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This paper presents an exhaustive analysis of the problem of computing the Lp distance
of two probabilistic automata. It gives efficient exact and approximate algorithms for
computing these distances for p even and proves the problem to be NP-hard for all odd
values of p, thereby completing previously known hardness results. It further proves the
hardness of approximating the Lp distance of two probabilistic automata for odd values
of p. Similar techniques to those used for computing the Lp distance also yield effi-
cient algorithms for computing the Hellinger distance of two unambiguous probabilistic
automata both exactly and approximately.

A problem closely related to the computation of a distance between probabilistic
automata is that of testing their equivalence. This paper also describes an efficient algo-
rithm for testing the equivalence of two arbitrary probabilistic automata A1 and A2 in
time O(|Σ| (|A1| + |A2|)3), a significant improvement over the previously best reported
algorithm for this problem.

1. Introduction

A probabilistic automaton is a finite automaton with transition probabilities which

represents a distribution over the set of all strings defined over a finite alphabet.

Probabilistic automata have been extensively studied in a variety of areas of com-

puter science. They are used in a variety of applications, including text and speech

processing [14], image processing [8], and computational biology [9].

These automata are typically derived from large data sets using statistical learn-

ing algorithms. The convergence of these algorithms is often tested by measuring the

distance between the probabilistic automata obtained after consecutive iterations.

The computation of the distance between probabilistic automata is also needed in
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other learning problems such as clustering when the objects to cluster, e.g., doc-

uments, images, biosequences, are modeled as Hidden Markov Models (HMMs) or

probabilistic automata. This motivates our study of the computation of standard

distances between probabilistic automata.

In a companion paper [6], we give an exhaustive study of the problem of com-

puting the relative entropy, or Kullback-Leibler divergence, of two probabilistic au-

tomata. In particular, we present an efficient algorithm for computing the relative

entropy of two unambiguous probabilistic automata [5] and show that the general

case is (at least) PSPACE-complete.

Here, we present a full analysis of the problem of computing the Lp distance of

two probabilistic automata, extending our previous results reported in [4]. We give

efficient exact and approximate algorithms for computing these distances for p even

and prove that the problem is NP-hard for all odd values of p using a reduction

from the Max-Clique problem by [19]. These latter results complete those given by

[19] who showed the problem to be NP-hard for L1 and L∞. We further show the

hardness of approximating the Lp distance of two probabilistic automata for odd

values of p.

Similar techniques to those used for computing the Lp distance can be used to

compute other distances. As an example, we give efficient algorithms for computing

the Hellinger distance of two unambiguous probabilistic automata both exactly and

approximately.

A problem closely related to that of computing a distance between two prob-

abilistic automata is to test for their equivalence. Our algorithm for computing

the L2 distance of two arbitrary probabilistic automata A1 and A2 provides in

fact a polynomial-time method for testing their equivalence since A1 and A2 are

equivalent iff their L2 distance is zero. However, we will describe an even more effi-

cient algorithm based on Schützenberger’s standardization technique [21, 2] with a

running-time complexity of O(|Σ| (|A1|+ |A2|)3). This is a significant improvement

over the previously best algorithm reported for this problem whose complexity is

O(|Σ| (|A1|+ |A2|)4)) [24].

The remainder of the paper is organized as follows. Section 2 introduces some

basic algebraic definitions and notation related to probabilistic automata needed for

the description of our algorithms. Section 3 gives the definition of some standard

distances used between distributions and some of the main inequalities relating

them. Section 4 presents an exhaustive analysis of the problem of computing the Lp

distance of probabilistic automata, including efficient algorithms for computing the

L2p distance (Section 4.1), the proof that the computation of the L2p+1 distance is

NP-hard (Section 4.2), a hardness of approximation result (Section 4.3), and results

related to the computation of the absolute value of the difference of two probabilistic

automata (Section 4.4). The problem of the computation of the Hellinger distance of

probabilistic automata is examined in detail in Section 5. Finally, Section 6 describes

an efficient algorithm for testing the equivalence of two probabilistic automata.



Distances between Probabilistic Automata 3

2. Preliminaries

Definition 1. Let (K,⊗, 1) be a monoid. A function Φ : (R+, ·, 1) → (K,⊗, 1) is

said to be a monoid morphism if Φ(1) = 1, Φ(0) = 0, and Φ(x · y) = Φ(x) ⊗ Φ(y)

for all x, y,∈ R+.

Definition 2 ([13]) A semiring is a system (K,⊕,⊗, 0, 1) such that:

• (K,⊕, 0) is a commutative monoid with 0 as the identity element for ⊕,

• (K,⊗, 1) is a monoid with 1 as the identity element for ⊗,

• ⊗ distributes over ⊕: for all a, b, c in K,

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b).

• 0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

A semiring K is said to be closed if for all a ∈ K, the infinite sum
⊕∞

n=0 an is well-

defined and in K, and if associativity, commutativity, and distributivity apply to

countable sums [16]. K is said to be k-closed if for all a ∈ K,
⊕k+1

n=0 an =
⊕k

n=0 an.

More generally, we will say that K is closed (k-closed) for an automaton A, if the

closedness (resp. k-closedness) axioms hold for all cycle weights of A [16]. In some

semirings, e.g., the probability semiring (R+, +, ·, 0, 1), the equality
⊕k+1

n=0 an =⊕k
n=0 an may hold for the cycle weights of A only approximately, modulo ǫ > 0. A

is then said to be ǫ-k-closed for that semiring.

