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Abstract

We present a study of surrogate losses and algorithms for the
general problem of learning to defer with multiple experts. We
first introduce a new family of surrogate losses specifically tai-
lored for the multiple-expert setting, where the prediction and
deferral functions are learned simultaneously. We then prove
that these surrogate losses benefit from strong H-consistency
bounds. We illustrate the application of our analysis through
several examples of practical surrogate losses, for which we
give explicit guarantees. These loss functions readily lead to
the design of new learning to defer algorithms based on their
minimization. While the main focus of this work is a theoreti-
cal analysis, we also report the results of several experiments
on SVHN and CIFAR-10 datasets.

1 Introduction
In many real-world applications, expert decisions can comple-
ment or significantly enhance existing models. These experts
may consist of humans possessing domain expertise or more
sophisticated albeit expensive models. For instance, contem-
porary language models and dialog-based text generation
systems have exhibited susceptibility to generating erroneous
information, often referred to as hallucinations. Thus, their
response quality can be substantially improved by deferring
uncertain predictions to more advanced or domain-specific
pre-trained models. This particular issue has been recognized
as a central challenge for large language models (LLMs)
(Wei et al. 2022; Bubeck et al. 2023). Similar observations
apply to other generation systems, including image or video
generation, as well as learning models used in various ap-
plications such as image classification, image annotation,
and speech recognition. Thus, the problem of learning to
defer with multiple experts has become increasingly critical
in applications.

The concept of learning to defer can be traced back to
the original work on learning with rejection or abstention
based on confidence thresholds (Chow 1957, 1970; Herbei
and Wegkamp 2005; Bartlett and Wegkamp 2008; Grandvalet
et al. 2008; Yuan and Wegkamp 2010, 2011; Ramaswamy,
Tewari, and Agarwal 2018; Ni et al. 2019), rejection or ab-
stention functions (Cortes, DeSalvo, and Mohri 2016b,a;
Charoenphakdee et al. 2021; Cao et al. 2022), or selective
classification (El-Yaniv et al. 2010; Wiener and El-Yaniv
2011; Geifman and El-Yaniv 2017; Gangrade, Kag, and

Saligrama 2021; Geifman and El-Yaniv 2019), and other
methods (Kalai, Kanade, and Mansour 2012; Ziyin et al.
2019; Acar, Gangrade, and Saligrama 2020). In these studies,
either the cost of abstention is not explicit or it is chosen to
be a constant.

However, a constant cost does not fully capture all the rel-
evant information in the deferral scenario. It is important to
take into account the quality of the expert, whose prediction
we rely on. These may be human experts as in several critical
applications (Kamar, Hacker, and Horvitz 2012; Tan et al.
2018; Kleinberg et al. 2018; Bansal et al. 2021). To address
this gap, Madras et al. (2018) incorporated the human expert’s
decision into the cost and proposed the first learning to defer
(L2D) framework, which has also been examined in (Raghu
et al. 2019; Wilder, Horvitz, and Kamar 2021; Pradier et al.
2021; Keswani, Lease, and Kenthapadi 2021). Mozannar and
Sontag (2020) proposed the first Bayes-consistent (Zhang
2004; Bartlett, Jordan, and McAuliffe 2006; Steinwart 2007)
surrogate loss for L2D, and subsequent work (Raman and
Yee 2021; Liu, Gallego, and Barbieri 2022) further improved
upon it. Another Bayes-consistent surrogate loss in L2D is the
one-versus-all loss proposed by Verma and Nalisnick (2022)
that is also studied in (Charusaie et al. 2022) as a special
case of a general family of loss functions. An additional line
of research investigated post-hoc methods (Okati, De, and
Rodriguez 2021; Narasimhan et al. 2022), where Okati, De,
and Rodriguez (2021) proposed an alternative optimization
method between the predictor and rejector, and Narasimhan
et al. (2022) provided a correction to the surrogate losses
in (Mozannar and Sontag 2020; Verma and Nalisnick 2022)
when they are underfitting. Finally, L2D or its variants have
been adopted or studied in various other scenarios (De et al.
2020; Straitouri et al. 2021; Zhao et al. 2021; Joshi, Parbhoo,
and Doshi-Velez 2021; Gao et al. 2021; Mozannar, Satya-
narayan, and Sontag 2022; Liu, Gallego, and Barbieri 2022;
Hemmer et al. 2023; Narasimhan et al. 2023).

All the studies mentioned so far mainly focused on learning
to defer with a single expert. Most recently, Verma, Barrejón,
and Nalisnick (2023) highlighted the significance of learning
to defer with multiple experts (Hemmer et al. 2022; Keswani,
Lease, and Kenthapadi 2021; Kerrigan, Smyth, and Steyvers
2021; Straitouri et al. 2022; Benz and Rodriguez 2022) and
extended the surrogate loss in (Verma and Nalisnick 2022;
Mozannar and Sontag 2020) to accommodate the multiple-
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Figure 1: Illustration of the scenario of learning to defer with
multiple experts (n = 3 and ne = 2).

expert setting, which is currently the only work to propose
Bayes-consistent surrogate losses in this scenario. They fur-
ther showed that a mixture of experts (MoE) approach to
multi-expert L2D proposed in (Hemmer et al. 2022) is not
consistent.

Meanwhile, recent work by Awasthi et al. (2022a,b) in-
troduced new consistency guarantees, called H-consistency
bounds, which they argued are more relevant to learning
than Bayes-consistency since they are hypothesis set-specific
and non-asymptotic. H-consistency bounds are also stronger
guarantees than Bayes-consistency. They established H-
consistent bounds for common surrogate losses in standard
classification (see also (Mao, Mohri, and Zhong 2023; Zheng
et al. 2023)). This naturally raises the question: can we de-
sign deferral surrogate losses that benefit from these more
significant consistency guarantees?

Our contributions. We study the general framework of
learning to defer with multiple experts. We first introduce a
new family of surrogate losses specifically tailored for the
multiple-expert setting, where the prediction and deferral
functions are learned simultaneously (Section 3). Next, we
prove that these surrogate losses benefit from H-consistency
bounds (Section 4). This implies, in particular, their Bayes-
consistency. We illustrate the application of our analysis
through several examples of practical surrogate losses, for
which we give explicit guarantees. These loss functions read-
ily lead to the design of new learning to defer algorithms
based on their minimization. Our H-consistency bounds in-
corporate a crucial term known as the minimizability gap. We
show that this makes them more advantageous guarantees
than bounds based on the approximation error (Section 5).
We further demonstrate that our H-consistency bounds can
be used to derive generalization bounds for the minimizer of
a surrogate loss expressed in terms of the minimizability gaps
(Section 6). While the main focus of this work is a theoretical
analysis, we also report the results of several experiments
with SVHN and CIFAR-10 datasets (Section 7).

We give a more detailed discussion of related work in
Appendix A. We start with the introduction of preliminary
definitions and notation needed for our discussion of the
problem of learning to defer with multiple experts.

2 Preliminaries
We consider the standard multi-class classification setting
with an input space X and a set of n ≥ 2 labels Y = [n],

where we use the notation [n] to denote the set {1, . . . , n}.
We study the scenario of learning to defer with multiple
experts, where the label set Y is augmented with ne additional
labels {n + 1, . . . , n + ne} corresponding to ne pre-defined
experts g1, . . . , gne , which are a series of functions mapping
from X × Y to R. In this scenario, the learner has the option
of returning a label y ∈ Y, which represents the category
predicted, or a label y = n + j, 1 ≤ j ≤ ne, in which case it is
deferring to expert gj .

We denote by Y = [n + ne] the augmented label set and
consider a hypothesis set H of functions mapping from X×Y
to R. The prediction associated by h ∈ H to an input x ∈ X

is denoted by h(x) and defined as the element in Y with
the highest score, h(x) = argmaxy∈[n+ne] h(x, y), with an
arbitrary but fixed deterministic strategy for breaking ties.
We denote by Hall the family of all measurable functions.

