented
by Dudik et al. (2007). The generalization guarantees for
regularized Maxent models depends on the sample size and
the complexity of the family of features used. This de-
pendency suggests using relatively simpler feature families,
such as threshold functions over the input variables. How-
ever, feature functions selected from simpler families could
excessively limit the expressiveness of the model.

This paper introduces and studies a new family of density
estimation models, Structural Maxent models, which offers
the flexibility of selecting features out of complex fami-
lies, while benefiting from strong learning guarantees. Let
Hy, ..., H,be p families of feature functions with increas-
ing complexity. Hy could be for example the family of
regression trees of depth k or that of monomials of degree
k based on the input variables. The main idea behind the
design of our model is to allow the use of features from the
family of very deep trees or other rich or complex families
(that is, Hys with relatively large k), but to reserve less to-
tal model parameter weight for such features than for those
chosen from simpler families (Hys with smaller k). We
call our Maxent models structural since they exploit the
structure of H as a union of H;s. Note, however, that the
main idea behind the design of our models is distinct from
that of structural risk minimization (SRM) (Vapnik, 1998):
while SRM seeks a single H}, with an optimal trade-off be-
tween empirical error and complexity, structural Maxent al-
locates different model weights to features in different Hys
to achieve an even better trade-off based on multiple Hys.

In the following, we first define a new Structural Max-
ent principle for the general scenario where feature func-
tions may be selected from multiple families (Section 2.1).
Our new principle takes into consideration the different
complexity of each of these families and is supported by
data-dependent uniform convergence bounds. This princi-
ple guides us to design our new Structural Maxent mod-
els, whose regularization depends on the data-dependent
complexity of each of the feature families. We study
the optimization problem for Structural Maxent models
and present a duality theorem showing the equivalence of
the primal and dual problems, which can be viewed as
a counterpart of the duality theorem for standard Maxent
(Pietra et al., 1997) (see also (Dudik et al., 2007)) (Sec-
tion 2.2). Next, we present data-dependent learning guar-
antees for our Structural Maxent models in terms of the
Rademacher complexity of each of the feature families
used (Section 2.3). The amount of total parameter weight
apportioned to each family in our models is quantitatively
determined by our new Maxent principle and further jus-

tified by these learning guarantees. In Section 2.4, we
describe in detail our StructMaxent algorithm, including
the details of its derivation and its pseudocode. Our al-
gorithm consists of applying coordinate descent to the dual
objective function proceeding in the same way as (Dudik
et al., 2007) for L;-norm regularized Maxent. We derive
two versions of our algorithm differing only by the defi-
nition of the step, which is based on minimizing different
upper bounds. The first version of our algorithm uses the
same upper bounding technique as Dudik et al. (2007) for
Li-norm regularized Maxent, and, as with the algorithm
of Dudik et al. (2007), is subject to several assumptions.
The second version of our algorithm does not require any
assumption and leads to a simpler analysis, at the cost of
only slightly slower convergence. We prove convergence
guarantees for both versions of our algorithm.

In Section 3, we further extend our ideas to the scenario
of multi-class classification. We present a new conditional
Maxent principle for the case where multiple feature fami-
lies are used (Section 3.1), which leads to the definition of
our conditional Structural Maxent models. These are con-
ditional probability models that admit as a special case ex-
isting conditional Maxent models, or, equivalently, multi-
nomial logistic regression models. We prove a duality the-
orem showing the equivalence of the primal and dual op-
timization problems for our conditional Structural Maxent
models. This shows that these models precisely coincide
with the DeepBoost algorithms of Cortes et al. (2014) and
Kuznetsov et al. (2014) in the special case where the sur-
rogate loss function used is the logistic function. Thus, our
algorithm benefits from the data-dependent learning guar-
antees and empirical validation already presented for deep
boosting. Conversely, our analysis and new conditional
structural Maxent principle provide an alternative justifi-
cation in support of deep boosting. In Section 4, we report
the results of extensive experiments with data from various
domains including community crimes, traffic and species
habitat modeling. Our results show the advantage of our
structural Maxent models for density estimation when com-
pared to existing regularized Maxent models.

2. Structural Maxent models

Let X denote the input space. We first consider the follow-
ing problem of density estimation. Assume that a sample
S = (z1,...,%m) € X™ of m points drawn from an un-
known distribution D is given and that we have at our dis-
posal a feature vector ®(x) associated to each pointx € X.
Then, the standard density estimation problem consists of
using the sample S and the features to find a distribution p
that forms a good estimate of D.

We consider the general case of infinite families of feature
functions. Note that even standard families of threshold
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functions over a finite set of variables have infinite size.
Let Hy, ..., Hpbe p > 1 families of functions mapping X’
to R with each feature function falling in one of these fam-
ilies. Assume that the Hys have increasing Rademacher
complexities. For example, H; may be composed of some
simple feature functions ¢, Hs the set of all products ¢
with ¢, € Hi, and, more generally, H; may contain all
monomials of degree k over functions in H;. In fact, it
is common in some applications where Maxent is used to
design new features precisely in this manner, starting with
some basic features, here H;. Similarly, H; may be the set
of regression trees of depth k& with node questions based on
threshold functions of some set of variables or, more com-
plex functions of these variables as in splines.

2.1. Principle

The key idea behind our new Maxent formulation is to take
into consideration the distinct complexity of each family of
feature functions Hj. Let ® be the feature mapping from
X to the space F, with F =F; x --- x F,,. Forany z € X,
®(z) can be decomposed as ®(z) = (®1(z),..., ®p(x)),
with @), a mapping from X to Fy, such that ||®g||eo < A,
for all k& € [1,p], and with each of its components ®y, ;
in Hi. By a standard Rademacher complexity bound
(Koltchinskii & Panchenko, 2002) and the union bound, for
any 0 > 0, the following inequality holds with probability
at least 1 — 9 over the choice of a sample of size m:

B [®u()] — B [@u(@)]]| <

x~D o
log 22
2R, (Hy) + Ay =2, (1)
2m

for all k € [1,p]. Here, we denote by E,s[®x(z)] the
expected value of ®; with respect to the empirical distri-
bution defined by the sample S. Let pg be a distribution
over X with pg[z] > 0 for all x € X, typically chosen to
be the uniform distribution. In view of (1), our extension of
the maximum entropy principle (see Jaynes (1957; 1983))
consists of selecting p as the distribution that is the closest
to po and that verifies for all k € [1, p]:

E [@4(2)] = E [@x(2)]|| < 2% (H) + 5,

z~p

where 8 > 0 is a parameter. Here, closeness is measured
using the relative entropy. Let A denote the simplex of
distributions over X, then, our structural Maxent principle
can be formulated as the following optimization problem:

min D(p || po), s.t.Vk € [1,p] : 2)
peEA

E [®c(0)] = B [@x(@))| < 2%u(H) + 8.
x~p INS (o]

Since the relative entropy, D, is convex with respect to
its arguments and since the constraints are affine, this de-
fines a convex optimization problem. The solution is in fact

unique since the relative entropy is strictly convex. Since
the empirical distribution is a feasible point, problem (2) is
feasible. For any convex set K, let I denote the function
defined by Ix(z) = 0if ¢ € K, Ix(x) = 4oc other-
wise. Then, the problem can be equivalently expressed as
min, F'(p) where

F@ZD@M®+M®+M@@N A3)

where A is the simplex and where C is the convex set de-
fined by C' = {u: ||ux — Es[®i]|lcc < Br, Yk € [1,p]},
with 8, = 2R, (Hy) + B.

