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Abstract

Generative adversarial networks (GANs) generate data based on minimizing a
divergence between two distributions. The choice of that divergence is therefore
critical. We argue that the divergence must take into account the hypothesis set
and the loss function used in a subsequent learning task, where the data generated
by a GAN serves for training. Taking that structural information into account
is also important to derive generalization guarantees. Thus, we propose to use
the discrepancy measure, which was originally introduced for the closely related
problem of domain adaptation and which precisely takes into account the hypothesis
set and the loss function. We show that discrepancy admits favorable properties for
training GANs and prove explicit generalization guarantees. We present efficient
algorithms using discrepancy for two tasks: training a GAN directly, namely
DGAN, and mixing previously trained generative models, namely EDGAN. Our
experiments on toy examples and several benchmark datasets show that DGAN
is competitive with other GANs and that EDGAN outperforms existing GAN
ensembles, such as AdaGAN.

1 Introduction

Generative adversarial networks (GANs) consist of a family of methods for unsupervised learning. A
GAN learns a generative model that can easily output samples following a distribution Py, which
aims to mimic the real data distribution IP,.. The parameter 6 of the generator is learned by minimizing
a divergence between P, and Py, and different choices of this divergence lead to different GAN
algorithms: the Jensen-Shannon divergence gives the standard GAN [Goodfellow et al., 2014,
Salimans et al., 2016], the Wasserstein distance gives the WGAN [Arjovsky et al., 2017, Gulrajani
et al., 2017], the squared maximum mean discrepancy gives the MMD GAN [Li et al., 2015, Dziugaite
etal., 2015, Li et al., 2017], and the f-divergence gives the f-GAN [Nowozin et al., 2016], just to
name a few. There are many other GANs that have been derived using other divergences in the past,
see [Goodfellow, 2017] and [Creswell et al., 2018] for more extensive studies.

The choice of the divergence seems to be critical in the design of a GAN. But, how should that
divergence be selected or defined? We argue that its choice must take into consideration the structure
of a learning task and include, in particular, the hypothesis set and the loss function considered. In
contrast, divergences that ignore the hypothesis set typically cannot benefit from any generalization
guarantee (see for example Arora et al. [2017]). The loss function is also crucial: while many GAN
applications aim to generate synthetic samples indistinguishable from original ones, for example
images [Karras et al., 2018, Brock et al., 2019] or Anime characters [Jin et al., 2017], in many other
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applications, the generated samples are used to improve subsequent learning tasks, such as data
augmentation [Frid-Adar et al., 2018], improved anomaly detection [Zenati et al., 2018], or model
compression [Liu et al., 2018b]. Such subsequent learning tasks require optimizing a specific loss
function applied to the data. Thus, it would seem beneficial to explicitly incorporate this loss in the
training of a GAN.

A natural divergence that accounts for both the loss function and the hypothesis set is the discrepancy
measure introduced by Mansour et al. [2009]. Discrepancy plays a key role in the analysis of domain
adaptation, which is closely related to the GAN problem, and other related problems such as drifting
and time series prediction [Mohri and Medina, 2012, Kuznetsov and Mohri, 2015]. Several important
generalization bounds for domain adaptation are expressed in terms of discrepancy [Mansour et al.,
2009, Cortes and Mohri, 2014, Ben-David et al., 2007]. We define discrepancy in Section 2 and give
examples illustrating the benefit of using discrepancy to measure the divergence between distributions.

In this work, we design a new GAN technique, discrepancy GAN (DGAN), that minimizes the
discrepancy between Py and IP,.. By training GANs with discrepancy, we obtain theoretical guarantees
for subsequent learning tasks using the samples it generates. We show that discrepancy is continuous
with respect to the generator’s parameter ¢, under mild conditions, which makes training DGAN easy.
Another key property of the discrepancy is that it can be accurately estimated from finite samples
when the hypothesis set admits bounded complexity. This property does not hold for popular metrics
such as the Jensen-Shannon divergence and the Wasserstein distance.

Moreover, we propose to use discrepancy to learn an ensemble of pre-trained GANs, which results
in our EDGAN algorithm. By considering an ensemble of GANSs, one can greatly reduce the
problem of missing modes that frequently occurs when training a single GAN. We show that the
discrepancy between the true and the ensemble distribution learned on finite samples converges to the
discrepancy between the true and the optimal ensemble distribution, as the sample size increases. We
also show that the EDGAN problem can be formulated as a convex optimization problem, thereby
benefiting from strong convergence guarantees. Recent work of Tolstikhin et al. [2017], Arora et al.
[2017], Ghosh et al. [2018] and Hoang et al. [2018] also considered mixing GANS, either motived by
boosting algorithms such as AdaBoost, or by the minimax theorem in game theory. These algorithms
train multiple generators and learn the mixture weights simultaneously, yet none of them explicitly
optimizes for the mixture weights once the multiple GANs are learned, which can provide additional
improvement as demonstrated by our experiments with EDGAN.

The term “discrepancy” has been previously used in the GAN literature under a different definition.
The squared maximum mean discrepancy (MMD), which was originally proposed by Gretton et al.
[2012], is used as the distance metric for training MMD GAN [Li et al., 2015, Dziugaite et al., 2015,
Li et al., 2017]. MMD between two distributions is defined with respect to a family of functions
F, which is usually assumed to be a reproducing kernel Hilbert space (RKHS) induced by a kernel
function, but MMD does not take into account the loss function. LSGAN [Mao et al., 2017] also
adopts the squared loss function for the discriminator, and as we do for DGAN. Feizi et al. [2017],
Deshpande et al. [2018] consider minimizing the quadratic Wasserstein distance between the true
and the generated samples, which involves the squared loss function as well. However, their training
objectives are vastly different from ours. Finally, when the hypothesis set is the family of linear
functions with bounded norm and the loss function is the squared loss, DGAN coincides with the
objective sought by McGAN [Mroueh et al., 2017], that of matching the empirical covariance matrices
of the true and the generated distribution. However, McGAN uses nuclear norm while DGAN uses
spectral norm in that case.

The rest of this paper is organized as follows. In Section 2, we define discrepancy and prove that
it benefits from several favorable properties, including continuity with respect to the generator’s
parameter and the possibility of accurately estimating it from finite samples. In Section 3, we
describe our discrepancy GAN (DGAN) and ensemble discrepancy GAN (EDGAN) algorithms
with a discussion of the optimization solution and theoretical guarantees. We report the results of a
series of experiments (Section 4), on both toy examples and several benchmark datasets, showing that
DGAN is competitive with other GANs and that EDGAN outperforms existing GAN ensemb]es,
such as AdaGAN.



2 Discrepancy

Let P,. denote the real data distribution on X', which, without loss of generality, we can assume to be
X = {z € R%: ||z|]2 < 1}. A GAN generates a sample in X’ via the following procedure: it first
draws a random noise vector z € Z from a fixed distribution P, typically a multivariate Gaussian,
and then passes z through the generator gg: Z — X, typically a neural network parametrized by
6 € O. Let Py denote the resulting distribution of gy (z). Given a distance metric d(-, -) between two
distributions, a GAN’s learning objective is to minimize d(P,., Py) over § € ©.