The deferral loss function Ldef is defined as follows for
any h ∈H and (x, y) ∈ X × Y:

Ldef(h,x, y) = 1h(x)≠y1h(x)∈[n] +
ne

∑
j=1

cj(x, y)1h(x)=n+j

(1)
Thus, the loss incurred coincides with the standard zero-one
classification loss when h(x), the label predicted, is in Y.
Otherwise, when h(x) is equal to n + j, the loss incurred
is cj(x, y), the cost of deferring to expert gj . We give an
illustration of the scenario of learning to defer with three
classes and two experts (n = 3 and ne = 2) in Figure 1. We
will denote by cj ≥ 0 and cj ≤ 1 finite lower and upper bounds
on the cost cj , that is cj(x, y) ∈ [cj , cj] for all (x, y) ∈

X × Y. There are many possible choices for these costs. Our
analysis is general and requires no assumption other than
their boundedness. One natural choice is to define cost cj
as a function relying on expert gj’s accuracy, for example
cj(x, y) = αj1gj(x)≠y + βj , with αj , βj > 0, where gj(x) =
argmaxy∈[n] gj(x, y) is the prediction made by expert gj for
input x.

Given a distribution D over X × Y, we will denote by
ELdef

(h) the expected deferral loss of a hypothesis h ∈H,

ELdef
(h) = E

(x,y)∼D
[Ldef(h,x, y)], (2)

and by E∗Ldef
(H) = infh∈H ELdef

(h) its infimum or best-in-
class expected loss. We will adopt similar definitions for any
surrogate loss function L:

EL(h) = E
(x,y)∼D

[L(h,x, y)], E∗L(H) = inf
h∈H

EL(h). (3)

3 General surrogate losses
In this section, we introduce a new family of surrogate losses
specifically tailored for the multiple-expert setting starting
from first principles.

The scenario we consider is one where the prediction (first
n scores) and deferral functions (last ne scores) are learned
simultaneously. Consider a hypothesis h ∈H. Note that, for
any (x, y) ∈ X × Y, if the learner chooses to defer to an
expert, h(x) ∈ {n + 1, . . . , n + ne}, then it does not make a



prediction of the category, and thus h(x) ≠ y. This implies
that the following identity holds:

1h(x)≠y1h(x)∈{n+1,...,n+ne} = 1h(x)∈{n+1,...,n+ne}.

Using this identity and 1h(x)∈[n] = 1 − 1h(x)∈{n+1,...,n+ne},
we can write the first term of (1) as 1h(x)≠y −

1h(x)∈{n+1,...,n+ne}. Note that deferring occurs if and only if
one of the experts is selected, that is 1h(x)∈{n+1,...,n+ne} =

∑
ne
j=1 1h(x)=n+j . Therefore, the deferral loss function can be

written in the following form for any h ∈ H and (x, y) ∈

X × Y:

Ldef(h,x, y)

= 1h(x)≠y −
ne

∑
j=1

1h(x)=n+j +
ne

∑
j=1

cj(x, y)1h(x)=n+j

= 1h(x)≠y +
ne

∑
j=1

(cj(x, y) − 1)1h(x)=n+j

= 1h(x)≠y +
ne

∑
j=1

(1 − cj(x, y))1h(x)≠n+j +
ne

∑
j=1

(cj(x, y) − 1).

In light of this expression, since the last term
∑
ne
j=1(cj(x, y) − 1) does not depend on h, if ` is a

surrogate loss for the zero-one multi-class classification loss
over the augmented label set Y, then L, defined as follows for
any h ∈H and (x, y) ∈ X × Y, is a natural surrogate loss for
Ldef :

L(h,x, y) = `(h,x, y) +
ne

∑
j=1

(1 − cj(x, y)) `(h,x,n + j).

(4)
We will study the properties of the general family of surro-
gate losses L thereby defined. Note that in the special case
where ` is the logistic loss and ne = 1, that is where there
is only one pre-defined expert, L coincides with the surro-
gate loss proposed in (Mozannar and Sontag 2020; Cao et al.
2022). However, even for that special case, our derivation
of the surrogate loss from first principle is new and it is this
analysis that enables us to define a surrogate loss for the more
general case of multiple experts and other ` loss functions.
Our formulation also recovers the softmax surrogate loss in
(Verma, Barrejón, and Nalisnick 2023) when ` = `log and
cj(x, y) = 1gj(x)≠y .

4 H-consistency bounds for surrogate losses
Here, we prove strong consistency guarantees for a surrogate
deferral loss L of the form described in the previous section,
provided that the loss function ` it is based upon admits a
similar consistency guarantee with respect to the standard
zero-one classification loss.

H-consistency bounds. To do so, we will adopt the no-
tion of H-consistency bounds recently introduced by Awasthi,
Mao, Mohri, and Zhong (2022a,b). These are guarantees that,
unlike Bayes-consistency or excess error bound, take into
account the specific hypothesis set H and do not assume
H to be the family of all measurable functions. Moreover,
in contrast with Bayes-consistency, they are not just asymp-
totic guarantees. In this context, they have the following

form: ELdef
(h) − E∗Ldef

(H) ≤ f(EL(h) − E∗L(H)), where f
is a non-decreasing function, typically concave. Thus, when
the surrogate estimation loss (EL(h) − E∗L(H)) is reduced
to ε, the deferral estimation loss (ELdef

(h) − E∗Ldef
(H)) is

guaranteed to be at most f(ε).
Minimizability gaps. A key quantity appearing in these

bounds is the minimizability gap M`(H) which, for a loss
function ` and hypothesis set H, measures the difference of
the best-in-class expected loss and the expected pointwise
infimum of the loss:

M`(H) = E∗` (H) −E
x
[ inf
h∈H

E
y∣x

[`(h,x, y)]].

By the super-additivity of the infimum, since E∗` (H) =

infh∈H Ex[Ey∣x[`(h,x, y)]], the minimizability gap is al-
ways non-negative.

When the loss function ` only depends on h(x, ⋅) for all h,
x, and y, that is `(h,x, y) = Ψ(h(x,1), . . . , h(x,n), y), for
some function Ψ, then it is not hard to show that the minimiz-
ability gap vanishes for the family of all measurable functions:
M`(Hall) = 0 (Steinwart 2007)[lemma 2.5]. It is also null
when E∗` (H) = E∗` (Hall), that is when the Bayes-error co-
incides with the best-in-class error. In general, however, the
minimizabiliy gap is non-zero for a restricted hypothesis set
H and is therefore important to analyze. In Section 5, we will
discuss in more detail minimizability gaps for a relatively
broad case and demonstrate that H-consistency bounds with
minimizability gaps can often be more favorable than excess
error bounds based on the approximation error.

The following theorem is the main result of this section.
Theorem 1 (H-consistency bounds for score-based surro-
gates). Assume that ` admits an H-consistency bound with
respect to the multi-class zero-one classification loss `0−1.
Thus, there exists a non-decreasing concave function Γ with
Γ(0) = 0 such that, for any distribution D and for all h ∈H,
we have

E`0−1(h) − E∗`0−1(H) +M`0−1(H)

≤ Γ(E`(h) − E∗` (H) +M`(H)).

Then, L admits the following H-consistency bound with re-
spect to Ldef : for all h ∈H,

ELdef
(h) − E∗Ldef

(H) +MLdef
(H)

≤ (ne + 1 −
ne

∑
j=1

cj)Γ(
EL(h) − E∗L(H) +ML(H)

ne + 1 −∑
ne
j=1 cj

). (5)

Furthermore, constant factors (ne + 1 −∑
ne
j=1 cj) and

1
ne+1−∑nej=1 cj

can be removed when Γ is linear.

The proof is given in Appendix C.4. It consists of first
analyzing the conditional regret of the deferral loss and that
of a surrogate loss. Next, we show how the former can be
upper bounded in terms of the latter by leveraging the H-
consistency bound of ` with respect to the zero-one loss
with an appropriate conditional distribution that we construct.
This, combined with the results of Awasthi et al. (2022b),
proves our H-consistency bounds.



Let us emphasize that the theorem is broadly applicable
and that there are many choices for the surrogate loss ` meet-
ing the assumption of the theorem: Awasthi et al. (2022b)
showed that a variety of surrogate loss functions ` admit an H-
consistency bound with respect to the zero-one loss for com-
mon hypothesis sets such as linear models and multi-layer
neural networks, including sum losses (Weston and Watkins
1998), constrained losses (Lee, Lin, and Wahba 2004), and, as
shown more recently by Mao, Mohri, and Zhong (2023) (see
also (Zheng et al. 2023)), comp-sum losses, which include
the logistic loss (Verhulst 1838, 1845; Berkson 1944, 1951),
the sum-exponential loss and many other loss functions.