Definition 3 ([10, 20, 2]) A weighted automaton A = (Σ, Q, I, F, E, λ, ρ) over a

semiring (K,⊕,⊗, 0, 1) is a 7-tuple where:

• Σ is the finite alphabet of the automaton,

• Q is a finite set of states,

• I ⊆ Q the set of initial states,

• F ⊆ Q the set of final states,

• E ⊆ Q× Σ ∪ {ǫ} ×K×Q a finite set of transitions,

• λ : I → K the initial weight function mapping I to K, and

• ρ : F → K the final weight function mapping F to K.

We denote by |A| = |E| + |Q| the size of an automaton A = (Σ, Q, I, F, E, λ, ρ),

that is the sum of the number of states and transitions of A. Given a transition

e ∈ E, we denote by i[e] its input label, p[e] its origin or previous state and n[e] its

destination state or next state, w[e] its weight (weighted automata case). Given a

state q ∈ Q, we denote by E[q] the set of transitions leaving q.

A path π = e1 · · · ek in A is an element of E∗ with consecutive transitions:

n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek]

and p[π] = p[e1]. We denote by P (q, q′) the set of paths from q to q′ and by P (q, x, q′)

the set of paths from q to q′ with input label x ∈ Σ∗. The labeling function i and the

weight function w can also be extended to paths by defining the label of a path as the

concatenation of the labels of its constituent transitions, and the weight of a path
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as the ⊗-product of the weights of its constituent transitions: i[π] = i[e1] · · · i[ek],

w[π] = w[e1]⊗ · · · ⊗ w[ek].

The output weight associated by an automaton A to an input string x ∈ Σ∗ is

defined by:

[[A]](x) =
⊕

π∈P (I,x,F )

λ[p[π]]⊗ w[π]⊗ ρ[n[π]]. (1)

Definition 4. A weighted automaton A defined over the probability semiring

(R+, +,×, 0, 1) is said to be probabilistic if for any state q ∈ Q,
⊕

π∈P (q,q) w[π],

the sum of the weights of all cycles at q, is well-defined and in R+ and
∑

x∈Σ∗

[[A]](x) = 1. (2)

A probabilistic automaton A is said to be stochastic if at each state the weights of

the outgoing transitions and the final weight sum to one.

Observe that our definition of probabilistic automata differs from that of [18]

and [17]. Probabilistic automata as defined by these authors are weighted automata

over (R+, +,×, 0, 1) such that at any state q and for any label a ∈ Σ, the weights of

the outgoing transitions of q labeled with a sum to one. More generally, with that

definition, the weights of the paths leaving state q and labeled with x ∈ Σ∗ sums to

one. Such automata define a conditional probability distribution Pr[q′ | q, x] over

all states q′ that can be reached from q by reading x.

Instead, with our definition, probabilistic automata represent distributions over

Σ∗, Pr[x], x ∈ Σ∗. These are the natural distributions that arise in many applica-

tions. They are inferred from large data sets using statistical learning techniques.

We are interested in computing various distances between two such distributions

over strings.

A weighted automaton is said to be unambiguous if for any string x ∈ Σ∗ it

admits at most one accepting path labeled with x. It is said to be deterministic or

subsequential if it has a unique initial state and if no two transitions leaving the

same state share the same input label.

The computation of single-source shortest-distances is needed in many of the

algorithms presented in the following sections. We denote by s[A] the ⊕-sum of the

weights of all successful paths of a weighted automaton A when it is defined and

in K. s[A] can be viewed as the shortest-distance from the initial states to the final

states.

When the semiring K is closed, or when A is closed for K, s[A] can be computed

exactly using a generalization of the Floyd-Warshall algorithm in time O(|A|3) and

space Ω(|A|2), assuming a constant cost for the semiring operations [16].

3. Distances between Distributions

There are many standard distances or discrepancies used to compare distributions

which can also serve to compare probabilistic automata. Some of the most com-
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monly used ones are: the relative entropy or Kullback-Leibler divergence D,a the Lp

distance, the Hellinger distance, the Jensen-Shannon distance JS, the χ2-distance,

and the triangle distance ∆ between two distributions q1 and q2 defined over a

discrete set X :

D(q1‖q2) =
∑

x∈X

q1(x) log
q1(x)

q2(x)

Lp(q1, q2) =
( ∑

x∈X

|q1(x) − q2(x)|p
)1/p

L∞(q1, q2) = max
x∈X
|q1(x)− q2(x)|

Hellinger(q1, q2) =
( ∑

x∈X

(√
q1(x)−

√
q2(x)

)2 )1/2

JS(q1, q2) =
∑

x∈X

(
q1(x) log

2q1(x)

q1(x) + q2(x)
+ q2(x) log

2q2(x)

q1(x) + q2(x)

)

χ2(q1, q2) =
∑

x∈X

(q1(x) − q2(x))2

q2(x)

∆(q1, q2) =
∑

x∈X

(q1(x) − q2(x))2

q2(x) + q2(x)
.

(3)

Several general inequalities relate these distances [23, 7] including the following ones

(the last one holds when the set X is finite and of size n):

[L1(q1, q2)]
2/2 ≤ D(q1‖q2)

Hellinger(q1, q2)/2 ≤ ∆(q1, q2)/2 ≤ JS(q1, q2)

JS(q1, q2) ≤ log(2)∆(q1, q2) ≤ 2 log(2)Hellinger(q1, q2)

L2(q1, q2)

L∞(q1) + L∞(q2)
≤ ∆(q1, q2) ≤ L1(q1, q2) ≤

√
nL2(q1, q2).