In Appendix A, we present and discuss two instances of the distance metric d(-, -) and two widely-
used GANSs: the Jensen-Shannon divergence for the standard GAN [Goodfellow et al., 2014], and
the Wasserstein distance for WGAN [Arjovsky et al., 2017]. Furthermore, we show that Wasserstein
distance can be viewed as discrepancy without considering the hypothesis set and the loss function,
which is one of the reasons why it cannot benefit from theoretical guarantees. In this section, we
describe the discrepancy measure and motivate its use by showing that it benefits from several
important favorable properties.

Consider a hypothesis set 7 and a symmetric loss function ¢: ) x Y — R, which will be used in
future supervised learning tasks on the true (and probably also the generated) data. Given H and ¢,
the discrepancy between two distributions P and Q is defined by the following:

discy¢(P,Q) = sup ‘ E_[((h(z),} ()] = E_[(h(x), ()] ‘ (1)
h,h'eH | T~P z~Q

Equivalently, let {3y = {¢(h(z),h (z)): h,h/ € H} be the family of discriminators induced by ¢

and H, then, the discrepancy can be written as discy ¢(P, Q) = sup ¢, | Ep[f (2)] — Eq[f(2)]|.

How would subsequent learning tasks benefit from samples generated by GANSs trained with dis-
crepancy? We show that, under mild conditions, any hypothesis performing well on Py (with loss
function ¢) is guaranteed to perform well on P, as long as the discrepancy discyy ¢(Pg, P,.) is small.

Theorem 1. Assume the true labeling function f: X — ) is contained in the hypothesis set H.
Then, for any hypothesis h € H,

xi]j:]}h [f(h, f)} S :CLI:EIPQ [E(h, f)] + dl.SC'HA’g(PQ, PT).

Theorem 1 suggests that the learner can learn a model using samples drawn from Py, whose generation
error on [P, is guaranteed to be no more than its generation error on [Py plus the discrepancy, which is
minimized by the algorithm. The proof uses the definition of discrepancy. Due to space limitation,
we provide all the proofs in Appendix B.

2.1 Hypothesis set and loss function

We argue that discrepancy is more favorable than Wasserstein distance measures, since it makes
explicit the dependence on loss function and hypothesis set. We consider two widely used learning
scenarios: 0-1 loss with linear separators, and squared loss with Lipschitz functions.

0-1 Loss, Linear Separators Consider the two distributions on R? illustrated in Figure la: Q
(filled circles ) is equivalent to P (circles o), but with all points shifted to the right by a small amount
e. Then, by the definition of Wasserstein distance, W (P, Q) = e, since to transport P to Q, one just
need to move each point to the right by e. When ¢ is small, WGAN views the two distributions as close
and thus stops training. On the other hand, when £ is the 0-1 loss and 7 is the set of linear separators,
discy; ¢(P, Q) = 1, which is achieved at the h, h’ as shown in Figure 1a, with Ep[1,(2)2p/ ()] = 1
and Eq[14,(z)2n ()] = 0. Thus, DGAN continues training to push Q towards P.

The example above is an extreme case where [P and QQ are separable. In more practical scenarios, the
domain of the two distributions may overlap significantly, as illustrated in Figure 1b, where PP is in
red and Q is in blue, and the shaded areas contain 95% probably mass. Again, QQ equals P shifting to
the right by € and thus W (P, Q) = e. Since the non-overlapping area has a sizable probability mass,
the discrepancy between P and Q is still large, for the same reason as for Figure 1a.

These examples demonstrate the importance of taking hypothesis sets and loss functions into account
when comparing two distributions: even though two distributions appear geometrically “close”
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(a) Non-overlapping distributions, P: {o}, Q: {e}.  (b) Overlapping distributions, P: {red}, Q: {blue}.

Figure 1: Distributions P and Q may appear “close” under Wasserstein distance, but the discrepancy
between the two is still large, where the discrepancy is defined by 0-1 loss and linear separators.

under Wasserstein distance, a classifier trained on one distribution may perform poorly on another
distribution. According to Theorem 1, such unfortunate behaviors are less likely to happen with
discyy g.

Squared Loss, Lipschitz Functions Next, we consider the squared loss and the hypothesis set
of 1-Lipschitz functions H = {h: |h(z) — h(z')| < ||z — 2'||2, Vx, 2" € X'}, then £y = {[h(z) —
h'(x))?: h,h' € H}. We can show that ¢4, is a subset of 4-Lipschitz functions on X'. Then, by the
definition of discrepancy and Wasserstein distance, discy ¢(IP, Q) is comparable to W (P, Q):

discre(P,Q) = swp E[f(0)] ~E[f@)] < sw  E[f()] ~E[f()] =W (E.Q).

: 4-Lipschitz

However, the inequality above can be quite loose since, depending on the hypothesis set, 7, may be
only a small subset of all 4-Lipschitz functions. For instance, when H is the set of linear functions
with norm bounded by one, then 3, = {(w?x)?: ||w|| < 2}, which is a significantly smaller set than
the family of all 4-Lipschitz functions. Thus, discy ¢(IP, Q) could potentially be a tighter measure
than W (P, Q), depending on H.

2.2 Continuity and estimation

In this section, we discuss two favorable properties of discrepancy: its continuity under mild assump-
tions with respect to the generator’s parameter 6, a property shared with the Wasserstein distance,
and the fact that it can be accurately estimated from finite samples, which does not hold for either the
Jensen-Shannon or the Wasserstein distance. The continuity property is summarized in the following
theorem.

Theorem 2. Let H = {h: X — YV} be a family of u-Lipschitz functions and assume that the loss
function £ is continuous and symmetric in its arguments, and is bounded by M. Assume further that ¢
admits the triangle inequality, or that it can be written as L(y,y') = f(|ly — ¢'|) for some Lipschitz
function f. Assume that gg: Z — X is continuous in 0. Then, discy ¢(P,,Pg) is continuous in 6.

The assumptions of Theorem 2 are easily satisfied in practice, where h € H and gy are neural
networks whose parameters are limited within a compact set, and where the loss function can be
either the /1 loss, £(y,y') = |y — v'|, or the squared loss, £(y,y') = (y — y')?. If the discrepancy
is continuous in 6, then, as the sequence of parameters #; converges to 6%, the discrepancy also
converges: |discy ¢(Pr,Pp,) — discyy ¢(Pr, Pg~)| — 0, which is a desirable property for training
DGAN. The reader is referred to Arjovsky et al. [2017] for a more extensive discussion of the
continuity properties of various distance metrics and their effects on training GANS.

Next, we show that discrepancy can be accurately estimated from finite samples. Let .S, and Sy be
i.i.d. samples drawn from P, and Py with |S,.| = m and |Sy| = n, and let @r and I/P\@ be the empirical
distributions induced by S, and Sy, respectively. Recall that the empirical Radmacher complexity of
a hypothesis set G on sample S of size m is defined by: E)A%g(g) =21E, [supyeg >oimy oig(xs)],
where 01,09, ...,0,, are i.i.d. random variables with P(¢; = 1) = P(o; = —1) = 1/2. The
empirical Radmacher complexity measures the complexity of the hypothesis set G. The next theorem
presents the learning guarantees of discrepancy.