Thus, the theorem gives a strong guarantee for a broad
family of surrogate losses L based upon such loss functions `.
The presence of the minimizability gaps in these bounds is im-
portant. In particular, while the minimizability gap can be up-
per bounded by the approximation error A`(H) = E∗` (H) −

Ex[infh∈Hall
Ey∣x[`(h,x, y)]] = E∗` (H) − E∗` (Hall), it is a

finer quantity than the approximation error and can lead to
more favorable guarantees.

Note that when the Bayes-error coincides with the best-in-
class error, E∗L(H) = E∗L(Hall), we have ML(H) ≤ AL(H) =

0. This leads to the following corollary, using the non-
negativity property of the minimizability gap.

Corollary 2. Assume that ` admits an H-consistency bound
with respect to the multi-class zero-one classification loss
`0−1. Then, for all h ∈ H and any distribution such that
E∗L(H) = E∗L(Hall), the following bound holds:

ELdef
(h)−E∗Ldef

(H) ≤ (ne+1−
ne

∑
j=1

cj)Γ(
EL(h) − E∗L(H)

ne + 1 −∑
ne
j=1 cj

),

Furthermore, constant factors (ne + 1 −∑
ne
j=1 cj) and

1
ne+1−∑nej=1 cj

can be removed when Γ is linear.

Thus, when the estimation error of the surrogate loss,
EL(h) − E∗L(H), is reduced to ε, the estimation error of the
deferral loss, ELdef

(h) − E∗Ldef
(H), is upper bounded by

⎛

⎝
ne + 1 −

ne

∑
j=1

cj
⎞

⎠
Γ
⎛

⎝
ε/
⎛

⎝
ne + 1 −

ne

∑
j=1

cj
⎞

⎠

⎞

⎠
.

Moreover, H-consistency holds since EL(h) − E∗L(H) → 0
implies ELdef

(h) − E∗Ldef
(H)→ 0.

Table 1 shows several examples of surrogate deferral
losses and their corresponding H-consistency bounds, us-
ing the multi-class H-consistency bounds known for comp-
sum losses ` with respect to the zero-one loss (Mao, Mohri,
and Zhong 2023, Theorem 1). The bounds have been sim-
plified here using the inequalities 1 ≤ ne + 1 − ∑

ne
j=1 cj ≤

ne + 1 − ∑
ne
j=1 cj ≤ ne + 1. See Appendix D.1 for a more

detailed derivation.
Similarly, Table 2 and Table 3 show several examples

of surrogate deferral losses with sum losses or constrained
losses adopted for ` and their corresponding H-consistency
bounds, using the multi-class H-consistency bounds in
(Awasthi et al. 2022b, Table 2) and (Awasthi et al. 2022b,
Table 3) respectively. Here too, we present the simplified

bounds by using the inequalities 1 ≤ ne + 1 − ∑
ne
j=1 cj ≤

ne+1−∑
ne
j=1 cj ≤ ne+1. See Appendix D.2 and Appendix D.3

for a more detailed derivation.

5 Benefits of minimizability gaps
As already pointed out, the minimizabiliy gap can be upper
bounded by the approximation error A`(H) = E∗` (H) −

Ex[infh∈Hall
Ey∣x[`(h,x, y)]] = E∗` (H) − E∗` (Hall). It is

however a finer quantity than the approximation error and can
thus lead to more favorable guarantees. More precisely, as
shown by (Awasthi et al. 2022a,b), for a target loss function
`2 and a surrogate loss function `1, the excess error bound
can be rewritten as

E`2(h) − E∗`2(H) +A`2(H)

≤ Γ(E`1(h) − E∗`1(H) +A`1(H)),

where Γ is typically linear or the square-root function modulo
constants. On the other hand, an H-consistency bound can
be expressed as follows:

E`2(h) − E∗`2(H) +M`2(H)

≤ Γ(E`1(h) − E∗`1(H) +M`1(H)).

For a target loss function `2 with discrete out-
puts, such as the zero-one loss or the defer-
ral loss, we have Ex[infh∈H Ey∣x[`2(h,x, y)]] =

Ex[infh∈Hall
Ey∣x[`2(h,x, y)]] when the hypothesis

set generates labels that cover all possible outcomes for each
input (See (Awasthi et al. 2022b, Lemma 3), Lemma 4 in Ap-
pendix C.1). Consequently, we have M`2(H) = A`2(H). For
a surrogate loss function `1, the minimizability gap is upper
bounded by the approximation error, M`1(H) ≤ A`1(H),
and is generally finer.

Consider a simple binary classification example with the
conditional distribution denoted as η(x) =D(Y = 1∣X = x).
Let H be a family of functions h such that ∣h(x)∣ ≤ Λ for all
x ∈ X, for some Λ > 0, and such that all values in the range
[−Λ,+Λ] can be achieved. For the exponential-based margin
loss, defined as `(h,x, y) = e−yh(x), we have

E
y∣x

[`(h,x, y)] = η(x)e−h(x) + (1 − η(x))eh(x).

It can be observed that the infimum over all measurable
functions can be written as follows, for all x:

inf
h∈Hall

E
y∣x

[`(h,x, y)] = 2
√
η(x)(1 − η(x)),

while the infimum over H, infh∈H Ey∣x[`(h,x, y)], depends
on Λ. That infimum over H is achieved by

h(x) =

⎧⎪⎪
⎨
⎪⎪⎩

min{ 1
2

log η(x)
1−η(x) ,Λ} η(x) ≥ 1/2

max{ 1
2

log η(x)
1−η(x) ,−Λ} otherwise.

Thus, in the deterministic case, we can explicitly compute
the difference between the approximation error and the mini-
mizability gap:

A`(H) −M`(H)

= E
x
[ inf
h∈H

E
y∣x

[`(h,x, y)] − inf
h∈Hall

E
y∣x

[`(h,x, y)]] = e−Λ.



` L H-consistency bounds

`exp ∑y′≠y e
h(x,y′)−h(x,y) +∑

ne
j=1(1 − cj(x, y))∑y′≠n+j e

h(x,y′)−h(x,n+j) √
2(ne + 1)(EL(h) − E∗L(H))

1
2

`log − log( eh(x,y)

∑y′∈Y eh(x,y
′) ) −∑

ne
j=1(1 − cj(x, y)) log( eh(x,n+j)

∑y′∈Y eh(x,y
′) )

√
2(ne + 1)(EL(h) − E∗L(H))

1
2

`gce
1
α
[1 − [ eh(x,y)

∑y′∈Y eh(x,y
′) ]

α

] + 1
α ∑

ne
j=1(1 − cj(x, y))[1 − [ eh(x,n+j)

∑y′∈Y eh(x,y
′) ]

α

]
√

2nα(ne + 1)(EL(h) − E∗L(H))
1
2

`mae 1 − eh(x,y)

∑y′∈Y eh(x,y
′) +∑

ne
j=1(1 − cj(x, y))(1 − eh(x,n+j)

∑y′∈Y eh(x,y
′) ) n(EL(h) − E∗L(H))

Table 1: Examples of the deferral surrogate loss (4) with comp-sum losses adopted for ` and their associated H-consistency
bounds provided by Corollary 2 (with only the surrogate portion displayed).

` L H-consistency bounds

Φsum
sq ∑y′≠y Φsq(∆h(x, y, y

′)) +∑
ne
j=1(1 − cj(x, y))∑y′≠n+j Φsq(∆h(x,n + j, y

′)) (ne + 1)(EL(h) − E∗L(H))
1
2

Φsum
exp ∑y′≠y Φexp(∆h(x, y, y

′)) +∑
ne
j=1(1 − cj(x, y))∑y′≠n+j Φexp(∆h(x,n + j, y

′))
√

2(ne + 1)(EL(h) − E∗L(H))
1
2

Φsum
ρ ∑y′≠y Φρ(∆h(x, y, y

′)) +∑
ne
j=1(1 − cj(x, y))∑y′≠n+j Φρ(∆h(x,n + j, y

′)) EL(h) − E∗L(H)

Table 2: Examples of the deferral surrogate loss (4) with sum losses adopted for ` and their associated H-consistency bounds
provided by Corollary 2 (with only the surrogate portion displayed), where ∆h(x, y, y

′) = h(x, y) − h(x, y′), Φsq(t) =

max{0,1 − t}
2, Φexp(t) = e

−t, and Φρ(t) = min{max{0,1 − t/ρ},1}.