2.2. Dual problem

As for the standard Maxent models with L, constraints
(Kazama & Tsujii, 2003) (see also (Dudik et al., 2007)), we
can derive an equivalent dual problem for (2) or (3) formu-
lated as a regularized maximum likelihood problem over
Gibbs distributions. Let G be the function defined for all w
in the dual of F by

m

G(w) = %Zlog [p‘;’ [IZ]]

po[zi

P
} = Bilweli, @
k=1

Wb Wb ()

with pw = Po[m]g and Zw = Y, Polz]e
For simplicity, we assume that the dual of F is R"V. Then,
the following theorem gives a result similar to the duality

theorem of (Pietra et al., 1997).
Theorem 1. Problems (2) and (3) are equivalent to the
dual optimization problem sup, cpn G(W):
sup G(w) = min F(p). ®)
weRN P
Furthermore, let p* = argmin,, F'(p), then, for any € > 0
and any w such that |G(w) — supy,cpn G(W)| < € the
following inequality holds: D(p* || pw) < €.

The proof is given in Appendix A (Theorem 1). In view
of the theorem, if w is an e-solution of the dual optimiza-
tion problem, then D(p* || pw) < €, which, by Pinsker’s
inequality implies that py, is v/2e-close in Li-norm to the
optimal solution of the primal: ||p* — pw]|[1 < v/2¢. Thus,
the solution of our structural Maxent problem can be deter-
mined by solving the dual problem, which can be written
equivalently as follows:

y4

. 1 ¢
oJnf Blwl+2 > R (H)l[ Wil — - > log pulai].

k=1 i=1

(6)
The difference in problem (6) with respect to the common
L -regularized Maxent problem is the remarkable new sec-
ond term, which is defined by the Rademacher complexities
of the Hys. This term penalizes more the norm of a weight
vector wy, associated to a feature vector selected from a
complex hypothesis set Hy.
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2.3. Generalization bound

Let £Lp(w) denote the log-loss of the distribution py, with
respect to a distribution D, Lp(w) = E,p[— log pw[z]],
and similarly £g(w) its log-loss with respect to the empir-
ical distribution defined by a sample S.

Theorem 2. Fix 6 > 0. Let W be a solution to the opti-

mization (6) with § = A log 5 . Then, with probability at
least 1 — 0 over the sample S ED( ) is bounded by

log 22
inf Lo %85 }

2m

p
W) 42wkl [mm(Hk) + A
k=1

Proof. Using the definition of Lp(w) and Lg(w),
Holder’s inequality, and inequality (1), with probability at
least 1 — ¢, the following holds:

Lp(W) — Ls(W)

= % [B[®] - B8]

Il
-

W - [g[‘l’k] - g‘[q’k]]

=
Il
-

1Will1 [ E[®4] = E[®]]lo

M%

>
Il
—

W1 (8 + 2R, (Hg)).

Mw

>
Il
—

Thus, since w is a minimizer, we can write for any w
Lp(wW) — Lp(w)

= LD(VAV) —Ls(W) + Ls(W) — Lp(w)

Z||Wk|| (B + 2Rm (Hy)) + Ls(W) = Lp(w)

Mﬁ Il

Wil (8 + 2%, (Hy)) + Ls(w) — L (W)

=

M-

<2

Wi [1(B + 2R, (Hy)),
k

1

where we used in the last step the left inequality counterpart
of inequality (1). This concludes the proof. O

This bound suggests that learning with feature functions
selected from highly complex families (relatively large
R, (Hy)) can benefit from favorable learning guarantees
so long as the total weight assigned to these features by the
model is relatively small.

2.4. Algorithm

Our algorithm consists of applying coordinate descent to
the objective function of (6). Ignoring the constant term

—-L 5™ log polw;), the optimization problem (6) can be

m
rewritten as infy, F'(w) with

P

= Bulwili—w E[@]+log [ Y pola]e™ *™],
k=1 TEX

and B = S + 2R,,(Hy) for k € [1, p]. Function F' is not

differentiable but it is convex and admits a subdifferential

at any point. For notational simplicity, we will assume that

each [F, is finite.

2.4.1. DIRECTION

Let w;_1 denote the weight vector defined after (¢ — 1)
iterations. At each iteration ¢ € [1, 7], the direction e, j,
(k,7) € [1,p] x [1, Ni], with Nj being the size of Fy,
considered by coordinate descent is 0 F'(wy_1, ey ;).

If we—1,%,; # O, then ' admits a directional derivative
along ey, ; given by

F'(Wi_1,ep;) = Brsgn(wi—1,,j) + €—1,k,5-

where €1, = Ep,,, [®k,;] — Es[®k,;]. fwi—1k,; =0,
F admits right and left directional derivatives along ey, ;:
Fi(wi-1,er;) = Br + €1, and FL(wi_q,ep ;) =
—Br + €1—1,k,j- Thus, in summary, we can write,

(SF(Wt,h e;w‘) =

Brsgn(wi—1k;) + €—1ky  if (W1 #0)
0 else if‘thl,k,j’ S Bk
_Bk Sgn(etfl,k}j) + €t—1,k,j otherwise.

The coordinate descent algorithm selects the direction ey, ;
with the largest numeric value of 0 F'(w;_1, e ;).

2.4.2. TWO ALTERNATIVE STEP SIZES

Given the direction ey, ;, the optimal step value 7 is given
by argmin, F'(w;—1 + ney ;). 1 can be found via a line
search or other numerical methods. We can also derive a
closed-form solution for the step by minimizing an upper
bound on F'(w;_1 + ey, ;). We present closed-form solu-
tions based on two different but related upper bounds. The
full argument is given in Appendix C. In what follows, we
highlight the main steps of these derivations.