Theorem 3. Assume the loss is bounded, { < M. For any § > 0, with probability at least 1 — § over
the draw of S, and Sy,

’diSCH’e(IPT,]P’g) — disc;.[,g(f?\’m@g)’ < f/)\{sr (L) + 9?{59 (by) + 3M<\/log,(4/6) + \/log(4/6) )

Furthermore, when the loss function £(h, h') is a g-Lipschitz function of h — h/, we have

\discy,0(Py,Pg) — discy o (P, Bg)| < 4q (ﬁsr (H) + R, (H)) + 3M(\/ log(4/6) \/log(4/6)).

In the rest of this paper, we will consider the squared loss #(y,4’) = (y—y’)?, which is bounded and 2-
Lipschitz when |h(z)| < 1forall h € H and x € X. Furthermore, when # is a family of feedforward

neural networks, Cortes et al. [2017] provided an explicit upper bound of R (H 5( ) O(1/+/m) for
its complexity, and thus the right-hand side of the above inequality is in O(—— T \lf) Then, for m

and n sufficiently large, the empirical discrepancy is close to the true discrepancy. It is important that
the discrepancy can be accurately estimated from finite samples since, when training DGAN, we
can only approximate the true discrepancy with a batch of samples. In contrast, the Jensen-Shannon
distance and the Wasserstein distance do not admit this favorable property [Arora et al., 2017].

3 Algorithms

In this section, we show how to compute the discrepancy and train DGAN for various hypothesis
sets and the squared loss. We also propose to learn an ensemble of pre-trained GANs via minimizing
discrepancy. We name this method EDGAN, and present its learning guarantees.

3.1 DGAN algorithm

Given a parametric family of hypotheses H = {h,,: w € W}, DGAN is defined as the following
min-max optimization problem:

E [0l b @)] = B (@), hae ()] ®

As with other GANs, DGAN is trained by iteratively solving the min-max problem (2). The
minimization over the generator’s parameters ¢ can be tackled by standard stochastic gradient
descent (SGD) algorithm with back-propagation. The inner maximization problem that computes the
discrepancy, however, can be efficiently solved when ¢ is the squared loss function.

min max

We first consider # to be the set of linear functions with bounded norm: H = {z — w’z: w2 <
l,we Rd}. Recall the definition of .S, Sy, IP,- and Py from Section 2.2. In addition, let X, and Xy
denote the corresponding m x d and n x d data matrices, where each row represents one input.

Proposition 4. When { is the squared loss and H the family of linear functions with norm bounded
by 1, discy o (P, Pp) = 2 ’|%X5X9 - o> Where || - ||2 denotes the spectral norm.

Thus, the discrepancy discy ¢ (HAD,., ]IADQ) equals twice the largest eigenvalue in absolute value of the
data-dependent matrix M (0) = 2 XXy — LXTX,. Given v*(6), the corresponding eigenvector

at the optimal solution, we can then back-propagate the loss discH,g(@’r, By) = 20" (§) M (6)v* (6)
to optimize for §. The maximum or minimum eigenvalue of M () can be computed in O(d?) [Golub
and van Van Loan, 1996], and the power method can be used to closely approximate it.

The closed-form solution in Proposition 4 holds for a family H of linear mappings. To generate
realistic outcomes with DGAN, however, we need a more complex hypothesis set H, such as the
family of deep neural networks (DNN). Thus, we consider the following approach: first, we fix a
pre-trained DNN classifier, such as the inception network, and pass the samples through this network
to obtain the last (or any other) layer of embedding f: X — &£, where £ is the embedding space.
Next, we compute the discrepancy on the embedded samples with H being the family of linear
functions with bounded norm, which admits a closed-form solution according to Proposition 4. In
practice, it also makes sense to train the embedding network together with the generator: let f be the
embedding network parametrized by ¢, then DGAN optimizes for both f: and gg . See Algorithm 1
for a single step of updating DGAN. In particular, the learner can either compute F'((t, 0%) exactly,
or use an approximation based on the power method. Note that when the learner uses a pre-fixed
embedding network f, the update step of ¢(**! can be skipped.



Algorithm 1 UPDATE DGAN((?, 6%, ) Algorithm 2 UPDATE EDGAN(c!, f, 1)

Xy [fee(z1), -+, fet (xm)]”, where z; ~ P, X+ [f(z ) . 7f(ncn,)] , where z; ~ P,
Xog [fgf(it’l), ,fgt(x;)]T,wherex; ~ Pyt Xip < [f(z ) : 7f( )] where xf ~ Py,
F(¢',0%) « || X5 Xo — o X7 Xo ||, Flat) « (2P, nkX,{Xk) LXTX, ||
Update: "' « ¢* +nV F(¢, 0Y) Update: o'+  af — Vo F(a) "

Update: 0"t « 0" — nV,oF (¢, 0%)

3.2 EDGAN algorithm

Next, we show that discrepancy provides a principled way of choosing the ensemble weights to mix
pre-trained GANSs, which admits favorable convergence guarantees.

Let g1,...,gp be p pre-trained GANSs. For a given mixture weight & = (o, ..., p) € A, where
A ={(a1,...,ap): g > 0,2 %_, ap = 1} is the simplex in R”, we define the ensemble of p
GANs by go = Z£=1 argr. To draw a sample from the ensemble g, we first sample an index
ke [p] ={1,2,--- ,p} according to the multinomial distribution with parameter cx, and then return a
random sample generated by the chosen GAN g;. We denote by P, the distribution of go. EDGAN
determines the mixture weight o by minimizing the discrepancy between P, and the real data IP,.:
mingea discy ¢ (P, Pr).

To learn the mixture weight o, we approximate the true distributions by their empirical counterparts:
for each k € [p|, we randomly draw a set of nj, samples from g, and randomly draw n,. samples
from the real data distribution P,.. Let Sj, and S, denote the corresponding set of samples and let IE";€

and IP denote the induced empirical distributions, respectively. For a given v, let IP’ =>r akIP’k
be the empirical counterparts of P,,. We first present a convergence result for the EDGAN method,
and then describe how to train EDGAN.

Let a* and & be the discrepancy minimizer under the true and the empirical distributions, respectively:

a” = argmindiscy ¢(Po, Pr), @ = argmindiscy ¢(Po,Pr).
aEA acA

For simplicity, we set ny, = n, = n for all k € [p], but the following result can be easily extended to
arbitrary batch size for each generator.

Theorem 5. For any § > 0, with probability at least 1 — § over the draw of samples,

\discr.o(Pa, Pr) — discr o(Par, Pr)| < Q(zﬁs(fﬂ) +3M+/log[4(p + 1)/5]/2n),

where DA%S(ZH) = max {5{51 (b)), .-, E)A%Sp (Lx), i)A%ST(EH)}. Furthermore, when the loss function
L(h, ') is a q-Lipschitz function of h — R/, the following holds with probability 1 — §:

discyeo(Pa, Py) = discro(Pas, Pr)| < 2(4q Rs(H) + 3M/log[d(p + 1)/0]/2n ).

where Rg(H) = max {Rs, (H), ..., Rs, (1), Rs, (1) }.

When / is the squared loss and 7 is the family of feedforward neural networks, the upper bound on
Rg(f3) is in O(1/4/n). Since we can generate unlimited samples from each of the p pre-trained
GANSs, n can be as large as the number of available real samples, and thus the discrepancy between
the learned ensemble Pg and the real data PP, can be very close to the discrepancy between the
optimal ensemble P~ and the real data IP,.. This is a very favorable generalization guarantee for
EDGAN, since it suggests that the mixture weight learned on the training data is guaranteed to
generalize and perform well on the test data, a fact also corroborated by our experiments.