As the parameter Λ decreases, the hypothesis set H becomes
more restricted and the difference between the approximation
error and the minimizability gap increases. In summary, an
H-consistency bound can be more favorable than the excess
error bound as M`2(H) = A`2(H) when `2 represents the
zero-one loss or deferral loss, and M`1(H) ≤ A`1(H). More-
over, we will show in the next section that our H-consistency
bounds can lead to learning bounds for the deferral loss and
a hypothesis set H with finite samples.

6 Learning bounds
For a sample S = ((x1, y1), . . . , (xm, ym)) drawn from Dm,
we will denote by ĥS the empirical minimizer of the empir-
ical loss within H with respect to the surrogate loss func-
tion L: ĥS = argminh∈H

1
m ∑

m
i=1 L(h,xi, yi). Given an H-

consistency bound in the form of (5), we can further use
it to derive a learning bound for the deferral loss by upper
bounding the surrogate estimation error EL(ĥS) − E∗L(H)

with the complexity (e.g. the Rademacher complexity) of
the family of functions associated with L and H: HL =

{(x, y)↦ L(h,x, y)∶h ∈H}.
We denote by RL

m(H) the Rademacher complexity of HL

and by BL an upper bound of the surrogate loss L. Then,
we obtain the following learning bound for the deferral loss
based on (5).

Theorem 3 (Learning bound). Under the same assump-
tions as Theorem 1, for any δ > 0, with probability at least
1 − δ over the draw of an i.i.d sample S of size m, the follow-
ing deferral loss estimation bound holds for ĥS:

ELdef
(ĥS) − E∗Ldef

(H) +ML(H)

≤ (ne+1−
ne

∑
j=1

cj)Γ
⎛
⎜
⎝

4RL
m(H) + 2BL

√
log 2

δ

2m
+ML(H)

ne + 1 −∑
ne
j=1 cj

⎞
⎟
⎠
.

The proof is presented in Appendix E. To the best of our
knowledge, Theorem 3 provides the first finite-sample guar-
antee for the estimation error of the minimizer of a surrogate
deferral loss L defined for multiple experts. The proof ex-
ploits our H-consistency bounds with respect to the deferral
loss, as well as standard Rademacher complexity guarantees.

When cj = 0 and cj = 1 for any j ∈ [ne], the right-hand
side of the bound admits the following simpler form:

(ne + 1)Γ(4RL
m(H) + 2BL

√
log 2

δ

2m
+ML(H)).

The dependency on the number of experts ne makes this
bound less favorable. There is a trade-off however since, on
the other hand, more experts can help us achieve a better
accuracy overall and reduce the best-in-class deferral loss.
These learning bounds take into account the minimizability
gap, which varies as a function of the upper bound Λ on the
magnitude of the scoring functions. Thus, both the minimiz-
ability gaps and the Rademacher complexity term suggest a
regularization controlling the complexity of the hypothesis
set and the magnitude of the scores.

Adopting different loss functions ` in the definition of our
deferral surrogate loss (4) will lead to a different functional
form Γ, which can make the bound more or less favorable. For
example, a linear form of Γ is in general more favorable than
a square-root form modulo a constant. But, the dependency
on the number of classes n appearing in Γ (e.g., ` = `gce or
` = `mae) is also important to take into account since a larger
value of n tends to negatively impact the guarantees. We
already discussed the dependency on the number of experts
ne in Γ (e.g., ` = `gce or ` = `exp) and the associated trade-off,
which is also important to consider.

Note that the bound of Theorem 3 is expressed in terms of
the global complexity of the prediction and deferral scoring
functions H. One can however derive a finer bound distin-
guishing the complexity of the deferral scoring functions and



` L H-consistency bounds

Φcstnd
hinge ∑y′≠y Φhinge(−h(x, y

′)) +∑
ne
j=1(1 − cj(x, y))∑y′≠n+j Φhinge(−h(x, y

′)) EL(h) − E∗L(H)

Φcstnd
sq ∑y′≠y Φsq(−h(x, y

′)) +∑
ne
j=1(1 − cj(x, y))∑y′≠n+j Φsq(−h(x, y

′)) (ne + 1)(EL(h) − E∗L(H))
1
2

Φcstnd
exp ∑y′≠y Φexp(−h(x, y

′)) +∑
ne
j=1(1 − cj(x, y))∑y′≠n+j Φexp(−h(x, y

′))
√

2(ne + 1)(EL(h) − E∗L(H))
1
2

Φcstnd
ρ ∑y′≠y Φρ(−h(x, y

′)) +∑
ne
j=1(1 − cj(x, y))∑y′≠n+j Φρ(−h(x, y

′)) EL(h) − E∗L(H)

Table 3: Examples of the deferral surrogate loss (4) with constrained losses adopted for ` and their associated H-consistency
bounds provided by Corollary 2 (with only the surrogate portion displayed), where Φhinge(t) = max{0,1 − t}, Φsq(t) =

max{0,1 − t}
2, Φexp(t) = e

−t, and Φρ(t) = min{max{0,1 − t/ρ},1} with the constraint that ∑y∈Y h(x, y) = 0.

that of the prediction scoring functions following a similar
proof and analysis.

Recall that for a surrogate loss L, the minimizability gap
ML(H) is in general finer than the approximation error
AL(H), while for the deferral loss, for common hypothe-
sis sets, these two quantities coincide. Thus, our bound can
be rewritten as follows for common hypothesis sets:

ELdef
(ĥS) − E∗Ldef

(Hall)

≤ (ne+1−
ne

∑
j=1

cj)Γ
⎛
⎜
⎝

4RL
m(H) + 2BL

√
log 2

δ

2m
+ML(H)

ne + 1 −∑
ne
j=1 cj

⎞
⎟
⎠
.

This is more favorable and more relevant than a similar excess
loss bound where ML(H) is replaced with AL(H), which
could be derived from a generalization bound for the surro-
gate loss.

7 Experiments
In this section, we examine the empirical performance of our
proposed surrogate loss in the scenario of learning to defer
with multiple experts. More specifically, we aim to compare
the overall system accuracy for the learned predictor and
deferral pairs, considering varying numbers of experts. This
comparison provides valuable insights into the performance
of our algorithm under different expert configurations. We
explore three different scenarios:

• Only a single expert is available, specifically where a
larger model than the base model is chosen as the deferral
option.

• Two experts are available, consisting of one small model
and one large model as the deferral options.

• Three experts are available, including one small model,
one medium model, and one large model as the deferral
options.

By comparing these scenarios, we evaluate the impact of
varying the number and type of experts on the overall system
accuracy.

Type of cost. We carried out experiments with two types
of cost functions. For the first type, we selected the cost
function to be exactly the misclassification error of the expert:
cj(x, y) = 1gj(x)≠y, where gj(x) = argmaxy∈[n] gj(x, y) is
the prediction made by expert gj for input x. In this scenario,
the cost incurred for deferring is determined solely based
on the expert’s accuracy. For the second type, we chose a

Single expert Two experts Three experts

SVHN 92.08 ± 0.15% 93.18 ± 0.18% 93.46 ± 0.12%
CIFAR-10 73.31 ± 0.21% 77.12 ± 0.34% 78.71 ± 0.43%

Table 4: Overall system accuracy with the first type of cost
functions.

Single expert Two experts Three experts

SVHN 92.36 ± 0.22% 93.23 ± 0.21% 93.36 ± 0.11%
CIFAR-10 73.70 ± 0.40% 76.29 ± 0.41% 76.43 ± 0.55%

Table 5: Overall system accuracy with the second type of cost
functions.

cost function admitting the form cj(x, y) = 1gj(x)≠y + βj ,
where an additional non-zero base cost βj is assigned to
each expert. Deferring to a larger model then tends to incur a
higher inference cost and hence, the corresponding βj value
for a larger model is higher as well. In addition to the base
cost, each expert also incurs a misclassification error, as with
the first type. Experimental setup and additional experiments
(see Table 6) are included in Appendix B.