Observe that

F(wi_1+ney;) — F(wi_1) @)

= Bulwey + 0l = [wigl) —nEl@w] +log | E[e"]].
Wi—1

STEP SIZE — STRUCTMAXENT1

Since ®, ; €
can write

[—A, +A], by the convexity of z — €"*, we

NPy ; A=Pp,; —nA Py, i+A nA
el < —mpe T+ R
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Taking the expectation and the log yields

& A_FT —nA
Py p,€"" = Py g e

log B[] <log ox ,

Pw;_q

where we used the following notation:

=S

@t—l,k‘,j = E [@k’]] + SA

Wit—1

6271‘ = Ig[q)k,j] + sA,

forall (k,j) € [1,p] x [1, Ni] and s € {—1,+1}.

Plugging back this inequality in (7) and minimizing the
resulting upper bound on F(w,_q1 + ney ;) — F(w;_1)
leads to the closed-form expression for the step size n. The
full pseudocode of the algorithm using this closed-form
solution for the step size, StructMaxentl, is given in Ap-
pendix B.

Note that the following condition on ®, A and 85 must be
satisfied:

(B [@4,1¢ {—A,+A}) A (E[0r)l < A= Be). )
Wit—1

This first version of StructMaxent uses the same upper

bounding technique as the L;-norm regularized Maxent al-

gorithm of Dudik et al. (2007), which is subject to the same

type of conditions as (8).

STEP SIZE — STRUCTMAXENT2

An alternative method is based on a somewhat looser up-
per bound for log Ey,, [e"®k.i] using Hoeffding’s lemma.
A key advantage is that the analysis is no more subject
to conditions such as (8). Additionally, the StructMax-
ent2 algorithm is much simpler. The price to pay is a
slightly slower convergence but, as pointed out in Sec-
tion 4, both algorithms exhibit an exponential convergence
and lead to the same results. By Hoeffding’s lemma, since
5, ; € [-A, +A], we can write

772A2

log B [e"™]<n E [0+
Pw,_

Pw;_1q 1

Combining this inequality with (7) and minimizing the re-
sulting upper bound leads to an alternative closed-form so-
lution for the step size 1. Figure 1 shows the pseudocode
of our algorithm using the closed-form solution for the step
size just presented.

2.5. Convergence analysis

The following result gives convergence guarantees for both
versions of our StructMaxent algorithm.

Theorem 3. Let (w;); be the sequence of parameter vec-
tors generated by StructMaxentl or StructMaxent2. Then,
(W) converges to the optimal solution w* of (6).

STRUCTMAXENT2(S = (x1,...,Zm))
1 fort«+ 1to7 do

2 for k +— 1topand j + 1to Ny do
3 if (wt_Lk,j 7é 0) then
4 di,j < Brsgn(wi—1 k) + €—1.5,;
5 elseif [e;_1 1 ;| < (i then
6 dk’j +~0
7 else dj;  —fBrsgn(ei—1k,;) + €—1,k;
8 (k,j) « argmax |dk. ;|
(k,3)€[1,p] X [1,Nk]
9 if (th_Lk,jAQ — 6t—1,k,j| < ﬂk) then
10 1 —Wi—1k,j
11 elseif (w;_1 ;A% — €,-1,k,; > Bx) then
12 N 2= [—Br — -1,k
13 else 1<« 5= [Br — €r—1,x5]
14 Wi < Wi_1 + ney ;
15 po[x]e‘w-@(m)
Pwe 5 ol

16 return pyy,

Figure 1. Pseudocode of the StructMaxent2 algorithm. For all
(k,j) € [L,p] x [L, Nk], Bk = 2Rm(Hy) + B and €—1,5,; =
Epy,_[®k,j] — Es[®y,;]. Note that no technical assumption such
as those of (8) are required here for the closed-form expressions
of the step size.

The full proof of this result is given in Appendix D. We also
remark that if the step size is determined via a line search,
then our algorithms benefit from an exponential conver-
gence rate (Luo & Tseng, 1992).

3. Conditional Structural Maxent Models

In this section, we extend the analysis presented in the pre-
vious section to that of conditional Maxent models, also
known as multinomial logistic regression.

We consider a multi-class classification problem with ¢ > 1
classes and denote by ) = {1,...,c} the output space
and by D the distribution over X x ) from which pairs
(x,y) € X x Y are drawn i.i.d. As in standard super-
vised learning problems, the learner receives a labeled sam-
ple S = ((z1,y1)s-- -, (Tm,Ym)) € (X x )™ and, as
in Section 2.1, we assume the learner has access to a fea-
ture function ®: X x ) — [ that can be decomposed as
® = (®q,...,9,), where for any k € [1, p|, Py, is a map-
ping from X x ) to I, with elements in Hy,.

3.1. Principle

Our conditional Structural Maxent, or structural logistic re-
gression models can be defined in a way similar to that of
density estimation. Here, the problem consists of learning a
conditional probability p[-|x] for all z € X. As in the den-
sity estimation case, we will denote by p|[-|«] a conditional
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probability, often chosen to be the uniform distribution.

As in the density estimation case, the definition of our
algorithm is guided by a generalization bound expressed
in terms of the Rademacher complexity of the families
Hy. For any § > 0, the following inequality holds with
probability at least 1 — § over the choice of a sample of
size m, forall k € [1,p]:

E [@uey)] - E [¢k<z,y>JH < B ©)
~P T~P IS
y~DI-|x] y~pl[-|z]

where we denote by Eg the expectation over the empirical
distribution defined by sample S and 8, = 2R,,(Hy) +

102g 25 Letp p denote the empirical distribution of the in-
put points. Our structural conditional Maxent model is de-
fined by searching the conditional probabilities p[-|z] that
are as close as possible to po[-|z], while ensuring an in-
equality similar to (9), where closeness is defined via the
conditional relative entropy based on p (Cover & Thomas,
2006). This leads to the following convex optimization

problem:

min x;(ﬁm D(p[[2] || pol-|2]) (10)
st.|| B [WEM[@,C(%y)ﬂ - <x,£~s[q)’“(x’y”Ho@

< 2R, (Hyp) + B, Vke€[l,p)],

where we again denote by A the simplex in ). Let p de-
note the vector of conditional probabilities (p[-|2;])ic[1,m]-
Then, this problem can be equivalently expressed as
min, F'(p) where

F9)=E_|D (ol | polel)+ 1 ()| +1c ( B, [#])
y~pl-|x]

(1)

where A is the simplex and C' the convex set defined by

C = {u: |uy — Es[®]lloc < Bk, Vk € [1, p]}, with 8, =

2R, (Hg) + 5.