To compute the discrepancy for EDGAN, we again begin with linear mappings H = {z —
wlz: ||wl|2 < 1,w € RY}. For each generator k € [p], we obtain a nj, x d data matrix X}, and
similarly we have the n,. x d data matrix for the real samples. Then, by the proof of Proposition 4,
discrepancy minimization can be written as

. = =~ . Uk T 7i T
min discy, ¢(Pa, Pr) =2 min || M (a)||z, with M (e [Z =Xl Xk} XTX,. 3)
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Figure 3: Random samples from DGAN trained on CIFAR10.

Since M () and —M («) are affine and thus convex functions of «, ||M(a)ls =
SUP||y |, <1 ’vTM (a)v| is also convex in «, as the supremum of a set of convex functions is convex.
Thus, problem (3) is a convex optimization problem, thereby benefitting from strong convergence
guarantees.

Note that we have |[M(a)|2 = max{Anx (M ()), Amax(—M ())}. Thus, one way to solve
problem (3) is to cast it as a semi-definite programming (SDP) problem:

miil A, st. M —M(a)=0, \[+M(a)>=0,a>0,1"a=1.

(e
An alternative solution consists of using the power method to approximate the spectral norm, which is
faster when the sample dimension d is large. As with DGAN, we can also consider a more complex
hypothesis set H, by first passing samples through an embedding network f, and then letting H be
the set of linear mappings on the embedded samples. Since the generators are already pre-trained
for EDGAN, we no longer need to train the embedding network, but instead keep it fixed. See
Algorithm 2 for one training step of EDGAN.

4 Experiments

41 DGAN

In this section, we show that DGAN obtains competitive results on the benchmark datasets MNIST,
CIFAR10, CIFAR100, and CelebA (at resolution 128 x 128). We did unconditional generation
and did not use the labels in the dataset. We trained both the discriminator’s embedding layer and
the generator with discrepancy loss as in Algorithm 1. Note, we did not attempt to optimize the
architecture and other hyperparameters to get state-of-the-art results. We used a standard DCGAN
architecture. The main architectural modification for DGAN is that the final dense layer of the
discriminator has output dimension greater than 1 since, in DGAN, the discriminator outputs an
embedding layer rather than a single score. The size of this embedding layer is a hyperparameter
that can be tuned, but we refrained from doing so here. See Table 6 in Appendix C for DGAN
architectures. One important observation is that larger embedding layers require more samples to
accurately estimate the population covariance matrix of the embedding layer under the data and
generated distributions (and hence the spectral norm of the difference).

To enforce the Lipschitz assumption of our Theorems, either weight clipping [Arjovsky et al., 2017],



gradient penalization [Gulrajani et al., 2017], spec- Table 1: Inception Score (IS) and Fréchet Incep-
tral normalization [Miyato et al., 2018], or some  tjon Distance (FID) for various datasets.
combination can be used. We found gradient pe-
nalization useful for its stabilizing effect on train-  Dataset IS  FID (train) FID (test)
ing, and obtained the best performance with this
and weight clipping. Table 1 lists Inception score CIFARIO —7.02 26.7 30.7

P . . CIFARI00 7.31 28.9 333
(IS) and Fréchet Inception distance (FID) on var- CelebA 215 592 )
ious datasets. All results are the best of five trials. ee : :
While our scores are not state-of-the-art [Brock
et al., 2019], they are close to those achieved by similar unconditional DCGANs [Miyato et al., 2018,
Lucic et al., 2018]. Figures 2-5 show samples from a trained DGAN that are not cherry-picked.

42 EDGAN

Toy example We first considered the toy datasets described in section 4.1 of AdaGAN [Tolstikhin
et al., 2017], where we can explicitly compare various GANs with well-defined, likelihood-based
performance metrics. The true data distribution is a mixture of 9 isotropic Gaussian components
on X = R2, with their centers uniformly distributed on a circle. We used the AdaGAN algorithm
to sequentially generate 10 GANSs, and compared various ensembles of these 10 networks: GAN;
generated by the baseline GAN algorithm; Adas and Ada;(, generated by AdaGAN with the first 5
or 10 GANS, respectively; EDGAN5 and EDGAN, the ensembles of the first 5 or 10 GANs by
EDGAN, respectively.

The EDGAN algorithm ran with squared loss and linear mappings. To measure the performance, we
computed the likelihood of the generated data under the true distribution L(Sy), and the likelihood
of the true data under the generated distribution L(S,). We used kernel density estimation with
cross-validated bandwidth to approximate the density of both Py and P,., as in Tolstikhin et al. [2017].
We provide part of the ensembles here and present the full results in Appendix C. Table 2 compares
the two likelihood-based metrics averaged over 10 repetitions, with standard deviation in parentheses.



Table 2: Likelihood-based metrics of var- P TN

. SN E eyt e
ious ensembles of 10 GANS. e Ly AT RELET
. ot .o R " :.._z-._ :
'. . ' " . 'l -~
() T ey
GAN; -12.39 (£ 2.12) -796.05 (£ 12.48) (a) b) (©)
Adag -4.33 (£ 0.30) -266.60 (£ 24.91) Figure 6: The true (red) and the generated (blue) distri-

EDGAN1o -3.99 (+0.20) -148.97 (+ 14.13) putions using (a) GAN ; (b) Aday: (c) EDGANj.

Table 3: Each row uses a different embedding to calculate the discrepancy between the generated
images and the CIFAR10 test set.

GAN; GAN> GAN3 GANy; GANs BestGAN Average EDGAN

InceptionLogits  285.09 259.61 259.64 271.21 272.23 259.61 259.12 255.3
InceptionPool 70.52 64.37 69.48 69.69 68.7 64.37 66.08 63.98
MobileNet 109.09 90.47 88.01 90.9 93.08 88.01 85.71 81.83
PNASNet 35.18 36.42 34.94 34.38 36.52 34.38 34.66 33.97
NASNet 54.61 52.66 59.01 61.79 64.97 52.66 55.66 52.46
AmoebaNet 97.71 110.83 108.61 105.31 110.5 97.71 104.91 97.71

We can see that for both metrics, ensembles of networks by EDGAN outperformed AdaGAN using
the same number of base networks. Figure 6 shows the true distribution (in red) and the generated
distribution (in blue). The single GAN model (Figure 6(a)) does not work well. As AdaGAN
gradually mixes in more networks, the generated distribution is getting closer to the true distribution
(Figure 6(b)). By explicitly learning the mixture weights using discrepancy, EDGAN; (Figure 6(c))
further improves over Adajg, such that the span of the generated distribution is reduced, and the
generated distribution now closely concentrates around the true one.

CIFAR10 We used five pre-trained generators from Lucic et al. [2018] (all are publicly available on
TF-Hub) as base learners in the ensemble. The models were trained with different hyperparameters
and had different levels of performance. We then took 50k samples from each generator and the
training split of CIFAR10, and embedded these images using a pre-trained classifier. We used several
embeddings: InceptionV3’s logits layer [Szegedy et al., 2016], InceptionV3’s pooling layer [Szegedy
et al., 2016], MobileNet [Sandler et al., 2018], PNASNet Liu et al. [2018a], NASNet [Zoph and Le,
2017], and AmoebaNet [Real et al., 2019]. All of these models are also available on TF-Hub. For
each embedding, we trained an ensemble and evaluated its discrepancy on the test set of CIFAR10
and 10k independent samples from each generator. We report these results in Table 3. In all cases
EDGAN performs as well or better than the best individual generator or a uniform average of the
generators. This also shows that discrepancy generalizes well from the training to the testing data.
Interestingly, depending on which embedding is used for the ensemble, drastically different mixture
weights are optimal, which demonstrates the importance of the hypothesis class for discrepancy. We
list the learned ensemble weights in Table 5 in Appendix C.