(4)

The problem of computing the relative entropy D of two probabilistic automata

is examined in a previous publication [5] and exhaustively treated in a companion

paper [6]. The following sections present a study of the computation of the Lp

distances and the Hellinger distance of two probabilistic automata. Several of our

results can be generalized straightforwardly to other distances using similar ideas.

4. Lp Distance of Probabilistic Automata

This section presents an exhaustive analysis of the problem of computing the Lp

distance of two automata. We give efficient exact and approximate algorithms for

computing these distances for p even and prove the problem to be NP-hard for all

aThe relative entropy is not symmetric and does not satisfy the triangle inequality.
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odd values of p. These latter results complete those given by [19] who showed the

problem to be NP-hard for L1 and L∞.

4.1. L2p Distance of Probabilistic Automata

In [19], the authors give an approximate algorithm to compute the L2 distance be-

tween two HMMs A1 and A2. Their algorithm applies to the specific cases of HMMs

in which each state belongs to at most one cycle.b This section presents a simple

and general algorithm for the computation of the L2p distance of two arbitrary

probabilistic automata, for p ∈ N. Our algorithm computes (L2p(A1, A2))
2p. The

L2p distance between A1, A2 can then be obtained straightforwardly by taking the

2pth root. (L2p(A1, A2))
2p can be rewritten as:

(L2p(A1, A2))
2p =

∑

x∈Σ∗

|[[A1]](x) − [[A2]](x)|2p =
∑

x∈Σ∗

([[A1]](x)− [[A2]](x))2p

=
∑

x∈Σ∗

2p∑

i=0

(
2p

i

)
([[A1]](x))i(−[[A2]](x))2p−i (5)

=

2p∑

i=0

(
2p

i

)
(−1)i

∑

x∈Σ∗

([[A1]](x))i([[A2]](x))2p−i. (6)

In the first line, we could remove the absolute values since the exponent is even.

This is crucial and is the reason why we need to treat the case of the L2p+1 distance

separately.

Let T (i, 2p− i) denote
∑

x∈Σ∗([[A1]](x))i([[A2]](x))2p−i. Note that if A1, A2 are

acyclic, then one can compute T (i, 2p − i) exactly using a generalization of the

single-source shortest-distance algorithm [16] that works for arbitrary semirings, in

linear time O(|A1|+ |A2|).
Next, let us consider the case of unambiguous automata A1, A2. If Ai =

(Σ, Qi, Ii, Fi, Ei, λi, ρi), i = 1, 2, then the transitions in the intersection automa-

ton A = A1 ∩A2 are defined according to the following rule:

(q1, a, w1, q
′
1) ∈ E1 and (q2, a, w2, q

′
2) ∈ E2 ⇒ ((q1, q2), a, w1w2, (q

′
1, q

′
2)) ∈ E.

Since we are dealing with unambiguous automata, we can avoid the re-computation

of the intersection automaton for different is. During intersection, instead of mul-

tiplying w1 and w2, we keep instead the pair (w1, w2). Then, we only need

to intersect A1 and A2 once, and modify the weight of each transition in the

intersection automaton for different is in the computation of T (i, 2p − i) as

((q1, q2), a, (wi
1(w2)

2p−i), (q′1, q
′
2)). Running the shortest-distance algorithm over the

intersection automaton with weights modified as described above yields T (i, 2p− i).

Computing the intersection automaton takes O(|A1||A2|) time.

bFor more general HMMs, they claim without proof that an iterative version of their method
yields an approximate algorithm that works in time O((|A1|+ |A2|)6p). The approximation factor
does not appear explicitly in this complexity term however.
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Thus, if we use the exact algorithm to compute the shortest-distance, then for

each i, computing T (i, 2p−i) costs O(|A1∩A2|3) time and Θ(|A1∩A2|2). Therefore,

the time complexity of computing the 2p-distance between A1, A2 is O((2p)|A1 ∩
A2|3) and the space complexity Θ(|A1 ∩A2|2).

Theorem 5. The L2p distance of unambiguous probabilistic automata can be com-

puted exactly in time O(2p|A1|3|A2|3).

Note that this theorem significantly improves the result of [19], which is exponen-

tial in p. Thus, for unambiguous automata, our algorithms are, to the best of our

knowledge, the only polynomial time algorithms for computing the L2p distance

exactly.

For the computation of the L2p-distance of arbitrary automata, we can no longer

intersect A1 and A2 just once. Since there may be multiple paths in Ai, i = 1, 2

with the same label, cross terms appear in T (i, 2p− i). For example if w1 and w2

are the weights of two paths in A1 with labels x and the path with weight w′ is

the (only) path in A2 with label x, then the contribution of string x to T (i, 2p− i)

is (w1 + w2)
i(w′)2p−i, leading to cross terms of the type

(
i
j

)
wj

1w
i−j
2 w′2p−i, j ≤ i.

This makes it necessary to perform separate intersections for each i, hence a total

of 2p intersections. The computational cost and space complexity of intersection

to compute T (i, 2p − i) is in O(|A1|i|A2|2p−i). Thus, the exact shortest-distance

algorithm has complexity O((|A1|i|A2|2p−i)3). This leads us to the following result.

Theorem 6. The L2p distance of two arbitrary probabilistic automata A1 and A2

can be computed in time
∑2p

i=0 O((|A1|i|A2|2p−i)3) = O((|A1|+ |A2|)6p).