3.2. Dual problem
Let G be the function defined for all w € RN by

Zl {pw’yﬁxz] Zﬁkllwklll, (12)

yzl‘rz]
with, for all z € X, pw[y|z] = [9”2167(30) and Zy (z) =
[ ] w-<I>(x)'

> zex Polrle Then, the following theorem gives a
result similar to the duality theorem presented in the non-
conditional case.
Theorem 4. Problem (10) is equivalent to dual optimiza-
tion problem sup, cpn G(W):

sup G(w) = minﬁ(p).

weRN P

13)

Furthermore, let p* = argmin, ﬁ'(p) Then, for any € > 0
and any w such that |G(w) — SUDy, eRN G(w)| < € we
have By [D(p*a] || pola])] < e

The proof of the theorem is given in Appendix A (Theo-
rem 4). As in the non-conditional case, the theorem sug-
gests that the solution of our structural conditional Maxent
problem can be determined by solving the dual problem,
which can be written equivalently as follows:

p m
. 1
inf wll1 2 Y R (H) w1 =~ > log [pu ]

k=1 i=1
(14)
We note that problem (14) coincides with the optimization
problem presented by Cortes et al. (2014) and Kuznetsov
et al. (2014) for the DeepBoost algorithms in the particular
case where the logistic function is used as a convex sur-
rogate loss function. Our analysis and derivation starting
from the conditional Maxent principle provide an alterna-
tive justification for these algorithms. In return, our con-
ditional StructMaxent algorithm benefits from the learning
guarantees already given by deep boosting.

4. Experiments

This section reports the results of our experiments with
the StructMaxent algorithm. We have fully implemented
both StructMaxentl and StructMaxent2 with diverse fea-
ture families and will make the software used in our ex-
periments available as open-source. We do not report em-
pirical results for the conditional StructMaxent algorithm
since, as already pointed out, the conditional algorithm co-
incides with the deep boosting algorithms that have been
already extensively studied by Cortes et al. (2014).

Our StructMaxent algorithm can be applied with a variety
of different families of feature functions Hy mapping the
input space X to R. In our experiments, we used the union
of two broad classes of feature maps: monomial features
H™or and tree features H". Let H"" = {41, ..., 9¥q}
denote the set of raw features mapping X to R. We de-
fine H" = {4, - ;. jr € [1,d]} as the set of all
monomials of degree k derived from H{"°" and H™" as
the union of all these families: H™*" = UP2 | H*". Sim-
ilarly, we denote by H,"** the set of all binary decision trees
with k internal nodes, where the node questions are thresh-
old functions 1, (;)<p With j € [1,d] and § € R, and
where the leaves are labeled with zero or one and define
H' as the union of these families: H"™* = U2 | H*.
Note that our monomial and tree features are strict general-
izations of the product features and threshold features used
by Phillips et al. (2004; 2006) and Dudik et al. (2007).

The hypothesis set H = H™" J H" is infinite and can
be very large even for a bounded monomial degree and for
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Table 1. Experimental comparison of Maxent algorithms.

Dataset Maxent | Li-Maxent | StructMaxent Dataset Maxent | L;-Maxent | StructMaxent
b. variegatus 19.95 15.67 13.36 m. minutus 17.41 12.20 10.25
(0.54) (0.33) (0.28) (0.87) (0.78) (0.30)
arson 5.93 5.75 5.68 murders 5.38 5.23 517
(0.02) (0.01) 0.02) (0.02) (0.02) 0.02)
rapes 6.42 6.22 6.16 robberies 5.14 5.00 4.94
(0.02) (0.01) (0.01) (0.01) (0.01) (0.01)
burglary 6.04 5.85 5.78 assault 6.65 6.35 6.30
0.01) (0.01) (0.01) (0.02) (0.01) (0.01)
larceny 5.83 5.65 5.58 auto theft 5.93 5.75 5.68
0.01) (0.01) (0.01) (0.02) (0.01) 0.02)
traffic 14.72 13.85 13.00
(1.11) (0.24) (1.01)

trees restricted to the finite training sample. Thus, exhaus-
tively searching for the best monomial in H™°" and the
best decision tree in H" is not tractable. Instead, we
used the following greedy procedure: given the best mono-
mial m(z) of degree k (starting with k& = 0), we find the
best monomial of degree k + 1 that can be obtained from
m(z) by multiplying it with one of ¢ € H{"". Similarly,
given the best decision tree of size k, we find the best de-
cision tree of size k£ + 1 that can be obtained by splitting
exactly one leaf of the given tree. Let @4, ..., ®;_; be fea-
tures chosen by the algorithm after the first ¢ — 1 iterations.
Then, on the ¢-th iteration, the algorithm selects a feature
from {®q,...,D;_1,t*, m*}, where t* is the tree and m*
the monomial obtained by the procedure just described.

Note that StructMaxent requires the knowledge of the
Rademacher complexities R,,, (H},), which in certain cases
can be estimated from the data. For simplicity, in our ex-
periments, we used the following upper bounds

mono 2klogd
R (HE™™) < o
(15)
%m( geeS) S \/(4k + 2) 10g2(d7n+ 2) log(m + 1) ,

and we redefined 5; as B, = ABjy + 3, where By, is the
appropriate choice of an upper bound in (15) and where
the parameter A is introduced to control the balance be-
tween the magnitude of By, and 3. The proof of these upper
bounds is given in Appendix E.

In our experiments, we determined both parameters A and 3
through a validation procedure. Specifically, we optimized
over A\, 8 € {0.0001,0.001,0.01,0.1,0.5,1,2}. Remark-
ably, in all of our experiments the best value of A was 0.1.
We compared StructMaxent with L;-regularized Maxent
(Kazama & Tsujii, 2003; Phillips et al., 2004; 2006; Dudik
et al., 2007) which is the special case of StructMaxent with
A = 0. Lp-regularized Maxent is the only algorithm used
for experiments in (Phillips et al., 2004; 2006; Dudik et al.,
2007). The parameter /3 of L;-Maxent was set in the same
way as for the StructMaxent algorithm. We compared the

performance of StructMaxent to that of L;-Maxent and to
standard Maxent (A = 8 = 0) which served as our base-
line. Following Phillips et al. (2004), we ran each algo-
rithm for 500 rounds, or until the change in the objective
on a single round fell below 107>,

For our experiments, we used a number of different datasets
related to species habitat modeling, traffic modeling, and to
communities and crimes, which we describe in the follow-
ing subsections.

4.1. Species habitat modeling

Species habitat modeling is among the most prominent ap-
plications of Maxent models (Phillips et al., 2004; 2006;
Dudik et al., 2007; Elith et al., 2011). For our experiments,
we used two data sets from (Phillips et al., 2006) which
are accessible from http://www.cs.princeton.edu/
~schapire/maxent. These datasets consist of a set of
648,658 geographical locations in South America which
constitute the input space X. For each of these locations,
we have a set of environmental variables such as temper-
ature and precipitation, which constitute our raw features
Y1, ...,1q. For each location, we are also given the num-
ber of times a particular kind of species has been observed,
which defines the sample S used as an input to Maxent al-
gorithms. The first dataset consists of 116 observations of
bradypus variegatus and the second dataset has 88 obser-
vations of microryzomys minutus. The task consists of es-
timating the geographical distribution of each species.