5 Conclusion

We advocated the use of discrepancy for defining GANs and proved a series of favorable properties
for it, including continuity, under mild assumptions, the possibility of accurately estimating it from
finite samples, and the generalization guarantees it benefits from. We also showed empirically that
DGAN is competitive with other GANs, and that EDGAN, which we showed can be formulated
as a convex optimization problem, outperforms existing GAN ensembles. For future work, one can
use generative models with discrepancy in adaptation, as shown in Appendix D, where the goal is to
learn a feature embedding for the target domain such that its distribution is close to the distribution of
the embedded source domain. DGAN also has connections with standard Maximum Entropy models
(Maxent) as discussed in Appendix E.
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A GAN and WGAN

In this appendix section, we briefly introduce and discuss two instances of the distance metric d,
which lead to two widely-used GANs: the original GAN [Goodfellow et al., 2014], and the WGAN
[Arjovsky et al., 2017]. Note that in practice, often the value of d(IP, Q) is not directly computable,
and its variational form is used instead.

A.1 GAN: Jensen-Shannon divergence

Goodfellow et al. [2014] introduced the first GAN framework using the Jensen-Shannon divergence:
d(P,,Py) =IS(P,,Py) = (KL(IP’T | ) + KL(Pg || Py) )/2,

where P,;, = (P,. + Py)/2. The Jensen-Shannon divergence admits the following equivalent form:

1
JS(PT;PG) = sup 5 {

E [log f(z)]+ E [log(1— f())] +log4}. (4)
f:x—[0,1] z~Po

z~P,

GANSs were originally motivated by expression (4), and its equivalence to the Jensen-Shannon
divergence was shown later on. Think of f in equation (4) as a “discriminator” trying to tell apart real
data from “fake” data generated by gy as follows: f gives higher scores to samples which it thinks are
real, and gives lower scores otherwise. Thus the maximization in (4) looks for the best discriminator
f- On the other hand, the generator gy tries to fool the discriminator f, such that f cannot tell the
difference between real and fake samples. Thus minimizing JS(P,,Py) over 6 looks for the best
generator gg. Dropping the constants in (4) and parametrizing the discriminator f with a family of
neural networks {f,,: X — [0,1],w € W}, the original algorithm of training GAN Goodfellow
et al. [2014] considers the following min-max optimization problem:

E [log fu(®)] + B [log(1— fu(@)]}. )

min max {
z~P,.

€O weW

The generator and the discriminator (gg, f,,) are trained via stochastic gradient descent/ascent on

objective (5) with respect to § and w iteratively, using the empirical distributions ]IADT and @9 induced
by the batch of samples at each step.

Remark 1. When minimizing 0, one can drop the first term in (5) since it does not depend on 6. Thus,
for a fixed w, the minimizing step of 6 is equivalent to ming E,.p, [1og(1 — fw (m))] Goodfellow
et al. [2014] suggested using maximization instead of minimization to speed up training for 6. That
is, the training of GAN iterates between

max { E [logfu(@)] + E [log(1 - fu(@))]},
max{ B [log fu(@)] |

A.2 WGAN: Wasserstein Distance

Instead of minimizing JS(P,., Py), Arjovsky et al. [2017] proposed to use the Wasserstein distance:

AP, Po) = WP, Po) = _inf { E fa—yl},

YEIL(P,,Pg) L (z,y)~y

where II(P,,Py) = {~(x,y): fu Y(z,y)dy = Pp(x), [, v(x,y)dz = Pg(y)} denotes the set of

joint distributions whose marginals are IP,. and Py, respectively. By the Kantorovich-Rubinstein
duality [Villani, 2008], Wasserstein distance can also be written as

W, Po) = swp { E [f@)]- E [f@)]}, O

Il <1 b 2~Pr z~Po

where the supremum is taken over all 1-Lipschitz functions with respect to the metric ||-|| that defines
W(P,,Pp). Again, we can view f as the discriminator, which aims to maximizes the difference
between its expected values on the real data and that on the fake data. In practice, Arjovsky et al.
[2017] set f to be a neural networks whose parameters w are limited within a compact set W, thus
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{fw: w € W}isaset of K-Lipschitz functions for some constant /. Thus, the WGAN (Wasserstein
GAN) considered the following min-max optimization problem:

min max { Ry [fw( )] — [fw( )]} @)

0cO weW
The training procedure of WGAN:S is similar to that of GANs [Goodfellow et al., 2014], where one
optimizes objective (7) using mini-batches with respect to 6 and w iteratively.

J:NJP’Q

Arjovsky et al. [2017] showed that the JS divergence of GAN is potentially not continuous with
respect to generator’s parameter 6. On the other hand, under mild conditions, W (IP,., Py) is continuous
everywhere and differentiable almost everywhere with respect to 8, making it easier to train WGAN.

When training WGAN with (7), one need to clip the weights w to ensure that w € W. More recently,
Gulrajani et al. [2017] found that weight clipping can lead to undesired behavior, such as capacity
underuse, and exploding or vanishing gradients. In view of this, they proposed to add a gradient
penalty to the objective of WGAN, as an alternative to weight clipping:

minmaX{xM [fw( )] E]Pe [fw(l’)] + )\mINE]P’l [(Hszw (@)l — 1>2]}7

fcO w T~

where IP; indicates the uniform distribution along straight lines between pairs of points in S, and Sy.
The construction of IP; is motivated by the optimality conditions.

WGAN is closely related to DGAN. The definitions of Wasserstein distance (6) and discrepancy (1)
are syntactically the same, except that the former takes supremum over all 1-Lipschitz functions,
while the latter takes supremum over ¢, = {¢(h(z),’(z)): h,h’ € H}, a set that depends on
the loss and hypothesis set. Thus, Wasserstein distance can be viewed as discrepancy without the
hypothesis set and the loss function, which is one reason it cannot benefit from theoretical guarantees.

B Proofs

Theorem 1. Assume the true labeling function f: X — Y is contained in the hypothesis set H.
Then, for any hypothesis h € H,

E [h )l < E [E(h, )] +discy,o(Po, Pr).

Proof. By the definition of discy ¢, for any h € H,

E Nl < E [hNI+] E [kl = E [k, f)]

x~P z~Py ‘

~P, z~Py
< E [¢(h, )]+ sup | E [((h,i)]~ E [E(h,h’)]' (Since f € H)
x~Py h,h/EH z~P, x~Py
= m/ﬂlf:g[ (h f)] +diSC';.L7g(]P)9,PT).

O

Proposition 6. Let H be a set of 1-Lipschitz functions. Then, {3, = { [h(:ﬂ) — h’(x)] % h,h' € 7—[}
is a set of Lipschitz functions on {x: ||x|| < 1} with Lipschitz constant equals 4.

Proof. By definition,
f (@) = f(a')| = | [h(x) = W' ()] = [h() — b’ (2")]?]