4.2. L2p+1 and L∞ Distance of Probabilistic Automata

The problem of computing the L1 or L∞ distance of two probabilistic automata

was shown to be NP-hard by [19], even for acyclic automata. Here, we extend these

results to the case of arbitrary L2p+1 distances, where p ∈ N.

Our proof of the hardness of computing the L2p+1 distance between two acyclic

probabilistic automata is by reduction from the Max-Clique problem and is based

on a technique used by [19].

Given a graph G = (V, E), one can construct an acyclic weighted automaton AG

over the probability semiring of size polynomial in |V |+ |E| such that [[AG]](x) = k

for some string x iff G has a clique of size k.

Let n = |V |. AG is constructed as follows. It has a single initial state qs and a

single final state qt. For each i ∈ V , it admits the following transitions:

(a) a transition from qs to qi,0 with label ǫ and weight 1;

(b) a transition from qi,n to the final state qt with label ǫ and weight 1;

(c) a transition from qi,i−1 to qi,i with label i and weight 1;

(d) a transition from qi,j−1 to qi,j with label ǫ and weight 1 for each j 6= i; and

(e) if (i, j) ∈ E, a transition from qi,j−1 to qi,j with label j and weight 1.



8 Corinna Cortes, Mehryar Mohri, and Ashish Rastogi
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2

3

4

(a)

qs

(1, 0)

ε/1

(2, 0)
ε/1

(3, 0)

ε/1

(4, 0)

ε/1

(1, 1)1/1

(2, 1)ε/1
1/1

(3, 1)ε/1
1/1

(4, 1)ε/1
1/1

(1, 2)ε/1
2/1

(2, 2)2/1

(3, 2)ε/1
2/1

(4, 2)ε/1

(1, 3)ε/1
3/1

(2, 3)ε/1
3/1

(3, 3)3/1

(4, 3)ε/1

(1, 4)ε/1
4/1

(2, 4)ε/1

(3, 4)ε/1

(4, 4)4/1

qt

ε/1

ε/1

ε/1

ε/1

(b)

Fig. 1. (a) Undirected graph G = (V, E). (b) The corresponding automaton AG constructed in the
reduction.

The size of AG is clearly polynomial in |V | + |E|. Given a set S ⊆ V , let

[S] denote the ordered tuple with elements of S. For example, if S = {3, 1, 2}, then

[S] = (1, 2, 3). By construction, for any clique S, AG contains a distinct path labeled

with [S] starting at the initial state and going through qi,0 for each i ∈ S (see Fig. 1

for an example with [S] = (1, 2, 3).) Since all accepting paths have the same weight

1, this proves the property that [[A]](x) = k for some string x iff G has a clique of

size k.

The automaton AG is not probabilistic. But, an equivalent probabilistic automa-

ton without ǫ-transitions can be computed from AG by using the weighted ǫ-removal

algorithm [15], and a weight-pushing algorithm can be used to normalize the sum

of its weights to one [14]. We first establish the result with AG and later describe

how to convert AG into a probabilistic automaton.

Theorem 7. The problem of computing the L2p+1 distance of two probabilistic au-

tomata is NP-hard.

Proof. The proof is based on a reduction using an algorithm for the computation
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40 1
ε/1
1/1

2
ε/1
2/1

3
ε/1
3/1

ε/1
4/1

Fig. 2. The constant automaton C4 for G assigning the weight 4 to all subsequences of the set
{1, . . . , 4}. Note that the final state has a final weight of 4.

of the L2p+1 distance as a subroutine to define an algorithm for solving the Max-

Clique problem. Using the notation adopted by [19], let ak denote the number of

strings accepted by AG with weight exactly k. Thus determining the maximum k

such that ak 6= 0 is equivalent to determining the size of the largest clique.

For each i ∈ {0, 1, . . . , n}, let Ci denote the constant weighted automaton as-

signing the same weight i to all ordered subsequences of {1, . . . , n} and weight 0 to

all other strings. Fig. 2 shows the constant automaton for n = 4. By definition of

the L2p+1 distance,

∀i ≥ 0, [L2p+1(Ci, AG)]2p+1 =
∑

x∈Σ∗

|[[AG]](x) − [[Ci]](x)|2p+1 (8)

=
∑

x∈Σ∗

|[[AG]](x) − i|2p+1 (9)

=

n∑

j=0

aj |i− j|2p+1 (10)

This defines a system of linear equation with unknown variables aj , j = 0, . . . , n.

Let M ∈ R
(n+1)×(n+1) be the matrix defined by Mi,j = |i− j|2p+1, i ∈ {0, 1, . . . , n}

and let A ∈ R
n+1 be the column vector containing the ajs. If M is invertible, then

A can be defined with respect the L2p+1 distance of the automata Ci and AG, which

will prove the statement of the theorem.

This matrix is a specific Toeplitz matrix, but it is not straightforward to compute

its determinant [19]. Instead, we can do our reasoning in Z3. In Z3, the coefficients

of M are either 0, 1, or −1, regardless of the value of p. The determinant of M in

Z3 is given by:

det(M) =






−1 if n + 1 ≡ 2 (mod 3)

1 if n + 1 ≡ 0 (mod 3)

0 if n + 1 ≡ 1 (mod 3).

(11)

We delay the proof of this fact to Lemma 8.