For each species, we first randomly split the sample .S into
a training set S; (70%) and a test set S5 (30%). We trained
all algorithms on .S; and used the error on S5 to find the op-
timal value of the parameters A and 8. Next we again split
the sample into a training set S; (70%) and a test set .S}
(30%). Using the best parameter values found on the previ-
ous step, each algorithm was trained on S{ and the log-loss
on S) was recorded. We repeated the last step 10 times
and reported the average log-loss over these 10 runs. This
experimental setup matches that of (Phillips et al., 2004;
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2006), with the exception of the validation step, which is
omitted in both of these references.

4.2. Minnesota traffic modeling

We also experimented with a Minnesota traffic dataset
(Kwon, 2004) which is accessible from http://www.d.
umn.edu/~tkwon/TMCdata/TMCarchive.html. This
dataset contains traffic volume and velocity records col-
lected by 769 road sensors over the period of 31 days with
an interval of 30 seconds between observations. The input
space X is the set of sensor locations and the task con-
sists of estimating traffic density at each particular location
based on the historical data. More precisely, we chose 11
times t1,...,%11 on the 31st day starting at midnight and
separated by one hour. For computational efficiency, in-
stead of using the whole history, we defined the raw fea-
tures 11, ..., 14 as the historical volume and velocity av-
erages for each of the past 30 days, augmented with data
from the past hour collected every 10 minutes. For any
time t;, there are between 1,000 to 20,000 cars observed
by all of 769 sensors. For each time ¢;, we randomly se-
lected 70% of observations for training and the remaining
observations were reserved for testing. Data from the first
time ¢; was used to determine the best parameters A and 3.
The parameter values were then fixed and used for training
on the remaining ten times to,...,%11. We report log-loss
on the test set averaged over these 10 time values.

4.3. Communities and crime

We used the UCI Communities and Crime dataset as an-
other test case for StructMaxent algorithm. This dataset
contains demographic and crime statistics for 2,215 US
communities. Each community represents a point x in the
input space X' and we define base features 1); to be vari-
ous demographic statistics. The goal is to model the likeli-
hood of certain types of crimes based on the demographic
statistics available. The data set includes 8 different types
of crime: murder, rape, robbery, burglary, assault, larceny,
auto theft and arson. For each type of crime, there are be-
tween 17,000 to 5,000,000 records. To speed up our exper-
iments, we randomly sub-sampled 11 training sets of size
5,000 for each type of crime (with the remaining data used
for testing). As before, the first training and test sets is
used to determine the best values for the parameters A and
B, and we report the averaged log-loss on the test set when
training with A\ and [ fixed at these values.

4.4. Results and discussion

The results of our experiments are presented in Table 1.
They show that StructMaxent provides an improvement
over L;-Maxent that is comparable to the improvement of
L1-Maxent over standard Maxent models. All of our re-

Table 2. Average AUC values.

b. variegatus m. minutus

Maxent 0.810 £0.020 0.879 £+ 0.141
L1-Maxent 0.817 £0.027 0.972 + 0.026
StructMaxent  0.873 & 0.027  0.984 + 0.006

sults are statistically significant using paired t-test at 1%
level. Furthermore, StructMaxent outperforms other algo-
rithms on each of the individual runs. Our experiments in-
dicate that the performances of StructMaxentl and Struct-
Maxent2 are comparable — both better than that of L;-
regularized and non-regularized Maxent in terms of log-
loss. Note that for the species habitat modeling experi-
ments, Phillips et al. (2004; 2006) report only AUC (Area
Under the ROC curve) values, which measure ranking qual-
ity, instead of the log-loss optimized for density estimation.
They do so by treating the absence of any recorded ob-
servation at a particular location as a negative label. For
completeness, we also report AUC results for our experi-
ments in Table 2. StructMaxent outperforms other methods
in terms of AUC as well.

The convergence of StructMaxent2 is somewhat slower
than that of StructMaxentl, but both exhibit exponential
convergence. Finally, note that the running time of our
StructMaxent algorithms is similar to that of L;-Maxent.

5. Conclusion

We presented a new family of density estimation mod-
els, Structural Maxent models, which benefit from strong
data-dependent learning guarantees and can be used even
with complex feature families. Our experiments demon-
strated the empirical advantage of these models. We also
introduced a new family of conditional probability models
for multi-class classification, structural conditional Maxent
models, and showed them to coincide with deep boosting
when using the logistic function as a surrogate loss. Our
conditional structural Maxent principle provide additional
support in favor of this family of algorithms.

As with standard Maxent models (Lafferty, 1999), our
structural Maxent models can be generalized by using an
arbitrary Bregman divergence (Bregman, 1967) in place of
the (unnormalized) relative entropy. Much of our analy-
sis and theoretical guarantees straightforwardly extend to
cover this generalization, modulo some additional assump-
tions on the properties of the Bregman divergence used.
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A. Duality

The following is a version of the Fenchel duality theorem
(see (Rockafellar, 1997)).

Theorem 5. Let X and Y be Banach spaces, and f: X —
RU{4+oc}and g: Y — RU{+o0} convex functions. Let
A: X — Y be a bounded linear map. If g is continuous at
some point y € Adom(f), then the following holds:

inf (f(z) + g(Az)) = sup (—f"(A"y") = g"(=y")),
rzeX yrEY*
(16)
where f* and g* are conjugate functions of f and g respec-

tively, and A* the adjoint of A. Furthermore, the supremum
in (16) is attained if it is finite.

The following lemma gives the expression of the conjugate
function of the (extended) relative entropy, which is a stan-
dard result (Boyd & Vandenberghe, 2004).

Lemma 6 (Conjugate function of the relative entropy). Let
f: RY — R be defined by f(p) = D(p || po) if p € A and
f(p) = 400 elsewhere. Then, the conjugate function of f
is the function f*: RY — R defined for all q € R* by

= log ( Z po[x}eq[x]> = log (rgpo[eq[m}])

zeX

Proof. By definition of f, for any q € R, we can write

sup ((p,a) = D(p || po)) = sup ({p,a) —=D(p [ po))-

peERX pe
Fix q € R* and let g € A be defined for all € X by

_[x] B po[x]eq[”] B po[x]eq[w]
W= cepolalet®l — By led]

Then, the following holds for all p € A:

a7

(@) = D(p || Po) = Eflog(e)] ~ E [log %}
=E [1og M}
P p

~D(p | a) +log Ble7].