< 2||h(z) — K/ ()] — |h( ) =1 ()| (¢ loss is 2-Lipschitz)
< 2|h(x) — h'(z) — h(z") + h’( )| (Triangle inequality)
< 2|h(z) — h(z')| + 2|W' (z) — W (') (Triangle inequality)
<d||xz—2'|. (h and h' are 1-Lipschitz)

O
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Theorem 2. Assume that H = {h: X — Y} is a family of p-Lipschitz functions, and the loss
Sunction € is continuous and symmetric in its arguments, and bounded by M. Furthermore, £ admits
the triangle inequality, or it can be written as £(y,y') = f(|ly — y'|) for some Lipschitz function f.
Assume that gg: Z2 — X is continuous in 0. Then, discy (P, Pg) is continuous in 6.

Proof. We first consider the case where ¢ admits triangle inequality. We will show that
discyy ¢(Pg,Pgr) — 0 as 6 — 6'. By definition of Py and discy ¢,

discy ¢(Py,Ppr) = sup

S zlEle [K(h(gg(z)),h' (gg(z))) — é(h(gg/ (), 1 (gg/(z))ﬂ ‘
< hS;J/lgyziEﬁ” f(h(ge(Z)%h'(ge(Z))) - £(h(g9,(z)), h’(gef(Z)))‘
< hil}gwg [ﬁ(h(ge(Z)),h(geI(Z))) +€(h’(ge(2)),h’(gef (Z)))],

where we used the triangle inequality and symmetry of ¢, such that Va, b, c,d € ),
[¢(a,b) — (c,d)| < l(a,c) + £(b,d).
Thus,
discy o(By, Py) < sup 2 E {e(h(mz)),h(ge,(z)))} <2 E [ sup ﬁ(h<ge<z>),h(gef<z>))] .

heH =~z heH
Since Vh € H is L-Lipschitz, for any zo € X,
s (1 06) =

converges uniformly over h € H. Furthermore, gy is continuous in 6, it follows that for any fixed
z € Z,

lim Slelp K(h(gg(z)), h(ger (z))) =0,

0—0'

thus converges point-wise as functions of z. Since ¢ < M is bounded, by bounded convergence
theorem, we have

hm discy ¢(Pp, Py ) < 29113(}/ ZEEP {sg£€<h(gg(z)),h(ggl(z)))} =0.

Now we consider the case where £(a,b) = f(|a—bl), and f is a g-Lipschitz function: | f(x)—f(z)] <
g|z — z'|. By definition,

diSCH’g(Pg,ng) = sup

E [e(h(ge<z>>,h’(ga<z>)) —g(h(gef(z)%h'(gel(z)))}’

hohen | =~
< s & [o(b(anle) 1 (00(2) ~ €(ow (). ()
= sw & |7(Inlan(a)) ' an(a)) ) = (| () = 1 (am () )|
< s B [[n02) - ¥ (o0(:)]| - [hlaw ) ~ ¥ (0w (=)
<a s B [0) - o) - 1 (on(2) + 1 (a0 (2)
<q sw B Uh(ge(z>) - h(W(z))\ + |1 (90(2)) — 1 (g0 (2)) H
=2 swp B |n(gs(=)) ~ hlow(2))]

<2q _E sup |n(go(2)) ~ h(gw(2) |
2~z heH
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Then, by the same argument above,

hm discy ¢(Pp, Py ) <2¢ lim E sup ‘h(gg(z)),h(gg/(z))’ = 0.
00" 2P, pey

Finally, by the triangle inequality of discy ¢, discy ¢(Py, Pg) — discyy ¢(Pr, Por) < discyy ¢(Po, Pyr),
which completes the proof. O

Theorem 3. Assume the loss is bounded, { < M. For any § > 0, with probability at least 1 — § over
the drawn of S, and Sy,

’diSCHyg(IPT,]Pg) — diSC';.LJ(I/EET,@gM < %Sr (by) + 5\%39 (by) + 3M<\/1og 4/9) + \/log 4/9) )

2m

Furthermore, when the loss function £(h, 1) is a q-Lipschitz function of h — h', we have

2m

[discro(By, Pg) — discro(By, Bo)| < da(Rs, (H) + R, (H)) + SM(\/ log(d/e) ., [log(4/5) ).

Proof. By triangle inequality of discyy ¢(-, ),
|discys, o (P, Pg) — discy,¢ (P, Bo)| < discyo(Br, P,) + discr (P, Py).

We first apply concentration inequality to the scaled loss ¢3, /M:

E (1. )/M < E(h, B)/M + R, (13/1) + 3¢ 25000,
By m
E 6(h,1')/M < EU(h, 1) /M +Rs, (/M)

Py

<

For the empirical Radmacher complexity, we have 9?{07.[ = CS%H. Thus, we have

\discys ¢ (P, Pg) — discy (P, By)|

) ~ . ~ ~ - log(4/0 log(4/6
< discy,¢(Pr, ) + discy,o(Po, Po) < Rs, (£a) + Rs, (£a) + 3M<\/ gg(m/ ) +\/ gén/ )).
When the loss function £(h, h') is a g-Lipschitz function of the difference of its two arguments, i.e.
¢(a,b) = f(a —b), and f(-) is a g-Lipschitz function, the mapping of H & H — ¢4 is g-Lipschitz,
where H © H is defined as H © H = {h — h’: h,h’ € H}. By Talagrand’s contraction lemma,
R, < 2¢9R 1oy Finally, by definition we have Ry o9y < 2939 Putting everything together, when
the loss function £(h, h') is a g-Lipschitz function of h — A/,

\discyy ¢ (P, Pg)—discy, o(P,, Py)| < 4q(§{37.(H)+§{Se(H)) +3M(\/log(4/5)+\/10g(4/(5)>.

2m 2n
O
Theorem 5. For any § > 0, with probability at least 1 — § over the draw of samples,
\discr.o(Pa, Pr) — discr o(Par, )| < 2(97{5(@) +3M+/log[d(p + 1)/8]/2n )
where Rg (f) = max {5%51 (2T S)A%Sp (bn), i’)\%sr(ﬁy)}. Furthermore, when the loss function

L(h, ') is a q-Lipschitz function of h — R/, the following holds with probability 1 — §:

\discy o(Pa, P,) — discy¢(Pa-, By)| < 2(4q Rs(H) + 3M/log[A(p + 1)/6]/2n),

where Rg(H) = max {E)Afisl (H),..., Rs, (1), Rs (H)}.



Proof. We first extend Theorem 3 to the case of GAN ensembles:

\discy, ¢ (Pa, Pr) — discy o(Pa, P,)| < disca (P, Po) + discyy o(Pr, By).
For the first term,

diSC'H Y (Pa s I/P\)a)

< sup

IA
)]
jarl
o)
1w
Q
ol

By concentration argument, with probability at least 1 — ¢ over the drawn of samples,

D M log(4 1)/6
discy; ¢ (P, ) < R, (by) +3M log(4(p +1)/9)

2n ’

L log(4(p +1)/6
discy ¢ (Py, Pp) < Rs, () +3M %:)/).