This implies that for all n ∈ N such that n is of the form n ≡ ±1 (mod 3), the

matrix M of size (n + 1)× (n + 1) defined by Mi,j = |i− j|2p+1, i ∈ {0, 1, . . . , n} is

invertible in R. Therefore, for n ≡ ±1 (mod 3), one can compute the column vector

A and determine the size of the largest clique in the original graph G. This leaves

us only with the case where n ≡ 0 (mod 3) in the original graph G = (V, E). But,
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in this case, one can add a “dummy vertex” to G that is connected to all other

vertices of V . Doing so increases the size of the largest clique by exactly one, and

yields a graph G′ = (V ′, E′) with |V ′| ≡ 1 (mod 3). Since the size of the largest

clique in G is one less than the size of the largest clique in G′, the reduction is

complete. Thus, the problem of determining the computing 2p+1 distance between

two probabilistic automata is NP-hard.

We conjecture that the problem of computing the L2p+1 distance, or L∞, is in

fact undecidable. Note that it was shown by [19] that, in view of the hardness of

approximation results for cliques of [22, 11], even a polynomial approximation of

the L∞ distance within a factor of n
1
4
−ǫ is impossible unless NP = P.

Lemma 8. The determinant of M in Z3 is given by

det(M) =






−1 if n + 1 ≡ 2 (mod 3)

1 if n + 1 ≡ 0 (mod 3)

0 if n + 1 ≡ 1 (mod 3).

(12)

Proof. Let M [n + 1] ∈ R
(n+1)×(n+1) be the matrix defined by Mi,j ≡ |i − j|

(mod 3). Note that |i− j|2p+1 (mod 3) ≡ |i− j| (mod 3) for all p ∈ N. To remain

consistent with the previous description, throughout this proof, we consider the

matrix M of size (n + 1)× (n + 1).

Let Ri, Cj denote the ith row and the jth column of M respectively. We prove

the lemma by showing that the following three identities in Z3 hold for all k ∈ N,

k ≥ 2:

det(M [3k + 1]) = 0

det(M [3k + 2]) = − det(M [3k])

det(M [3k]) = det(M [3k − 4])− det(M [3k − 3]).

(13)

Case 1. n + 1 ≡ 1 (mod 3). Let n + 1 = 3k + 1 for some k ∈ N. For all

j ∈ {1, . . . , 3k + 1},

M3k+1,j ≡ |3k + 1− j| (mod 3) ≡ (1− j) (mod 3) ≡ −|1− j| (mod 3) = −M1,j.

Since the last row is a scalar multiple of the first row, det(M) = 0 for n + 1 ≡ 1

(mod 3).

Case 2. n + 1 ≡ 2 (mod 3). Let n + 1 = 3k + 2 for some k ∈ N. In this case,

we show that det(M [3k + 2]) = − det(M [3k]). Given M [3k + 2], we perform the

following symmetric row and column operations:

R1 ← R1 + R3k+1 C1 ← C1 + C3k+1. (15)

Note that in Case 1, we observed that R3k+1 was the negation of R1. Thus the above

row operation will set all but the last entry in the first row (and by symmetry, in the

first column) to zero. Let M ′ denote the resulting matrix. Then, M ′
1,i = M ′

i,1 = 0
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for 1 ≤ i ≤ 3k + 1 and M ′
1,3k+2 = M ′

3k+2,1 = −1. The entries in rows and columns

2 through 3k + 1 are unaffected. Let S be the submatrix of M ′ induced by rows

{2, . . . , 3k+2} and columns {1, . . . , 3k+1}. Fig. 3(a) illustrates the structure of the

matrix M ′. Developing the determinant of M ′ along R1 and simplifying the powers

of −1 yield:

det(M) = det(M ′) = (−1)(3k+2)+1 [(−1) det(S)] = (−1)3k det(S). (16)

Developing the determinant of S along the first column leads to:

det(S) = (−1)1+(3k+1) [(−1) det(M [3k])] = (−1)3(k+1) det(M [3k]). (17)

Plugging in the expression of det(S) (Eqn. 17) into Eqn. 16 leads to:

det(M) = (−1)3(2k+1) det(M [3k]) = − det(M [3k]). (18)

Case 3. n+1 ≡ 0 (mod 3). Let n+1 = 3k for k ∈ N. We show that det(M [3k]) =

det(M [3k−4])−det(M [3k−3]). Given M [3k], we perform the following symmetric

operations:

R1 ← R1 + R3k−2 C1 ← C1 + C3k−2

R3k ← R3k + R3 C3k ← C3k + C3

R2 ← R2 + R1 C2 ← C2 + C1

R3k−1 ← R3k + R3k−1 C3k−1 ← C3k + C3k−1

R2 ← R2 + R3k−1 C2 ← C2 + C3k−1.

(19)

The entries of the resulting matrix are all zero in the first and last row and column,

except for M1,3k = 1, M3k,1 = 1 (see Fig. 3(b), 3(c) and 3(d)). Let S denote the

submatrix induced by rows i and j such that for i, j ∈ {2, . . . , 3k − 1}. Thus S is a

(3k − 2) × (3k − 2) matrix. For S, we have S1,1 = 1, S1,3k−2 = −1, S3k−2,1 = −1.

The remainder of the entries in the first row and the first column of S are all

zero. Furthermore, the submatrix of S induced by rows i and j such that i, j ∈
{3, . . . , 3k − 1} is the same as M [3k − 3]. Developing the determinant of S along

the first row and simplifying the powers of −1 yield:

det(S) = det(M [3k − 3])− det(M [3k − 4]). (20)

Developing the determinant of matrix M after the row and column operations

described above along R1 followed by R3k (both these rows have only one non-zero

entry, namely, M1,3k = M3k,1 = 1) yields:

det(M [3k]) = − det(S) = det(M [3k − 4])− det(M [3k − 3]), (21)

and ends the proof.