Since D(p || §) > 0 and D(p || ) = 0 for p = q, this

shows that sup,e A (p -q—D(p | po)) = log (E,f,0 [eq])
and concludes the proof. O

Theorem 1. Problem (2) and (3) are equivalent to the dual
optimization problem supy,cpn G(W):

sup G(w) :mpinF(p). (18)

weRN

Furthermore, let p* = argmin, F'(p), then, for any € > 0
and any w such that |G(W) — supycpny G(W)| < € the
following inequality holds: D(p* || pw) < e

Proof. The proof follows by application of the Fenchel du-
ality theorem (Theorem 5, Appendix A) to the optimization
problem (3) with the functions f and g defined for all p and
uby f(p) = D(p || po) + Ia(p) and g(u) = Ic(u) and
with A the linear map defined by Ap = E,[®].

A is a bounded linear map since ||A]] < [Pl < A
and A*w = w - ®. Furthermore, define u € F by
u;, = Eg[®;]. Then, uisin Adomf and is in C. Since
Br > 0 for all k, u is contained in int(C). g = I equals
zero over int(C') and is therefore continuous over int(C'),
thus g is continuous at u € Adomf.

By Lemma 6, the conjugate of f is the function f*: RY —
R defined by f*(q) = log (3, cx Polz]ed®)) for all q €
R*. The conjugate function of g = I¢ is the function g*
defined for all w € RY by

g*(w) = sup (w ‘u - Ic(u))

ueC
= sup(w - u)
ucC
= ()
P
- swp (wieuy)

k=1 v —Es[®x]llcc <Brk

—Zwk ECI'k Z sup
k= 1Huk‘|oo<6k

(W - uy)

:g[w-w;mnwkul,

where the penultimate equality holds by definition of the
dual norm. In view of these identities, we can write

—fH(AW) — g7 (-w)

= —log ZPO

zeX

W‘P(m) +Ew P| — Zﬁknwk”l

Zﬁk||wk||1

Zﬁk\\wkﬂl

P x?' ] 3 Bullwilh = Glw),
1] k=1

—log Zw + — Zw ®(z;)

z_l

I
3|
7
o%

Il
3=
1M:
5}
OS]

which proves that supy,cgpn G(W) = min, F/(p). For any
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w € RN, we can write

G(w) —D(p" ||

_M{ } ; il ~ B [tog 230
E [k’g pw[xx]] Zv.f[ﬂ

DG [pw) z il

pw(w)] .

The difference of the last two terms can be expressed as
follows

E [log [x]} E [log P 7]

T~p o[z] zrp*
= B [w (@) —logZu] = B _[w-®(x) - log Zu]
= E W @)~ E [w- @)

Plugging back this equality and rearranging yields

D(p" || pw) = D(p"
p

= Bellwall +w-

k=1

I'po) — G(w)

(Ej2@]- B [#0)]).

z~p*

The solution of the primal optimization, p*, verifies the
constraint Io(Ep«[®]) = 0, that is || E,5[®x(z)] —
Epmp [®r(2)]|lcc < Bk for all k € [1,p]. By Holder’s
inequality, this implies that

= Bellwell + w- (xlgﬁ[q)(x)] - E [‘I’(x)o

x~p*
k=1

p

M'B Il

Brllwellr + Zﬂk [Welly = 0.

k=1

ol
I
—

Thus, we can write, for any w € RY,

D(p* || pw) < D(p" [| po) — G(W).

Now, assume that w verifies |G(W) — supy,cpy G(W)|
¢ for some ¢ > 0. Then, D(p* | po) — G(w)
supy, G(w) — G(w) < ¢ implies D(p* || pw) < €. This
concludes the proof of the theorem.

I IA

O

-3¢ |wk||1+2wk( @ela)] B [@4(x)

Theorem 4. Problem (10) is equivalent to dual optimiza-
tion problem sup, cpn G(W):

sup G(w) = min F(p). (19)

weRN P
Furthermore, let p* = argmin, ﬁ(p) Then, for any € > 0

and any w such that |G(w) — SUDyw RN G(w)| < ¢ we
have By [D(p" 2] || pol-a])| < e

Proof. The proof follows by application of the Fenchel du-
ality theorem (Theorem 5, Appendix A) to the optimization
problem (11) with the functions f and g defined for all p

and uby f(p) = Eyp [D(p[|e] | polal) + La (pLla]) ]
and g(u) = I¢(u) and with A the linear map defined by
Ap=E .5 [®(z,9)].

y~p[-|z]

A is a bounded linear map since ||A]] < ||®||oc < A. Note
that

Ap= B[] =) > @@ yplalplylz]
y~pl|e] rEXYEY
= D (ll®(,) - (p[|2]).
z€supp(p)

Thus, the conjugate of A is defined for all w € R by
A*w = w - (p(z)®(z,y)). Furthermore, define u € F
by up = E(g,)~s[®xr(z,y)]. Then, uisin Adomf and
isin C. Since Bj > 0 for all £, u is contained in int(C).
g = I¢ equals zero over int(C') and is therefore continuous
over int(C), thus g is continuous at u € Adomf.

The conjugate function of f is defined for all q =
(al|z])ie(1,m) bY

fr@) = sup {(p,a)— > Blz] D(p[-|a] || pol-|z])}
pllz]eA TEX
= swp {3 Ble) Y plylelalylal (Ble))
PLIZIEA > cupp(P) yey
— X" BlalD(plfa] |l polla]) |
x€supp(p)
B S 1 (AWl
3 otlam {3 obi ()

— D(pl-Je] || pola]) }
= s (%)

x€supp(p)

where £, is defined for all z € X and p’ € RY by f(p’) =
D(p" || pol-lx]) if p € A, f(p') = +oo otherwise. By
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N alylz]
) = o (S, ol

Lemma 6, f (

) thus,
f* is given by

In view of these identities, we can write

— [ (Aw) =g (~w)
=— E [1og (Z polylx]e™” <I>(I7v)):|
yey
- ZﬁkHWkHl
P
= wE [lOgZ ZW (I) wzvyz Zﬁknwk”l
k=1

W (}(Iuyz

Zlog
1 ilo [pw [yi|2i]
m g

i—1 Po yz|xz

Zﬁk”wkﬂl

} S Brlwill = Glw),
k=1

which proves that supy,cpny G(w) = ming F(p). The sec-
ond part of the proof is similar to that of Theorem 1. For
any w € RYN . we can write

G(w) - L D@l [ pol D)
B N
<x,£~S[ po[ylw]} ,;ﬁkll i
P [y|7]
- wa,};ﬁm} [log Po[y|$]]
B Pwlvl#]] S i
= B foe S 2, Bl
P*[yl2] pwlylz]
yNa;]E[ﬁx {log pw(ylz] poly|z] ]
= EDE ] [l pwlla]] ZﬂkIIWkHl
pw[y|] . o pw[y‘x]
(@.y)~S { & po[ylw]} y;’:?:ﬁm] [l . po[ylx]} '