Experimental Results. In Table 4 and Table 5, we report
the mean and standard deviation of the system accuracy over
three runs with different random seeds. We noticed a positive
correlation between the number of experts and the overall sys-
tem accuracy. Specifically, as the number of experts increases,
the performance of the system in terms of accuracy improves.
This observation suggests that incorporating multiple experts
in the learning to defer framework can lead to better predic-
tions and decision-making. The results also demonstrate the
effectiveness of our proposed surrogate loss for deferral with
multiple experts.

8 Conclusion
We presented a comprehensive study of surrogate losses for
the core challenge of learning to defer with multiple experts.
Through our study, we established theoretical guarantees,
strongly endorsing the adoption of the loss function family
we introduced. This versatile family of loss functions can
effectively facilitate the learning to defer algorithms across
a wide range of applications. Our analysis offers great flexi-
bility by accommodating diverse cost functions, encouraging
exploration and evaluation of various options in real-world
scenarios. We encourage further research into the theoretical
properties of different choices and their impact on the overall
performance to gain deeper insights into their effectiveness.



A Related work
The concept of learning to defer has its roots in research
on abstention, particularly in binary classification scenarios
with a constant cost function. Early work by (Chow 1957)
and Chow (1970) focused on rejection and set the foundation
for subsequent studies on learning with abstention. These
studies explored different approaches such as confidence-
based methods (Herbei and Wegkamp 2005; Bartlett and
Wegkamp 2008; Grandvalet et al. 2008; Yuan and Wegkamp
2010), the predictor-rejector framework (Cortes, DeSalvo,
and Mohri 2016b,a), or selective classification (El-Yaniv et al.
2010; Yuan and Wegkamp 2011; Wiener and El-Yaniv 2011)

Cortes, DeSalvo, and Mohri (2016b,a) showed that the
confidence-based approach could fail to determine the opti-
mal rejection region when the predictor did not match the
Bayes solution. Instead, they proposed a novel predictor-
rejector framework, for which they gave both Bayes-
consistent and realizable H-consistent surrogate losses (Long
and Servedio 2013; Kuznetsov, Mohri, and Syed 2014; Zhang
and Agarwal 2020), which achieve state-of-the-art perfor-
mance in the binary setting.

El-Yaniv et al. (2010); Wiener and El-Yaniv (2011) in-
troduced and studied a selective classification based on a
predictor and a selector and explored the trade-off between
classifier coverage and accuracy, drawing connections to ac-
tive learning in their analysis.

The confidence-based and predictor-rejector frameworks
have been both further analyzed in the context of multi-class
classification. Ramaswamy, Tewari, and Agarwal (2018); Ni
et al. (2019); Geifman and El-Yaniv (2017); Acar, Gangrade,
and Saligrama (2020); Gangrade, Kag, and Saligrama (2021)
extended the confidence-based method to multi-class settings,
while Ni et al. (2019) noted that deriving a Bayes-consistent
surrogate loss under the predictor-rejector framework is quite
challenging and left it as an open problem. In response to
this challenge, Mozannar and Sontag (2020) formulated a
different score-based approach to learn the predictor and
rejector simultaneously, by introducing an additional scoring
function corresponding to rejection. This method has been
further explored in a subsequent work (Cao et al. 2022). The
surrogate losses derived under this framework are currently
the state-of-the-art (Mozannar and Sontag 2020; Cao et al.
2022).

Geifman and El-Yaniv (2019) proposed a new neural net-
work architecture for abstention in the selective classification
framework for multi-class classification. They did not derive
consistent surrogate losses for this formulation. Ziyin et al.
(2019) defined a loss function for the predictor-selector frame-
work based on the doubling rate of gambling that requires
almost no modification to the model architecture.

Another line of research studied multi-class abstention us-
ing an implicit criterion (Kalai, Kanade, and Mansour 2012;
Acar, Gangrade, and Saligrama 2020; Gangrade, Kag, and
Saligrama 2021; Charoenphakdee et al. 2021), by directly
modeling regions with high confidence.

However, a constant cost does not fully capture all the rel-
evant information in the deferral scenario. It is important to
take into account the quality of the expert, whose prediction
we rely on. These may be human experts as in several critical

applications (Kamar, Hacker, and Horvitz 2012; Tan et al.
2018; Kleinberg et al. 2018; Bansal et al. 2021). To address
this gap, Madras et al. (2018) incorporated the human expert’s
decision into the cost and proposed the first learning to defer
(L2D) framework, which has also been examined in (Raghu
et al. 2019; Wilder, Horvitz, and Kamar 2021; Pradier et al.
2021; Keswani, Lease, and Kenthapadi 2021). Mozannar and
Sontag (2020) proposed the first Bayes-consistent (Zhang
2004; Bartlett, Jordan, and McAuliffe 2006; Steinwart 2007)
surrogate loss for L2D, and subsequent work (Raman and
Yee 2021; Liu, Gallego, and Barbieri 2022) further improved
upon it. Another Bayes-consistent surrogate loss in L2D is the
one-versus-all loss proposed by Verma and Nalisnick (2022)
that is also studied in (Charusaie et al. 2022) as a special
case of a general family of loss functions. An additional line
of research investigated post-hoc methods (Okati, De, and
Rodriguez 2021; Narasimhan et al. 2022), where Okati, De,
and Rodriguez (2021) proposed an alternative optimization
method between the predictor and rejector, and Narasimhan
et al. (2022) provided a correction to the surrogate losses
in (Mozannar and Sontag 2020; Verma and Nalisnick 2022)
when they are underfitting. Finally, L2D or its variants have
been adopted or studied in various other scenarios (De et al.
2020; Straitouri et al. 2021; Zhao et al. 2021; Joshi, Parbhoo,
and Doshi-Velez 2021; Gao et al. 2021; Mozannar, Satya-
narayan, and Sontag 2022; Liu, Gallego, and Barbieri 2022;
Hemmer et al. 2023; Narasimhan et al. 2023).

All the studies mentioned so far mainly focused on learning
to defer with a single expert. Most recently, Verma, Barrejón,
and Nalisnick (2023) highlighted the significance of learning
to defer with multiple experts (Hemmer et al. 2022; Keswani,
Lease, and Kenthapadi 2021; Kerrigan, Smyth, and Steyvers
2021; Straitouri et al. 2022; Benz and Rodriguez 2022) and
extended the surrogate loss in (Verma and Nalisnick 2022;
Mozannar and Sontag 2020) to accommodate the multiple-
expert setting, which is currently the only work to propose
Bayes-consistent surrogate losses in this scenario. They fur-
ther showed that a mixture of experts (MoE) approach to
multi-expert L2D proposed in (Hemmer et al. 2022) is not
consistent.

Meanwhile, recent work by Awasthi et al. (2022a,b) in-
troduced new consistency guarantees, called H-consistency
bounds, which they argued are more relevant to learning
than Bayes-consistency since they are hypothesis set-specific
and non-asymptotic. H-consistency bounds are also stronger
guarantees than Bayes-consistency. They established H-
consistent bounds for common surrogate losses in standard
classification (see also (Mao, Mohri, and Zhong 2023; Zheng
et al. 2023)).

In this work, we study the general framework of learning
to defer with multiple experts. Furthermore, we design defer-
ral surrogate losses that benefit from these more significant
consistency guarantees, namely, H-consistency bounds, in
the general multiple-expert setting.

B Experimental details
Experimental setup. For our experiments, we used two
popular datasets: CIFAR-10 (Krizhevsky 2009) and SVHN



(Street View House Numbers) (Netzer et al. 2011). CIFAR-
10 consists of 60,000 color images in 10 different classes,
with 6,000 images per class. The dataset is split into 50,000
training images and 10,000 test images. SVHN contains im-
ages of house numbers captured from Google Street View.
It consists of 73,257 images for training and 26,032 images
for testing. We trained for 50 epochs on CIFAR-10 and 15
epochs on SVHN without any data augmentation.

In our experiments, we adopted the ResNet (He et al. 2016)
architecture for the base model and selected various sizes
of ResNet models as experts in each scenario. Throughout
all three scenarios, we used ResNet-4 for both the predic-
tor and the deferral models. In the first scenario, we chose
ResNet-10 as the expert model. In the second scenario, we in-
cluded ResNet-10 and ResNet-16 as expert models. The third
scenario involves ResNet-10, ResNet-16, and ResNet-28 as
expert models with increasing complexity. The expert models
are pre-trained on the training data of SVHN and CIFAR-10
respectively.