We now comment on the fact that the automata AG and Ci are not probabilistic.

Let L(A) denote the language accepted by automaton A and deg(v) denote the

degree of vertex v in G. The analysis presented here is similar to that of [19], we

outline it for the sake of completion.
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Fig. 3. (a) Case 2. The matrix M ′ obtained from M [3k + 2] after the row and column operations
described in Eqn. 15. (b) Case 3. The matrix obtained from M [3k] after the first four (row and
column) operations described in Eqn. 19. (c) Case 3. The matrix obtained after the next four (row

and column) operations. (d) Case 3. The final matrix after all row and column operations.

Lemma 9. The sum of the weights of all accepting paths in AG and Ci is given by
∑

x∈L(AG)

[[AG]](x) =
∑

v∈V

2deg(v)
∑

x∈L(Ci)

[[Ci]](x) = i|L(Ci)| = i2n. (22)

Proof. Since each transition in AG has weight 1, the weight of every accepting path

in AG is 1. Thus, the sum of the weights of all accepting paths in AG is exactly equal

to the number of accepting paths. Let Ni denote the number of accepting paths in

AG that pass through state qi,0. A vertex i ∈ V has deg(i) vertices adjacent to it in

G. By construction, we introduce two transitions from state qi,j−1 to qi,j for each
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neighbor j of i, one with label j and weight 1 and another with label ǫ and weight

1, and this doubles the number of accepting paths that pass through qi,0. Thus,

Ni = 2deg(i) and the number of accepting paths in AG is equal to
∑n

i=0 2deg(i).

For automaton Ci, each string has weight i, and the language accepts 2n strings.

Thus, the sum of the weights of all accepting paths in Ci is exactly i2n.

Let ZG denote
∑

v∈V 2deg(v). One way to make AG and Ci probabilistic is to

assign a final weight 1/ZG to AG and 1/i2n to Ci. However, this would result in a

modification of matrix M as Mi,j would then become |i/(i2n)− j/ZG|2p+1 and we

wish to use our proof of the invertability of M for Mi,j = |i− j|2p+1 for n + 1 6≡ 1

(mod 3). This can be achieved as follows:

(1) If ZG ≥ i2n, then we normalize both automata AG and Ci by assigning them

the final weight 1/ZG. The sum of the weights of all accepting paths in AG is

then one but that in Ci is given by i2n/ZG, which is less than one. To make Ci

probabilistic (i.e. the sum of the weights of all accepting paths in Ci is exactly

one), we introduce a new symbol, say $, and add a transition in Ci from its

start state to its final state with input label $ and weight 1 − i2n/ZG. Let

ÂG, Ĉi denote automata AG and Ci modified as described. It is straightforward

to verify that

L2p+1(ÂG, Ĉi) =

n∑

j=0

aj

ZG
|i− j|2p+1 +

(
1− i2n

ZG

)
. (23)

(2) If ZG < i2n, then we normalize AG and Ci by assigning them the final weight

1/i2n. Now the sum of the weights of all accepting paths in Ci is one but that

in AG is given by ZG/i2n. Again, we can introduce a new symbol, say $, and

add a transition in AG from its start state to its final state with input label $

and weight 1 − ZG/i2n. For the modified automata ÂG and Ĉi, as before, we

obtain

L2p+1(ÂG, Ĉi) =

n∑

j=0

aj

i2n
|i− j|2p+1 +

(
1− ZG

i2n

)
. (24)

By Eqn. 23 and Eqn. 24, the following holds:

n∑

j=0

aj |i− j|2p+1 =





ZG

(
L2p+1(ÂG, Ĉi) + 1− i2n

ZG

)
if ZG ≥ i2n

i2n
(
L2p+1(ÂG, Ĉi) + 1− ZG

i2n

)
if ZG < i2n.

(25)

Since it is NP-hard to compute
∑n

j=0 aj |i − j|2p+1 for all i (by the previous re-

duction), it must be NP-hard to compute the L2p+1 distance between ÂG and Ĉi,

which are both probabilistic.

4.3. Inapproximability Result

This section shows an inapproximability result for the computation of the L2p+1

distance of two probabilistic automata. Specifically, we show that given automata
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A1 and A2, there exists an ǫ = f(|A1| + |A2|, p), for a specific function f , such

that it is NP-hard to approximate the L2p+1 distance between A1 and A2 up to an

additive factor of ǫ.

Let X ∈ R
n+1, X0 ∈ R

n+1, Y ∈ R
n+1 be the column vectors defined by

Xi = L2p+1(ÂG, Ĉi) X0
i =

{
1− i2n/ZG if ZG ≥ i2n

1− ZG/i2n if ZG < i2n Yi = ai. (26)

Further, let D ∈ R
(n+1)×(n+1) be the diagonal matrix defined by

Di,i =

{
1/ZG if ZG ≥ i2n

1/i2n if ZG < i2n.
(27)

Eqn. 25 can be rewritten, in matrix terms as

X = D(MY ) + X0 ⇐⇒ D−1(X −X0) = MY. (28)

Suppose that it is possible to approximate the L2p+1 distance between two prob-

abilistic automata up to an additive factor of ǫ in polynomial time. Then one can

compute the column vector X ′ ∈ R
n+1, where X ′

i is the approximation of the

L2p+1 distance between ÂG and Ĉi. Thus, |X ′
i − Xi| ≤ ǫ for all i ∈ {0, 1, . . . , n}.