The difference of the last two terms can be expressed as

follows
[gpw[ylx]}_ o [logpw[ym]}
(@.y)~S poly|z] o~ poly|z]
y~p*[-]z]
= E [w-®(z,y)—log Zw(v)]
(x,y)NS
- E_ [w-®(z,y) - log Zw(7)]
y~p*[I~)II]
= E [w-®@y]- E [w-®(2y)].
(z,y)~S z~p
y~p”[|z]

Plugging back this equality and rearranging yields

E_[D(p*[ ] [| pw(-|x])]

T~p

Zﬁk||wk||1

E D" Fle] | polfa))

(w,y)~S x:[Pl |
y~p[|z

The solution of the primal optimization, p*, verifies
the constraint Ic(E .5 [®(z,v)]) 0, that is
y~p*[-|z]
|E e ][‘Pk(w,y)] — B y)~s[ @iz, y)llle < Bi for
y~p*[|@

all k € [1, p]. By Holder’s inequality, this implies that

p
— > Bellwlh
k=1

+w- [ E [w-®x,y)]—- E_ [w-®(z,y)]
(z,y)~S z~D
y~p”[-|z]
P
<= Bellwil + Zﬁk”wklh =0.
k=1 k=1
Thus, we can write, for any w € RY,
xEﬁ[D(P*['M | pw|])]
< ZEﬁ[D(P* [|2] || pol|2])] — G(w).

Now, assume that w verifies |G(W) — supyegsy G(W)| <
¢ for some ¢ > 0. Then, E, 3D(p*[|z] |
pol|z])] — G(w) = sup,, G(w) — G(w) < e implies
E,5[D(p*[-|z] || pw[|z])] < e. This concludes the proof
of the theorem. O

B. Pseudocode of StructMaxent1

Figure 2 shows the pseudocode of StructMaxent1.
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STRUCTMAXENTI1(S = (z,...
1 fort«+ 1to7 do

s Tm))

2 for k +— 1topand j + 1to Ny do
3 if (wt_Lk,j 7é 0) then
4 di,j ¢ Brsgn(wi—1,k,5) + €11,k
5 elseif [e;_1 1 ;| < (i then
6 dk’j +~0
7 else dj ;j < —fBk Sgn(etfl,k’j) + €1,k
8 (k,j) « argmax |d. ;|
. (k,5)elt, p]é[l &)
6t—1,k‘jq>k_j67 Vgt (I)k 76: 1,k,j

9 B+ 5j1k’_2wkj B,
10 if (|8| < Bi) then
11 N —Wi—1,k,j
12 elseif (5 > jj) then

By (B—T1 )
13 — Lo log | etk T kil

i 2K 108 ‘bt 1kj(5k ‘1’1@3)

<I>t 1,k ](5k+<bk ])
14 else <« 5 log Tp—f T
15 Wi & Wi_1 + ey ;
16 — pofa]e™t 1)

Pwi 7 T polaleme

17 return py,

Figure 2. Pseudocode of the StructMaxentl algorithm. For all
(k,j) € [L,p] x [L,Nk], Br = 2Rm(Hi) + B, €—105 =
Epw, [®Pk,j] — Es[®k,;] and, for any s € {~1,+1}, @f,l)k,j =
Ep,, ,[®k;]+sAand By, ; = Es[®x ;] + sA. The closed-form
solutions for the step size given here assume that the conditions
(8) hold.

C. Algorithm

In this section we derive the step size for the StructMaxent1
and StructMaxent2 algorithms presented in Section 2.4 and
Appendix B.

Observe that

F(wi_1+ney;) — F(wi_1) (20)

= Bellwe + ] = [wn)) = nElPy ] +log |

Pw;_1

Since ®, ; € [—A, +A], by the convexity of x — €, we
can write
NP < APy e~ P,y + AenA
- 2A 2A

Taking the expectation and the log yields

log E [e"@’“d’] <log

Pw;_1

1 A A
‘I)tq,k,je" ‘I’t 1,k,5€ -
2A
q)t 1,k je "

2A

= —nA + log {

E [6ﬂ<1>k,.7] .

@t—l,k,j]

where we used the following notation:

=S

D, 4, = E [@p;]+sA By =E[Py;] + sA,

Pw,_q ’ S

forall (k,j) € [1,p] x [1, Ni] and s € {—1,+1}.

Plugging back this inequality in (20) and ignoring constant
terms, minimizing the resulting upper bound on F'(w;_1 +
neg, ;) —F(w:_1) becomes equivalent to minimizing (1)
defined for all € R by

Y(n) = Brlwy,j+n|— an),”—i-log[ g€ =0, l,lc,j]

Let n* denote the minimizer of ¢)(n). If wy_1  ; +1* =0,
then the subdifferential of |w;_1 k. ; + 1| at n* is the set
{v: v € [-1,+1]}. Thus, in that case, the subdifferential
oY (n*), contains 0 iff there exists v € [—1, +1] such that

& 20" A
P T

—+
, A _
t—1,k,j t—1,k,j
— 2A®f_1 k j@izwt_l’k’JA
== Qk,] —_ > = Bkl/.
w _
Oy etk =0
Thus, the condition is equivalent to
—+ _ .
—t 2A(I)t—1 k je 2wt_1‘k"7A
(I)k i — < /Bk
J <I>+ 2w 1A _ ’
t—1,k,j t—1,k,j
which can be rewritten as
Ft T —2w
Q1 1, Pr e kot ‘I’k: D1k <5
—+ —= = k-
—2wp i A
Qg e It =Py g

If wi_1x,; +n" > 0, then ¢ is differentiable at n* and
Y’ (n*) = 0, that is

. 2n* A
2AD,_, kje n

—+
8- (I)k,j p— =0
NIRRT U PR
o 21N _ 615—1.,k,j(3k - cbk,j)
= — —
q)tfl,k,j(ﬂk - ‘I)k,j)
= =+
1 D, . -, .
PN 7]* _ = 10g t—1,k,j (ﬁk‘ k,])

7+ —_ M
2A ‘I’tq,k,j(ﬂk - (bk,j)

For the step size n* to be in R, the following conditions
must be met:

(B 1 py 2 0) A (B, 1, # O)A
((Br — @y ;) < 0) A ((Br — @) #0),

that is

(E [‘Pkﬂéf{ A HADAERy 5] > —A+5). 2D

Wt
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The condition w;_1 . ; + 1™ > 0 is equivalent to 2 A >
e 2wt-1.650 which, in view of the expression of e2n A
given above can be written as

Ft T 2wk A _®&T
Py g g Prei€ " — Py Py g

— — > P

—2wyp ;A
g g I =Py

Similarly, if w1, +n* < 0, ¢ is differentiable at n*
and ¢’ (n*) = 0, which gives

— —+
1 D, 14 + &, .
* _ 710g t 1,k,J(ﬂk k’,j) '

7_)'_ —_—
Q14 (Be + Py 5)

Again for the step size n* to be in R, the following condi-
tions must be met:

(B4 OV A (@1 s, # 0N
((Br + By ;) # 0) A ((By + @, ) < 0),

that is

(E [®k;] & {=A+AD) A (E[@r;] < A = B).