During the training process, we simultaneously trained
the predictor ResNet-4 and the deferral model ResNet-4. We
adopted the Adam optimizer (Kingma and Ba 2014) with a
batch size of 128 and a weight decay of 1 × 10−4. We used
our proposed deferral surrogate loss (4) with the general-
ized cross-entropy loss being adopted for `. As suggested by
Zhang and Sabuncu (2018), we set the parameter α to 0.7.

For the second type of cost functions, we set the base
costs as follows: β1 = 0.1, β2 = 0.12 and β3 = 0.14 for
the SVHN dataset and β1 = 0.3, β2 = 0.32, β3 = 0.34 for
the CIFAR-10 dataset, where β1 corresponds to the cost
associated with the smallest expert model, ResNet-10, β2 to
that of the medium model, ResNet-16, and β3 to that of the
largest expert model, ResNet-28. A base cost value that is
not too far from the misclassification error of expert models
encourages in practice a reasonable amount of input instances
to be deferred. We observed that the performance remains
close for other neighboring values of base costs.

Additional experiments. Here, we share additional exper-
imental results in an intriguing setting where multiple experts
are available and each of them has a clear domain of exper-
tise. We report below the empirical results of our proposed
deferral surrogate loss and the one-vs-all (OvA) surrogate
loss proposed in recent work (Verma, Barrejón, and Nalis-
nick 2023), which is the state-of-the-art surrogate loss for
learning to defer with multiple experts, on CIFAR-10. In this
setting, the two experts have a clear domain of expertise. The
expert 1 is always correct on the first three classes, 0 to 2, and
predicts uniformly at random for other classes; the expert 2 is
always correct on the next three classes, 3 to 5, and generates
random predictions otherwise. We train a ResNet-16 for the
predictor/deferral model.

As shown in Table 6, our method achieves comparable
system accuracy with OvA. Among the images in classes
0 to 2, only 3.57% is deferred to expert 2 which predicts
uniformly at random. Similarly, among the images in classes
3 to 5, only 3.33% is deferred to expert 1. For the rest of
the images in classes 6 to 9, the predictor decides to learn
to classify them by itself and actually makes 92.88% of the

final predictions. This illustrates that our proposed surrogate
loss is effective and comparable to the baseline.

C Proof of H-consistency bounds for
deferral surrogate losses

To prove H-consistency bounds for our deferral surrogate
loss functions, we will show how the conditional regret of the
deferral loss can be upper bounded in terms of the conditional
regret of the surrogate loss. The general theorems proven by
Awasthi et al. (2022b, Theorem 4, Theorem 5) then guarantee
our H-consistency bounds.

For any x ∈ X and y ∈ Y, let p(x, y) denote the conditional
probability of Y = y givenX = x for any y ∈ Y. Then, for any
x ∈ X, the conditional Ldef -loss CLdef

(h,x) and conditional
regret (or calibration gap) ∆CLdef

(h,x) of a hypothesis h ∈
H are defined by

CLdef
(h,x) = E

y∣x
[Ldef(h,x, y)] = ∑

y∈Y
p(x, y)Ldef(h,x, y)

∆CLdef
(h,x) = CLdef

(h,x) − C∗Ldef
(H, x),

where C∗Ldef
(H, x) = infh∈H CLdef

(h,x). Similar definitions
hold for the surrogate loss L. To bound ∆CLdef

(h,x) in terms
of ∆CL(h,x), we first give more explicit expressions for
these conditional regrets.

To do so, it will be convenient to use the following defini-
tion for any x ∈ X and y ∈ [n + ne]:

q(x, y) = {
p(x, y) y ∈ Y

1 −∑y∈Y p(x, y)cj(x, y) n + 1 ≤ y ≤ n + ne.

Note that q(x, y) is non-negative but, in general, these quan-
tities do not sum to one. We denote by q(x, y) = q(x,y)

Q
their

normalized counterparts which represent probabilities, where
Q = ∑y∈[n+ne] q(x, y).

For any x ∈ X, we will denote by H(x) the set of labels
generated by hypotheses in H: H(x) = {h(x)∶h ∈H}. We
denote by ymax ∈ [n + ne] the label associated by q to an
input x ∈ X, defined as ymax = argmaxy∈[n+ne] q(x, y), with
the same deterministic strategy for breaking ties as that of
h(x).

C.1 Conditional regret of the deferral loss

With these definitions, we can now express the conditional
loss and regret of the deferral loss.

Lemma 4. For any x ∈ X, the minimal conditional Ldef -loss
and the calibration gap for Ldef can be expressed as follows:

C∗Ldef
(H, x) = 1 − max

y∈H(x)
q(x, y)

∆CLdef ,H(h,x) = max
y∈H(x)

q(x, y) − q(x,h(x)).

Proof. The conditional Ldef -risk of h can be expressed as



Method System accuracy (%)
Ratio of deferral (%)

all the classes classes 0 to 2 classes 3 to 5 classes 6 to 9

predictor expert 1 expert 2 predictor expert 1 expert 2 predictor expert 1 expert 2 predictor expert 1 expert 2

Ours 92.19 61.43 17.38 21.19 46.77 49.67 3.57 33.60 3.33 63.07 92.88 3.43 3.70
OvA 91.39 59.72 16.78 23.50 48.63 47.67 3.70 27.87 2.47 69.67 92.73 3.50 3.78

Table 6: Comparison of our proposed deferral surrogate loss with the one-vs-all (OvA) surrogate loss in an intriguing setting
where multiple experts are available and each of them has a clear domain of expertise.

follows:
CLdef

(h,x)

= E
y∣x

[Ldef(h,x, y)]

= E
y∣x

[1h(x)≠y]1h(x)∈[n] +
ne

∑
j=1

E
y∣x

[cj(x, y)]1h(x)=n+j

= ∑
y∈Y

q(x, y)1h(x)≠y1h(x)∈[n] +
ne

∑
j=1

(1 − q(x,n + j))1h(x)=n+j

= (1 − q(x,h(x)))1h(x)∈[n] +
ne

∑
j=1

(1 − q(x,h(x)))1h(x)=n+j

= 1 − q(x,h(x)).

Then, the minimal conditional Ldef -risk is given by
C∗Ldef

(H, x) = 1 − max
y∈H(x)

q(x, y),

and the calibration gap can be expressed as follows:
∆CLdef ,H(h,x) = CLdef

(h,x) − C∗Ldef
(H, x)

= max
y∈H(x)

q(x, y) − q(x,h(x)),

which completes the proof.

C.2 Conditional regret of a surrogate deferral
loss

Lemma 5. For any x ∈ X, the conditional surrogate L-loss
and regret can be expressed as follows:

CL(h,x) = ∑
y∈[n+ne]

q(x, y)`(h,x, y)

∆CL(h,x) = ∑
y∈[n+ne]

q(x, y)`(h,x, y)

− inf
h∈H

∑
y∈[n+ne]

q(x, y)`(h,x, y).

Proof. By definition, CL(h,x) is the conditional-L loss can
be expressed as follows:
CL(h,x)

= E
y
[L(h,x, y)]

= E
y
[`(h,x, y)] +

ne

∑
j=1

E
y∣x

[(1 − cj(x, y))]`(h,x,n + j)

= ∑
y∈Y

q(x, y)`(h,x, y) +
ne

∑
j=1

q(x,n + j)`(h,x,n + j)

= ∑
y∈[n+ne]

q(x, y)`(h,x, y),

(6)

which ends the proof.

C.3 Conditional regret of zero-one loss

We will also make use of the following result for the zero-one
loss `0−1(h,x, y) = 1h(x)≠y with label space [n + ne] and
the conditional probability vector q(x, ⋅), which character-
izes the minimal conditional `0−1-loss and the corresponding
calibration gap (Awasthi et al. 2022b, Lemma 3).

Lemma 6. For any x ∈ X, the minimal conditional `0−1-loss
and the calibration gap for `0−1 can be expressed as follows:

C∗`0−1(x) = 1 − max
y∈H(x)

q(x, y)

∆C`0−1(h,x) = max
y∈H(x)

q(x, y) − q(x,h(x)).

C.4 Proof of H-consistency bounds for deferral
surrogate losses (Theorem 1)

Theorem 1 (H-consistency bounds for score-based surro-
gates). Assume that ` admits an H-consistency bound with
respect to the multi-class zero-one classification loss `0−1.
Thus, there exists a non-decreasing concave function Γ with
Γ(0) = 0 such that, for any distribution D and for all h ∈H,
we have

E`0−1(h) − E∗`0−1(H) +M`0−1(H)

≤ Γ(E`(h) − E∗` (H) +M`(H)).