Putting everything together, with probability at least 1 — J, for any o € A,

|discy ¢ (Pay, P,) — discyy ¢ (P, Py

< Z ay, discyy ¢ (P, @k) + diSC'H)g(PT, @T>

k=1
<> an {ﬁsk(fﬂ) +3M W} +Rg, (bn) + 3M W
k=1
RSO R ) N

By definition,
diSCH7g(Pa* s Py») — diSCq.Lg(]P)a, ]Pr)

~

< discy,¢(Pa-, Py) — discyo(Pa, P,) + [discy o (Pa, P,) — discy (P, Py
< discy ¢(Pa, Pr) — discy, (Pa, Py) + |discs ¢ (Pa, Py) — discy,o(Pa, Pr)]
< 2[discy ¢ (P, P,) — disc, ¢ (Pa. )|

Similarly,

diSCH’e (Pam P
<discy; ¢(Pg, P;) — discyy e

<discy; ¢(Pg, P;) — discyy e

) — discyy o(Por, Pr)
») + |discy ¢ (Pa-, P,) — discyy ¢ (Pas, Py

Py, P
P, P,) + |discy ¢ (Par, By) — discro(Pa-, Br)|
<|discy, ¢ (Pa, Pr) — discy ¢(Pa, Pr)| + [discyy ¢ (Pos, Pp) — discyy ¢ (Pas, Pr).

Thus, apply inequality (8) to & and a*, we have

_ log(4(p + 1)/6
\discr.¢(Pa, Pr) — discr o(Par, Pr)| < 2(% +3M M).
n
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Proposition 4. When { is the squared loss and H the family of linear functions with norm bounded

by1, dl’SC’Hj(ﬂ)\)r,@g) =21 X7Xy - LXTX, o Where || - ||2 denotes the spectral norm.
Proof.
diSCHJ(@T,@Q) = sup E [52 (wT:z:,w’Tx) - E [ég(wa,w’Tx)‘

Hnggl INPT .'L'NIPQ

flw’ll2<1

1 1
= sup ‘f(ng — X' T (Xpw — Xgu') — —(X,w — X,w') T (X,w — X,w')
wllo<1 T m
llwll2<1

1 1
= sup ‘fuTX(,TXgu — —u' XX Letu =w —w')
n m

flull2<2
r(l¢r L or
=2 sup ‘u (fXg Xo— —X, Xr>u‘
flull2<1 n m
1 1

=2 H ~XI'Xy - —XTX,
n m

2

C More Experiments

C.1 EDGAN: Toy datasets

In this section, we provide more results on mixing the 10 GANs generated by AdaGAN. Recall that
we are comparing the following methods:

e The baseline GAN algorithm, namely GANj.
o The AdaGAN algorithm, ensembles of the first 5 GANs, namely Adas.
e The AdaGAN algorithm, ensembles of the first 10 GANs, namely Ada;g.
e The EDGAN algorithm, ensembles of the first 5 GANs, namely EDGANS5.
e The EDGAN algorithm, ensembles of the first 10 GANs, namely EDGAN.
We considered two ways of computing average sample log-likelihood and used them as performance

metrics: the likelihood of the generated data under the true distribution L(Sy), and the likelihood of
the true data under the generated distribution L(.S, ). To be more concrete,

L(Se) = Lo, (So) :% S log (Po(1)),  L(S,) = Ls, (S,) :% 3 log (Po(x1)).

;€S T, €Sy

We used kernel density estimation with cross-validated bandwidth to approximate the density of both
Py and P,..

Figure 7 displayed the true distribution (in red) and the generated distribution under various ensembles
of GANs. EDGANj; and EDGAN;( improve the generated distribution over Adas and Ada;g,
respectively.

Table 4 showed the average log-likelihoods over 10 repetitions, with standard deviations in parenthe-
ses, where a higher log-likelihood indicates better performance. We can see that for both metrics,
networks ensembles EDGANj5 and EDGAN;o by EDGAN outperformed AdaGAN with the same
number of base networks.

C.2 EDGAN: CIFAR10
In this section, we provide the mixture weights of each ensemble when learning EDGAN on CIFAR10

generators, as described in Section 4.2. The data is provided in Table 5. Only in one instance a
significant amount of the weight is allocated to one model.
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Figure 7: The true (red) and the generated (blue) distributions, using various ensembles of 10 GANS.

Table 4: Likelihood-based metrics of various ensembles of 10 GANs.

L(Sy) L(Sy)
GAN;  -12.39 (£2.12) -796.05 (& 12.48)
Adas 5.02(£0.11)  -296.45 (& 15.24)
Aday 433 (+0.30) -266.60 (£ 24.91)
EDGAN;  -4.85(£0.16) -172.52 (+ 17.56)
EDGAN;, -3.99 (& 0.20) -148.97 (£ 14.13)

Table 5: The mixture weights of each ensemble.

GAN; GAN; GAN; GAN; GAN;
InceptionLogits  0.0007 0.4722 0.5252 0.0009 0.0009
InceptionPool 0.0042 0.7504 0.0139 0.0102 0.2213
MobileNet 0.0008 0.3718 0.3654 0.2416 0.0205
PNasNet 0.3325 0.0087 0.1400 0.5142 0.0044
NasNet 0.2527 0.7431 0.0021 0.0012 0.0009
AmoebaNet 0.9955 0.0005 0.0008 0.0026 0.0006

C.3 Addition DGAN experimental details

All experiments for DGAN used Adam. On MNIST, we trained for 200 epochs at batch size 32 with
learning rates of 3 x 10~ for the generator and 1 x 10~ for discriminator. For CIFAR10 and CIFAR
100, we trained for 256 epochs at batch size 32 with learning rates of 3 x 107> for the generator and
1 x 1075 for discriminator. For CelebA, larger batch sizes and learning rates were necessary: batch
size 256 and learning rates of 2 x 10~ for the generator and 5 x 10~ for discriminator.

D Domain Adaptation

We first introduce additional notation for the domain adaptation task. Let Dg and D, denote the

source and target distribution over X x ), and let @S and @t denote the empirical distribution
induced by samples drawn according to D, and Dy, respectively. For any distribution D, denote by
DY its marginal distribution on the input space X. Finally, for any marginal distribution D% and
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Table 6: DGAN architectures based on Miyato et al. [2018]. Let b be the batch size, (h, w, c¢) be
the shape of an input image, f be the width of the discriminator’s output embedding, and g = 4 for
CIFAR and g = 16 for CelebA. The italicized layers in the discriminators are skipped for CIFAR
(resulting in a shallower model), but are included for CelebA.

Discriminator
Images © € Rbxhxwxe Generator
3 x 3, stride 1, conv. 64, BN, ReLU noise z € Rb*128

4 x 4, stride 2, conv. 64, BN, ReLU

3 x 3, stride 1, conv. 128, BN, ReLU 3
4 x 4. stride 2, conv. 128, BN, ReLU 4 x 4, stride 2, deconv. 256, BN, ReLU

3x3, stride 1, conv. 256, BN, ReLU 4 x 4, stride 2, deconv. 128, BN, ReLU
4x4, stride 2, conv. 256, BN, ReLU 4 x 4, stride 2, deconv. 64, BN, ReLU
3 x 3, stride 1, conv. 512, BN, ReLU 3 x 3, stride 1, conv. 3, Tanh

dense— RV*f

dense— g% x 512

a feature mapping M : X — Z that maps input space X to some feature space Z, we denote by
M (D?) the distribution of M () where x ~ D,

D.1 Adversarial Discriminative Domain Adaptation (ADDA)

Tzeng et al. [2017] considered a domain adaptation framework, Adversarial Discriminative Domain
Adaptation (ADDA), which has a very similar motivation to GANs. Given a pre-trained source
domain feature mapping M, ADDA simultaneously optimizes a target domain feature mapping M;
and an adversarial discriminator, such that the best discriminator cannot tell apart the mapped features
from source and target domain. At test time, ADDA applies the classifier trained on source feature
mapping and labels to the learned target feature mapping, to predict target label. Take the multi-class
classification task for example, the ADDA consists of three stages:

1. Pre-training. Given labeled samples (X, Y;) from source domain, learn a source feature
mapping M, and a classifier C' under cross-entropy loss:

K
: _ E 1 — 1 C(M. s }a
ngé{ (xs,ys)~(xs,ys); k=, log O, (z2))

where K is the number of label classes.