Let Y ′ ∈ R
n+1 be the column vector such that X ′ = D(MY ′) + X0. Recall that it

is NP-hard to compute the column vector Y exactly:

X −X ′ = D(MY ′)−D(MY ) (29)

= D(M(Y ′ − Y )) (30)

⇒M−1(D−1(X −X ′)) = Y ′ − Y. (31)

Since ‖X −X ′‖∞ ≤ ǫ, it follows that

‖Y ′ − Y ‖∞ = ‖M−1(D−1(X −X ′))‖∞ (32)

≤ ‖M−1‖∞‖D−1‖∞ǫ (33)

≤ ‖D
−1‖∞ǫ

‖M‖∞
. (34)

Since D is a diagonal matrix, D−1 is defined by D−1
i,i = 1/Di,i. It is straightforward

to verify that ‖D−1‖∞ = n2n and ‖M‖∞ =
∑n

i=1 i2p+1 = Θ(n2p+2). Therefore,

‖Y ′ − Y ‖∞ ≤
n2nǫ

cn2p+2
, (35)

for some fixed constant c (that appears in the Θ(·) term). Recall that Yi = ai is the

number of strings in the automaton AG with weight exactly i and is therefore an

integer. We use the fact that each Yi, for i ∈ {1, 2, . . . , n}, is an integer and observe

that in fact if ‖Y ′ − Y ‖∞ < 1/2, |Y ′
i − Yi| < 1/2 and Yi − 1/2 < Y ′

i < Yi + 1/2 for

each i. Thus, the column vector Y ′ can be used to uniquely determine the column

vector Y , which is NP-hard to compute. Therefore, it must be the case that Y ′ is

NP-hard to compute (under the assumption that ‖Y ′ − Y ‖∞ < 1/2). In order to
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enforce that condition, by Eqn. 35, it suffices that n2nǫ
cn2p+2 < 1

2 . The condition on ǫ

is thus

ǫ <
cn2p+2

2n2n
. (36)

Since the denominator in the bound on ǫ in Eqn. 36 is exponential while the numer-

ator is only polynomial, we are unable to use this bound to show the hardness of

approximating the L2p+1 distance between two automata A1 and A2 independently

of |A1|+ |A2|. Note that in the construction, |ÂG| = Θ(n2) and Ĉi = Θ(n) so that

|ÂG|+ |Ĉi| = Θ(n2).

Theorem 10. Given two probabilistic automata A1 and A2, such that |A1|+|A2| ≤
s, there exists an ǫ = f(s, p) such that it is NP-hard to approximate the L2p+1

distance between A1 and A2 within an additive factor of ǫ.

4.4. Absolute Value Automata

The hardness results for the computation of the L2p+1 distances of probabilistic

automata seem to be related to the obligatory presence of the absolute values in

the definition of these distances. This brings us to examine several questions related

to the absolute value.

In particular, one may ask if in general there exists a weighted automaton C

over the real semiring (R, +, ·, 0, 1) representing the absolute value of the difference

of two probabilistic automata A and B, that is such that

∀x ∈ Σ∗, [[C]](x) = |[[A]](x) − [[B]](x)|. (37)

We could refer to C as the absolute value automaton and denote it by |A−B|. The

general existence of C and even its efficient computation would not be sufficient to

guarantee the efficient computability of the L1 distance (or L2p+1 distance).

Indeed, by definition of C, to compute the L1 distance of A and B, one can sum

the weights of all successful paths of C. But, since the semiring (R, +, ·, 0, 1) is not

closed, no general algorithm is available for computing this sum. Note that [[C]] takes

its values in R+, but this does not imply that its transition weights are necessarily

in R+, nor does it even imply the existence of an equivalent weighted automaton

C′ over (R+, +, ·, 0, 1). This is because R is not a Fatou extension of R+: there exist

indeed weighted automata over the real semiring taking their values in R+ that do

not admit an equivalent weighted automaton over (R+, +, ·, 0, 1) [20, 13].

The hardness of the computation of the L1 distance guarantees however that

unless P = NP, in general, there exists no absolute value weighted automaton C

over (R+, +, ·, 0, 1) that can be computed efficiently since the sum of the weights of

the paths of C, i.e., the L1 distance, could then be computed efficiently.

Note also that the general problem of determining if a weighted automaton A

defined over the real semiring (R, +, ·, 0, 1) accepts no string of negative weight is

undecidable [20, 13]. Since there exists an efficient algorithm for testing the equiv-

alence of two weighted automata over the real semiring [21], this implies that in
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general there does not exists a computable absolute value automaton |A| such that

∀x ∈ Σ∗, [[|A|]](x) = |[[A]](x)|.

5. Hellinger Distance

The ideas presented in the previous section can be used in a straightforward manner

to compute the Hellinger distance of two unambiguous probabilistic automata. The

Hellinger distance Hellinger(A1, A2) of two probabilistic automata A1 and A2 is

given by:

Hellinger(A1, A2) =
( ∑

x∈Σ∗

(
√

[[A1]](x) −
√

[[A2]](x))2
)1/2

. (38)

Thus,

[Hellinger(A1, A2)]
2 =

∑

x∈Σ∗

(
√

[[A1]](x) −
√

[[A2]](x))2 (39)

=
∑

x∈Σ∗

[[A1]](x) +
∑

x∈Σ∗

[[A2]](x) − 2
∑

x∈Σ∗

√
[[A1]](x)[[A2 ]](x)

= 2(1−
∑

x∈Σ∗

√
[[A1]](x)[[A2]](x)).