Then, L admits the following H-consistency bound with re-
spect to Ldef : for all h ∈H,

ELdef
(h) − E∗Ldef

(H) +MLdef
(H)

≤ (ne + 1 −
ne

∑
j=1

cj)Γ(
EL(h) − E∗L(H) +ML(H)

ne + 1 −∑
ne
j=1 cj

). (5)

Furthermore, constant factors (ne + 1 −∑
ne
j=1 cj) and

1
ne+1−∑nej=1 cj

can be removed when Γ is linear.

Proof. We denote the normalization factor as Q =

∑y∈[n+ne] q(x, y) = ne + 1 − Ey[cj(x, y)], which is a con-

stant that ensures the sum of q(x, y) = q(x,y)
Q

is equal to 1.
By Lemma 4, the calibration gap of Ldef can be expressed



and upper-bounded as follows:
∆CLdef

(h,x)

= max
y∈H(x)

q(x, y) − q(x,h(x)) (Lemma 4)

= Q( max
y∈H(x)

q(x, y) − q(x,h(x)))

= Q∆C`0−1(h,x) (Lemma 6)
≤ QΓ(∆C`,H(h,x)) (H-consistency bound of `)

= QΓ( ∑
y∈[n+ne]

q(x, y)`(h,x, y)

− inf
h∈H

∑
y∈[n+ne]

q(x, y)`(h,x, y))

= QΓ( ∑
y∈[n+ne]

q(x, y)

Q
`(h,x, y)

− inf
h∈H

∑
y∈[n+ne]

q(x, y)

Q
`(h,x, y))

= QΓ(
1

Q
∆CL(h,x)). (Lemma 5)

Thus, taking expectations gives:
ELdef

(h) − E∗Ldef
(H) +MLdef

(H)

= E
X
[∆CLdef

(h,x)]

≤ E
X
[QΓ(

1

Q
∆CL(h,x))]

≤ QΓ(
1

Q
E
X
[∆CL(h,x)])

(concavity of Γ and Jensen’s ineq.)

= QΓ(
EL(h) − E∗L(H) +ML(H)

Q
)

= (ne + 1 −E
y
[cj(x, y)])Γ(

EL(h) − E∗L(H) +ML(H)

ne + 1 −Ey[cj(x, y)]
)

≤
⎛

⎝
ne + 1 −

ne

∑
j=1

cj
⎞

⎠
Γ(

EL(h) − E∗L(H) +ML(H)

ne + 1 −∑
ne
j=1 cj

)

(cj ≤ cj(x, y) ≤ cj ,∀j ∈ [ne])

and ELdef
(h) − E∗Ldef

(H) + MLdef
(H) ≤

Γ(EL(h) − E∗L(H) +ML(H)) when Γ is linear, which
completes the proof.

D Examples of deferral surrogate losses and
their H-consistency bounds

D.1 ` being adopted as comp-sum losses
Example: ` = `exp. Plug in ` = `exp =

∑y′≠y e
h(x,y′)−h(x,y) in (4), we obtain

L = ∑
y′≠y

eh(x,y
′)−h(x,y)

+
ne

∑
j=1

(1 − cj(x, y)) ∑
y′≠n+j

eh(x,y
′)−h(x,n+j).

By Mao, Mohri, and Zhong (2023, Theorem 1), `exp admits
an H-consistency bound with respect to `0−1 with Γ(t) =
√

2t, using Corollary 2, we obtain

ELdef
(h)−E∗Ldef

(H) ≤
√

2(ne+1−
ne

∑
j=1

cj)(
EL(h) − E∗L(H)

ne + 1 −∑
ne
j=1 cj

)

1
2

.

Since 1 ≤ ne + 1 −∑
ne
j=1 cj ≤ ne + 1 −∑

ne
j=1 cj ≤ ne + 1, the

bound can be simplified as

ELdef
(h) − E∗Ldef

(H) ≤
√

2(ne + 1)(EL(h) − E∗L(H))
1
2 .

Example: ` = `log. Plug in ` = `log = − log[ eh(x,y)

∑y′∈Y eh(x,y
′) ]

in (4), we obtain

L = − log
⎛

⎝

eh(x,y)

∑y′∈Y e
h(x,y′)

⎞

⎠

−
ne

∑
j=1

(1 − cj(x, y)) log
⎛

⎝

eh(x,n+j)

∑y′∈Y e
h(x,y′)

⎞

⎠
.

By Mao, Mohri, and Zhong (2023, Theorem 1), `log admits an
H-consistency bound with respect to `0−1 with Γ(t) =

√
2t,

using Corollary 2, we obtain

ELdef
(h)−E∗Ldef

(H) ≤
√

2(ne+1−
ne

∑
j=1

cj)(
EL(h) − E∗L(H)

ne + 1 −∑
ne
j=1 cj

)

1
2

.

Since 1 ≤ ne + 1 −∑
ne
j=1 cj ≤ ne + 1 −∑

ne
j=1 cj ≤ ne + 1, the

bound can be simplified as

ELdef
(h) − E∗Ldef

(H) ≤
√

2(ne + 1)(EL(h) − E∗L(H))
1
2 .

Example: ` = `gce. Plug in ` = `gce ==

1
α
[1 − [ eh(x,y)

∑y′∈Y eh(x,y
′) ]

α

] in (4), we obtain

L =
1

α

⎡
⎢
⎢
⎢
⎣
1 −

⎡
⎢
⎢
⎢
⎣

eh(x,y)

∑y′∈Y e
h(x,y′)

⎤
⎥
⎥
⎥
⎦

α⎤
⎥
⎥
⎥
⎦

+
1

α

ne

∑
j=1

(1 − cj(x, y))
⎡
⎢
⎢
⎢
⎣
1 −

⎡
⎢
⎢
⎢
⎣

eh(x,n+j)

∑y′∈Y e
h(x,y′)

⎤
⎥
⎥
⎥
⎦

α⎤
⎥
⎥
⎥
⎦
.

By Mao, Mohri, and Zhong (2023, Theorem 1), `gce admits
an H-consistency bound with respect to `0−1 with Γ(t) =
√

2nαt, using Corollary 2, we obtain

ELdef
(h) − E∗Ldef

(H)

≤
√

2nα(ne + 1 −
ne

∑
j=1

cj)(
EL(h) − E∗L(H)

ne + 1 −∑
ne
j=1 cj

)

1
2

.

Since 1 ≤ ne + 1 −∑
ne
j=1 cj ≤ ne + 1 −∑

ne
j=1 cj ≤ ne + 1, the

bound can be simplified as

ELdef
(h) − E∗Ldef

(H) ≤
√

2nα(ne + 1)(EL(h) − E∗L(H))
1
2 .



Example: ` = `mae. Plug in ` = `mae = 1 − eh(x,y)

∑y′∈Y eh(x,y
′) in

(4), we obtain

L = 1 −
eh(x,y)

∑y′∈Y e
h(x,y′)

+
ne

∑
j=1

(1 − cj(x, y))
⎛

⎝
1 −

eh(x,n+j)

∑y′∈Y e
h(x,y′)

⎞

⎠
.

By Mao, Mohri, and Zhong (2023, Theorem 1), `mae admits
an H-consistency bound with respect to `0−1 with Γ(t) = nt,
using Corollary 2, we obtain

ELdef
(h) − E∗Ldef

(H) ≤ n(EL(h) − E∗L(H)).

D.2 ` being adopted as sum losses
Example: ` = Φsum

sq . Plug in ` = Φsum
sq =

∑y′≠y Φsq(h(x, y) − h(x, y
′)) in (4), we obtain

L = ∑
y′≠y

Φsq(∆h(x, y, y
′
))

+
ne

∑
j=1

(1 − cj(x, y)) ∑
y′≠n+j

Φsq(∆h(x,n + j, y
′
)),

where ∆h(x, y, y
′) = h(x, y) − h(x, y′) and Φsq(t) =

max{0,1 − t}
2. By Awasthi et al. (2022b, Table 2), Φsum

sq
admits an H-consistency bound with respect to `0−1 with
Γ(t) =

√
t, using Corollary 2, we obtain

ELdef
(h)−E∗Ldef

(H) ≤ (ne+1−
ne

∑
j=1

cj)(
EL(h) − E∗L(H)

ne + 1 −∑
ne
j=1 cj

)

1
2

.