2. Adversarial adaptation. Given pre-trained source feature mapping M and unlabeled samples
X, from target domain, jointly learn a discriminator D and a target feature mapping M,:

mDin{ - E_[logD(M.(x.))] = E_[log(1 ~ D(Mi(x)))] } (Learn D)

s Te~Ag

Ir]&}tn{ - Zt@Xt [log D(M;(4))] } (Learn M)

3. Testing. Predict label for target data based on C'(My(x:)).

Note that the second stage (adversarial adaptation) is very similar to the GAN framework, where
the discriminator has the same functionality, and the generator is now mapping from the target data,
instead of from a random latent variable, to a desired feature space.

The key idea of ADDA is very similar to GAN: the adversarial training step is in fact minimizing
the Jensen-Shannon divergence between the mapped source distribution and the mapped target
distribution:

min JS(M, (DY), My(D}Y)).
Since discrepancy is originally designed for domain adaptation, it is natural to use discrepancy as the
distance metric, instead of the Jensen-Shannon divergence, in this ADDA framework. We give more
details below.

20



D.2 DGAN for Domain Adaptation

The procedure of ADDA with discrepancy is very similar to the original ADDA, which is described
below.

1. Pre-training. Given labeled samples from source domain, or equivalently an empirical
distribution Dy, learn a source feature mapping M, and a classifier hy € H:

M, hy = argmin{ E {E(h(M(:c)), y)] }

M,h (z,y)~Ds

2. Adversarial adaptation. Given pre-trained source feature mapping M and unlabeled samples
from target domain (or equivalently, D), learn a target feature mapping M, such that the
distribution of M, (D) and M, (D;¥) are small under discrepancy:

M, = ar%\r/[nin {disc;.ug (Ms(@f), M(@f)) }

ZNMI,EE@gc) [é(h(z), h/(z))} a ZNMH%@;Y) [E(h(z),h’(z))] ‘}('9)

= argmin { sup
M h,h'€H

3. Testing. Predict label for target data using A, (Me()).

Suppose the target mapping M; is parameterized by and continuous in 6. Then, under the same
assumptions of Theorem 2, the objective function in (9) is continuous in 6.

To analyze the adaptation performance, for the fixed mapping M, and M;, we define the risk
minimizers A% and hj:

ni=egmin B (((hOM()y) | hi=ergmin B Je(R(0M(),y) ]

We have the following learning guarantees for ADDA with discrepancy.

Theorem 7. Assume the loss function ((-, ) is symmetric and obeys triangle inequality. Then,

E_[¢(h(@).y)]

(z,9)~Dy

< E[e(h(M(@), B (M, (@) ] +discae (Mi(DY), Mo(DT))

z~DE¥

+ E|(hi((@). b M@))] + B [e(h (M), )]

wN‘D,f( (z,y)~Dy

Proof. By triangle inequality of ¢, we have

B [e(h(M(@).y)]

(z,y)~Dy

< B [e(hena) p0a )
{e(h* My (z h*(Mt(x)))}+ E [g(h;(Mt(x)),y)}

(90 y)NDt (z,y)~Dy
< B [0(h O @), (M) | + diserse (M(DF), M(D]))
R (M (@)), 1y (M) ) | + WEL [e(r (0(2)), ) |

Let us examine each item in Theorem 7:
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e The first term is the estimation error of ﬁs, which should be small when a large set of source
data is available.

e The second term is the true discrepancy between M;(D;¥) and M (D). According to
Theorem 3, it can be accuracy estimated by its empirical counterparts, which is minimized
during the training step (Equation (9)).

o The third term depends on how different h% and h} are, and it is essentially determined by
how difficult the adaption problem is.

e The last term is the minimal error achievable by H with feature mapping M; on the target
domain. When H is a complex family of hypothesis, such as neural networks, this term can
be viewed as a lower bound of the adaptation performance, and it is determined by how
difficult the learning problem on the target domain is.

Therefore, the only term we have control over is the discrepancy term, and thus by minimizing the
discrepancy during training, we are reducing the upper bound on the adaptation performance. This
validates the use of discrepancy in ADDA.

E Connection Between DGAN and Maxent

Both DGAN and maximum entropy (Maxent) are methods for density estimation. In this section we
show that Maxent is a regularized version of DGAN.

Let A denote the simplex of all probability distributions over X, and let ® : X — R< be the
feature mapping. The maximum entropy (Maxent) model for density estimation solves the following
optimization problem:

max H(P), s.t.
PeA

E[®(@)] - E [®(z)]

z~P z~P, Hoo

<A

where ® = (f1, fa,..., fn), and F = {f;, 7 € [n]} is the set of feature functions, f;: X — R. Note
that maxpe A H(P) is equivalent to maxpea KL(P || ;).
To see the connection between Maxent and DGAN, we can set F = {{p: o (z) =

O(h(z), k' (x)),h,h' € H}, where H is the hypothesis set that defines the discrepancy discy, .
Then the Maxent optimization problem becomes

max KL(P || P,), st max
PeA h,h'€H

E_[6(h(), 1 (@)] = E_ [¢(h@), W @)][ <A (0)

z~P z~P,

In fact, we can write the dual problem of (10) as

min —KL(P || @T) + a{ max
PEA R EH

E, b v@)] - B (e @)| b ap
[iadxs

where o > 0 is the Lagrange multiplier.

Recall that DGAN solves the following optimization problem:

E [0(h(z), k' (z)]) = E_[¢(h(z), k' (z))

z~P ~P,.

. 12)

min max
Pe{Py:0€O} h,h €H

where {Pg : § € ©} is a parametric family of distribution, {Py : § € ©} C A. Thus, the dual
problem of Maxent (11) can be viewed as DGAN (12), plus a regularization term in the form of KL

divergence KL(P || fﬁ’,,)
However, to use (11) under the DGAN framework, IP is optimized over the special parametric family
of distributions {Py : & € ©}. The probability density of Py(z) at any 2z € X is unavailable,

and thus we cannot directly compute the KL divergence KL(Py || @T) One option is to use the
Donsker-Varadhan [Donsker and Varadhan, 1975] representation:

KL(Py | B,) = sup  E [f(x)] ~log ( E [/)]).
f: x=R *~Fo z~B,
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Putting everything together, we get the regularized DGAN formulation that is motivated by the
Maxent model: for some o > 0,

ngn{f:iEiR log( E [/ - E [f(x)])}

z~P,. xz~Po
+ a{ s, | B[ W @)] = B (b, h/(x))]‘}. (13)
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