The problem of computing the Hellinger distance between A1, A2 therefore reduces

to efficiently computing
∑

x∈Σ∗

√
[[A1]](x)[[A2]](x). Once again, as long as A1 and

A2 are unambiguous there is at most one accepting string with label x in A1 ∩A2.

Intersecting A1 and A2 over the probability semiring, the weight of the transition

corresponding to the intersection of the transitions e1 = (q1, a, w1, q
′
1) and e2 =

(q2, a, w2, q
′
2) is given by w1w2.

The function Φ : (R+, +, ·, 0, 1)→ (R+, +, ·, 0, 1) defined by Φ(x) =
√

x is clearly

a monoid morphism. Since 0 ≤ x < 1, 0 ≤ √x < 1, it also preserves closedness.

Since the Φ-norm of the intersection automaton is precisely the quantity we are

interested in, we obtain an efficient algorithm to compute the Hellinger distance

[4, 6]. The complexity of this computation is the same as the complexity of the

shortest distance algorithm on the intersection automaton A1 ∩ A2. If A1 and A2

are acyclic, then the shortest-distance computation can be done in linear time, i.e.

O(|A1 ∩ A2|). For A1, A2 unambiguous, one could compute the Hellinger distance

exactly in time that is cubic in the size of the intersection automaton and space

that is quadratic using a generalization of the classical Floyd-Warshall all-pairs

shortest-distance algorithm that works for arbitrary closed semirings. However, a

more efficient approximate solution can be obtained using the general single-source

shortest-distance algorithm [16] that uses only linear space.

6. Equivalence of Probabilistic Automata

Our algorithm for computing the L2p distance of two arbitrary probabilistic au-

tomata A1 and A2 clearly also provides an efficient method for testing their equiv-

alence since A1 and A2 are equivalent iff their Lp distance is zero. For p = 1, our
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exact algorithm can be used to test for equivalence in time O((|A1||A2|)3). However,

the standardization algorithm of Schützenberger [21] can be used to derive a more

efficient algorithm.

Theorem 11. The equivalence of two arbitrary probabilistic automata A1 and A2

can be computed in time O(|Σ| (|A1|+ |A2|)3).

Proof. The standardization algorithm of Schützenberger [21, 2] applies to any

weighted automaton defined over a field. It leads to a representation of a weighted

automaton with the smallest number of states. The algorithm requires the con-

struction of bases for vectorial spaces for which spanning sets are known. Using

LUP decompositions, the complexity of the standardization algorithm applied to a

weighted automaton A is in O(|Σ||A|3).
For the purpose of equivalence, we may view a probabilistic automaton as an

automaton over the field (R, +, ·, 0, 1). Since negation is allowed over this field, we

can construct the automaton A = A1 −A2, which can be done in linear time, and

apply standardization. A1 and A2 are equivalent iff A is equivalent to the zero

weighted machine, that is iff after standardization A has no state. Thus, this leads

to an algorithm for testing the equivalence of two probabilistic automata A1 and

A2 with overall complexity O(|Σ| |A|3) = O(|Σ| (|A1|+ |A2|)3).

To our knowledge, this is the most efficient algorithm for testing the equivalence

of probabilistic automata. Note that the same algorithm can be used to test the

equivalence of probabilistic automata as defined by [18]. The best algorithm previ-

ously reported in the literature was that of Wen-Guey Tzeng whose complexity is

O(|Σ| (|A1|+ |A2|)4) [24]. The alphabet factor does not appear in the expression of

the complexity reported by the author most likely because the proof is restricted to

a binary alphabet. The technique described by Wen-Guey Tzeng is in fact closely

related to the standardization algorithm of Schützenberger [21], which the author

was apparently not aware of.

There is also a claim by [1] that the equivalence of weighted automata with

transition weights in Z can be tested in cubic time. However, the paper does not

include a full proof of the correctness of the algorithm and the complexity. Instead

it relies on several claims made by others in private communications or results

appearing in a Siberian journal not accessible to us. It also seems to be specifically

using the property of the coefficients being integers. The algorithm we are describing

does not require transition weights to be integers and applies to all probabilistic

automata and other weighted automata with real-valued weights.

7. Conclusion

We presented an exhaustive analysis of the problem of computing the Lp distance

of probabilistic automata. We gave efficient exact and approximate algorithms for

the computation of the L2p and showed the intractability of the problem for L2p+1
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distances. As shown for the specific case of the Hellinger distance, our algorithms

can be straightforwardly generalized to other distances. Our algorithms can be used

to compute distances between very large probabilistic automata. Some of our results

could perhaps be extended to the case of finitely ambiguous probabilistic automata.

Many of our results can be straightforwardly extended to the case of weighted tree

automata.

Note that the hard cases of computing the Lp-norm of a probabilistic automaton

do not coincide with those of computing the Lp distance. As shown elsewhere [6],

the Lp-norm of any probabilistic automaton can be computed in polynomial time,

for all finite values of p. The problem of computing the L∞-norm is however NP-

hard [19].c As shown here, computing the Lp-distance of probabilistic automata is

polynomial for all even values of p, and is NP-hard for all odd values and for p =∞.
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