Since 1 ≤ ne + 1 −∑
ne
j=1 cj ≤ ne + 1 −∑

ne
j=1 cj ≤ ne + 1, the

bound can be simplified as

ELdef
(h) − E∗Ldef

(H) ≤ (ne + 1)(EL(h) − E∗L(H))
1
2 .

Example: ` = Φsum
exp . Plug in ` = Φsum

exp =

∑y′≠y Φexp(h(x, y) − h(x, y
′)) in (4), we obtain

L = ∑
y′≠y

Φexp(∆h(x, y, y
′
))

+
ne

∑
j=1

(1 − cj(x, y)) ∑
y′≠n+j

Φexp(∆h(x,n + j, y
′
)),

where ∆h(x, y, y
′) = h(x, y) − h(x, y′) and Φexp(t) = e

−t.
By Awasthi et al. (2022b, Table 2), Φsum

exp admits an H-
consistency bound with respect to `0−1 with Γ(t) =

√
2t,

using Corollary 2, we obtain

ELdef
(h)−E∗Ldef

(H) ≤
√

2(ne+1−
ne

∑
j=1

cj)(
EL(h) − E∗L(H)

ne + 1 −∑
ne
j=1 cj

)

1
2

.

Since 1 ≤ ne + 1 −∑
ne
j=1 cj ≤ ne + 1 −∑

ne
j=1 cj ≤ ne + 1, the

bound can be simplified as

ELdef
(h) − E∗Ldef

(H) ≤
√

2(ne + 1)(EL(h) − E∗L(H))
1
2 .

Example: ` = Φsum
ρ . Plug in ` = Φsum

ρ =

∑y′≠y Φρ(h(x, y) − h(x, y
′)) in (4), we obtain

L = ∑
y′≠y

Φρ(∆h(x, y, y
′
))

+
ne

∑
j=1

(1 − cj(x, y)) ∑
y′≠n+j

Φρ(∆h(x,n + j, y
′
)),

where ∆h(x, y, y
′) = h(x, y) − h(x, y′) and Φρ(t) =

min{max{0,1 − t/ρ},1}. By Awasthi et al. (2022b, Table 2),
Φsum
ρ admits an H-consistency bound with respect to `0−1

with Γ(t) = t, using Corollary 2, we obtain

ELdef
(h) − E∗Ldef

(H) ≤ EL(h) − E∗L(H).

D.3 ` being adopted as constrained losses
Example: ` = Φcstnd

hinge. Plug in ` = Φcstnd
hinge =

∑y′≠y Φhinge(−h(x, y
′)) in (4), we obtain

L = ∑
y′≠y

Φhinge(−h(x, y
′
))

+
ne

∑
j=1

(1 − cj(x, y)) ∑
y′≠n+j

Φhinge(−h(x, y
′
)),

where Φhinge(t) = max{0,1 − t} with the constraint that
∑y∈Y h(x, y) = 0. By Awasthi et al. (2022b, Table 3), Φcstnd

hinge

admits an H-consistency bound with respect to `0−1 with
Γ(t) = t, using Corollary 2, we obtain

ELdef
(h) − E∗Ldef

(H) ≤ EL(h) − E∗L(H).

Example: ` = Φcstnd
sq . Plug in ` = Φcstnd

sq =

∑y′≠y Φsq(−h(x, y
′)) in (4), we obtain

L = ∑
y′≠y

Φsq(−h(x, y
′
))

+
ne

∑
j=1

(1 − cj(x, y)) ∑
y′≠n+j

Φsq(−h(x, y
′
)),

where Φsq(t) = max{0,1 − t}
2 with the constraint that

∑y∈Y h(x, y) = 0. By Awasthi et al. (2022b, Table 3), Φcstnd
sq

admits an H-consistency bound with respect to `0−1 with
Γ(t) =

√
t, using Corollary 2, we obtain

ELdef
(h)−E∗Ldef

(H) ≤ (ne+1−
ne

∑
j=1

cj)(
EL(h) − E∗L(H)

ne + 1 −∑
ne
j=1 cj

)

1
2

.

Since 1 ≤ ne + 1 −∑
ne
j=1 cj ≤ ne + 1 −∑

ne
j=1 cj ≤ ne + 1, the

bound can be simplified as

ELdef
(h) − E∗Ldef

(H) ≤ (ne + 1)(EL(h) − E∗L(H))
1
2 .

Example: ` = Φcstnd
exp . Plug in ` = Φcstnd

exp =

∑y′≠y Φexp(−h(x, y
′)) in (4), we obtain

L = ∑
y′≠y

Φexp(−h(x, y
′
))

+
ne

∑
j=1

(1 − cj(x, y)) ∑
y′≠n+j

Φexp(−h(x, y
′
)),



where Φexp(t) = e
−t with the constraint that ∑y∈Y h(x, y) =

0. By Awasthi et al. (2022b, Table 3), Φcstnd
exp admits an H-

consistency bound with respect to `0−1 with Γ(t) =
√

2t,
using Corollary 2, we obtain

ELdef
(h)−E∗Ldef

(H) ≤
√

2(ne+1−
ne

∑
j=1

cj)(
EL(h) − E∗L(H)

ne + 1 −∑
ne
j=1 cj

)

1
2

.

Since 1 ≤ ne + 1 −∑
ne
j=1 cj ≤ ne + 1 −∑

ne
j=1 cj ≤ ne + 1, the

bound can be simplified as

ELdef
(h) − E∗Ldef

(H) ≤
√

2(ne + 1)(EL(h) − E∗L(H))
1
2 .

Example: ` = Φcstnd
ρ . Plug in ` = Φcstnd

ρ =

∑y′≠y Φρ(−h(x, y
′)) in (4), we obtain

L = ∑
y′≠y

Φρ(−h(x, y
′
))

+
ne

∑
j=1

(1 − cj(x, y)) ∑
y′≠n+j

Φρ(−h(x, y
′
)),

where Φρ(t) = min{max{0,1 − t/ρ},1} with the constraint
that ∑y∈Y h(x, y) = 0. By Awasthi et al. (2022b, Table 3),
Φcstnd
ρ admits an H-consistency bound with respect to `0−1

with Γ(t) = t, using Corollary 2, we obtain
ELdef

(h) − E∗Ldef
(H) ≤ EL(h) − E∗L(H).

E Proof of learning bounds for deferral
surrogate losses (Theorem 3)

Theorem 3 (Learning bound). Under the same assump-
tions as Theorem 1, for any δ > 0, with probability at least
1 − δ over the draw of an i.i.d sample S of size m, the follow-
ing deferral loss estimation bound holds for ĥS:

ELdef
(ĥS) − E∗Ldef

(H) +ML(H)

≤ (ne+1−
ne

∑
j=1

cj)Γ
⎛
⎜
⎝

4RL
m(H) + 2BL

√
log 2

δ

2m
+ML(H)

ne + 1 −∑
ne
j=1 cj

⎞
⎟
⎠
.

Proof. By using the standard Rademacher complexity
bounds (?), for any δ > 0, with probability at least 1 − δ,
the following holds for all h ∈H:

∣EL(h) − ÊL,S(h)∣ ≤ 2RL
m(H) +BL

√
log(2/δ)

2m
.

Fix ε > 0. By the definition of the infimum, there exists
h∗ ∈H such that EL(h

∗) ≤ E∗L(H) + ε. By definition of ĥS ,
we have

EL(ĥS) − E∗L(H)

= EL(ĥS) − ÊL,S(ĥS) + ÊL,S(ĥS) − E∗L(H)

≤ EL(ĥS) − ÊL,S(ĥS) + ÊL,S(h
∗
) − E∗L(H)

≤ EL(ĥS) − ÊL,S(ĥS) + ÊL,S(h
∗
) − E∗L(h

∗
) + ε

≤ 2[2RL
m(H) +BL

√
log(2/δ)

2m
] + ε.

Since the inequality holds for all ε > 0, it implies:

EL(ĥS) − E∗L(H) ≤ 4RL
m(H) + 2BL

√
log(2/δ)

2m
.

Plugging in this inequality in the bound (5) completes the
proof.
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