Pw_1 S

Combining with condition 21, the following condition on
®, A and S5 must be satisfied:

(B [@p;]¢{-A,+A}A

Pw;_q

(7/\ + ﬁk < %}[‘I)k’j] <A - ﬂk)

Figure 2 shows the pseudocode of our algorithm using the
closed-form solution for the step size just presented.

An alternative method consists of using a somewhat looser
upper bound for logE,,, [e"®r3] using Hoeffding’s
lemma and @, ; € [-A, +A]:
2A2
log B[] <y B [0+ .
Pw

Pw;_1 t—1

Combining this inequality with (20) and disregarding con-
stant terms, minimizing the resulting upper bound on
F(wi—1+nex ;) — F(w;_1) becomes equivalent to min-
imizing ¢(n) defined for all ) € R by

2A2

2

n
©(n) = Brlwk,; +nl +net—1,k,5 +

Let n* denote the minimizer of (7). If wy_1 x ; +1* =0,
then the subdifferential of |wi_1 5 ; + 1| at n* is the set
{v: v € [-1,+1]}. Thus, in that case, the subdifferential
d¢(n*) contains 0 iff there exists v € [—1, +1] such that

2 2
Bruv+ei—1 ;40 A =0 w1 g ;A —€—15,; = BrV.

The condition is therefore equivalent to

|wi—1, A% — €155 < Br-

If wi_y1%; +n* > 0, then ¢ is differentiable at n* and
¢’ (n*) =0, that is

* * 1
Br +e—1,k,;+1 N=0s n = p[*ﬁk - Et—l,k,j]-

In view of that expression, the condition w;_1 5 ; +71* > 0
is equivalent to

2
W1,k ;N — €—1,5 > Br.

Similarly, if w;—1x; +n* < 0, ¢ is differentiable at n*
and ¢’ (n*) = 0, which gives

N 1
n= F[ﬁk - €t71,k,j]-

Figure 1 shows the pseudocode of our algorithm using the
closed-form solution for the step size just presented.

D. Convergence analysis

In this section, we give convergence guarantees for both
versions of the StructMaxent algorithm.

Theorem 3. Let (w;); be the sequence of parameter vec-
tors generated by StructMaxentl or StructMaxent2. Then,
(wy¢ )¢ converges to the optimal solution w* of (6).

Proof. We begin with the proof for StructMaxent2. Our
proof is based on Lemma 19 of (Dudik et al., 2007), which
implies that it suffices to show that F'(w;) admits a fi-
nite limit and that there exists a sequence u; such that
R(us, wy) — 0as ¢t — oo, where R is some auxiliary
function. A function R is said to be auxiliary if

p
R(u,w) = To(w) + > ilwilly +w - E[®] +w - u
k=1

+ B(u | E[®]).

where B is a Bregman divergences. We will use the Breg-

man divergence based on the squared difference:
_ u— By, (P13
Bu | E[@]) = P

Let go(u) = I (u) 4+ w-u and observe that using the same
arguments as in the proof of Theorem 1, we can write

9o(r) = sup ((r=w) - u—TIc(w)

p
= (r—w) E[®] + > Billre — wills-
k=1
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Similarly, if fo(u) = B(u || Ep,, [®]), then
fi(r) = sup(e -~ Blu | E[@))
= % +7r- pE [(I)]

Therefore, applying Theorem 5 with A = I, we obtain

2
(A g
2 Pw,

p
+ > Bellwerlh — |
k=1

~r B[]

u

inf R(u, w) = sup

and we define u; to be the solution of this optimization
problem, which, in view of Theorem 5, does exist. We will
now argue that R(u;, w;) — 0 as ¢ — co. Note that

p N

Zme(f—i—r

k=1 j=1

R(ug, wy) [‘I)k J] [(I)k J])

).

Recall that, by definition of StructMaxent2, the following

+ Brlwe k. j| — Brlr + w5

holds for all (k,j) € [1,p] x [1, Ng]:
F(Wt) - F(Wt+1) (22)
>_~%53+(E@1_E@1)
z —inf (5 +r(E ;] — Bl
+ Brlwt k| — Brlr + we k. )

2 07

where the last inequality follows by taking » = 0.
Therefore, to complete the proof, it suffices to show that
lim; o F'(Wy) is finite, since then F'(w;) — F'(wyy1) — 0
and R(u¢, wy) — 0. By (22), F(w;) is decreasing and
it suffices to show that F'(w;) is bounded below. This
is an immediate consequence of the feasibility of the op-
timization problem infy, F'(w) which was established in
Section 2.2 and the proof for StructMaxent2 is now com-
plete.

The proof for StructMaxentl requires the use a different

Bregman divergence B defined as follows:

p N

Z ZDO pr;(u

k=1 j=1

B(u| E[® ) I ori (E[2]),

where Dy is unnormalized relative entropy, ¢p;(u) =
((A—ug,j), (A + ug,;)) and ||ulloc < A. The rest of the
argument remains the same. O

D),

E. Bounds on Rademacher complexities

In this section, we give the proof of the upper bounds on
Rademacher complexities given in (15):

2klogd
m HmOHO <
R (H™) < -
0, (HI) < \/(4k+2) log, (d +2) log(m + 1)
o m

The first inequality is an immediate consequence of Mas-
sart’s lemma, which states that

[bup Zam} < 7“21%'14'

m

)

x€A

where A C R" is a finite set, r = maxxea ||x||2 and o;s
are Rademacher random variables. If we take A to be the
image of the sample under H'*" then |A| < |HP™| <
d*. Moreover, if the features in H 1°"° are normalized to
belong to [—1,1] then A = 1 and » = y/m. Combin-
ing these results with Massart’s lemma leads to the desired
bound.

Now we derive the second bound of (15). Since each binary
decision tree in H gees, can be viewed as a binary classifier,
Massart’s lemma yields that

210 H trees | 770
R, () < g Ly ( )7
m

where I (m) is the growth function of H}**. We use
Sauer’s lemma to bound the growth function: I gyuees (m) <
(em)VC-dm(H™) " For the family of binary decision trees
in dimension d it is known that VC-dim(H}**) < (2k +
1) log,(d 4+ 2) (Mansour, 1997) and the desired bound fol-

lows.
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