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Abstract
We discuss two key problems related to learning and optimization of neural networks:
the computation of the adversarial attack for adversarial robustness and approximate opti-
mization of complex functions. We show that both problems can be cast as instances of
DC-programming. We give an explicit decomposition of the corresponding functions as dif-
ferences of convex functions (DC) and report the results of experiments demonstrating the
effectiveness of the DCA algorithm applied to these problems.

Keywords Neural networks · Adversarial robustness · Function approximation ·
Optimization · DC-programming

1 Motivation

Optimization problems based on neural networks arise in a variety of different contexts,
including function approximation, pattern recognition, sequential decision making, data
compression and many others. This work is motivated by two key motivations highlighted
below.
Adversarial attacks for adversarial robustness. Neural networks trained on large datasets
have achieved breakthroughs in speech and visual recognition tasks and many other applica-
tions in recent years [24, 54]. However, these models have been shown to be susceptible to
imperceptible perturbations [55]. This motivates the study of adversarial robustness, that is,
the design of classifiers that are robust to perturbations within a small ball around the input,
typically measured in the ℓp norm [5, 7, 9, 15, 37, 40, 57].
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Thus, in the adversarial setting, the standard binary classification loss is replaced by its
adversarial counterpart, which is defined, for a given data point, as the supremumof the binary
loss over a ball of a pre-specified radius around the given point. The adversarial counterpart of
the classification margin loss is similarly defined via its supremum over the ball. Optimizing
the binary loss or adversarial binary loss directly isNP-hard formost hypothesis sets.Anatural
alternative, instead, is to optimize a surrogate margin-based loss with an alternative function
", such as the hinge loss, that admits more favorable properties such as differentiability,
convexity and statistical consistency with respect to the target loss [2–4, 8, 29, 36, 38, 39,
41, 42, 53, 56, 62, 63].

However, the evaluation of the above surrogates still requires computing the adversarial
attack, that is solving an optimization problem related to the presence of the supremum
in the definition of the loss. For a surrogate margin-based loss, that amounts to a margin
minimization problem, that is finding the strongest adversarial attack point in the ball that
minimizes the margin—this objective should of course be distinguished from the standard
goal of margin-maximization in learning and generalization [45].

Margin minimization is a notoriously difficult problem in adversarial training for which
a variety of heuristics have been developed. We will show that this problem can be cast
as a DC-programming problem by proving a decomposition of the multi-class margin as a
difference of two convex functions. The DCA algorithm of Pham Dinh and Le Thi [46, 47]
can then be used to solve the optimization problem.

We note that Seck et al. [50] also applied DCA to adversarial robustness verification.
However, their optimization problem is to find the minimal perturbation required to flip the
label of the clean example, which is distinct from our setting. In addition, the approaches
used to address the problems are different: their technique involved the use of DC to eliminate
some binary variables in the optimization problem, while our method provides an explicit
DC-decomposition of neural networks to solve the margin minimization problem.
Approximate optimization of complex functions. Neural networks with at least one hidden-
layer and enough hidden units are known to be universal approximators, that is they are
able to approximate any measurable function defined over finite-dimensional spaces to an
arbitrary degree of accuracy [22]. On the other hand, minimization or maximization of an
arbitrary complex function still remains an open problem in the optimization literature. The
expressive power of neural networks and the challenge of optimizing an arbitrary function
motivates the study of approximate optimization, that is, the design of algorithms that can
closely optimize any function that is well approximated by neural networks.

Let F be avery complexor costly function to optimize.Then, the approximate optimization
procedure consists of the following steps:

– Sampling: draw a large number of pairs {∗}(xi , F(xi ))mi=1;
– Learning: use a deepneural networkh tofit F on that sample byminimizing an appropriate

loss;
– Optimization: find the minimizer or maximizer of the learned neural network h.

The first two steps of sampling and learning have been extensively studied in the literature.
However, the final step of optimization of neural networks brings up new challenges due to
the lack of convexity, the complexity of architectures and the diversity of neural networks.We
will show that the neural networks typically used in practice are all DC-functions (difference
of convex functions) of the input feature vector and thus that the DCA algorithm [46, 47]
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can be adopted in the final step, which helps solve efficiently the approximate optimization
problem.

In the next section, we introduce the notation and some basic concepts for DC-
programming and the hypothesis sets of neural networks considered in this paper: multilayer
perceptrons (MLPs) and convolutional neural networks (CNNs). In Sect. 3, we derive the
explicit form of a DC-decomposition for MLPs and CNNs, which we use to derive a DCA
solution for the approximate optimization of complex functions. In Sect. 4, we give a detailed
description of the margin minimization problem and present a DCA solution for the corre-
sponding computation of the adversarial attack for adversarial robustness. To do so, we prove
that the DC-decomposition derived in Sect. 3 naturally leads to a DC-decomposition of the
margin. In Sect. 5, we report the results of experiments demonstrating the effectiveness of
the DCA algorithms proposed in Sects. 3 and 4.

2 Preliminaries

We start by introducing some basic concepts and results that are related to DC-programming.

2.1 DC-programming definitions and algorithms

Definition 1 (DC-functions) We say that a hypothesis h : Rn → R is a DC-function if it
admits a DC-decomposition, that is, if it can be written as the difference of two convex
functions (DC) f and g:

h = f − g.

In that case, functions f and g are called DC-components of the hypothesis h.

The optimization problem corresponding to such a function h is referred to as a DC-
programming problem and defined as follows:

p := inf
{
h(x) = f (x) − g(x) : x ∈ Rn} . (1)

Observe that any constraint x ∈ C with a closed convex set C ⊂ Rn can be equivalently
incorporated into the standard DC-program by letting h(x) = [ f (x)+ χC(x)]−g(x), where

χC(x) :=
{
0 x ∈ C
+∞ otherwise.

To find the global minimum of (1), there have been several approaches discussed in the
literature [48], including the pioneering combinatorial approach proposed by Hoang [17],
its further developed solution for low-rank non-convex structures [16], and the branch-and-
bound algorithm which has an exponential convergence Reiner and N. V., [49] with the
correction of Hoang [18]. Nevertheless, as pointed by Pham Dinh and Le Thi [46], these
global algorithms are not able to solve real-world high-dimensional DC-programs.

Instead, an alternative method based on convex analysis, the DCA algorithm [46, 47], is
often adopted in practice, which can be further combined with branch-and-bound techniques
to find a global optimum. When the function g is sub-differentiable, DCA coincides with the
concave-convex procedure (CCCP) of Yuille and Rangarajan [61]. The pseudocode of DCA
is given for that case in Algorithm 1; here, ∂g denotes any subgradient of the function g and
· denotes the inner product of two vectors.
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Algorithm 1 DCA algorithm solving DC-program (1).
input: Maximum number of iterations T , initial point x1, tolerances ϵ1 and ϵ2
for each round t = 1, . . . , T do

xt+1 ∈ argmin{∗}Ct (x) := f (x) − g(xt ) − ∂g(xt ) · (x − xt ) : x ∈ Rn

if |( f − g)(xt+1) − ( f − g)(xt )| ≤ ϵ1 or ∥ ∗ ∥xt+1 − xt ≤ ϵ2 then
break

end if
end for

Fig. 1 Left: an illustration of DCA in Algorithm 1 for minimizing the non-convex function h : x )→ − 1
1+x2

.
For each t , the convex function Ct has the same value and derivative as h at x = xt and upper bounds h
by definition. Right: DC-components f and g of the function h : x )→ − 1

1+x2
, where f : x )→ x2 and

g : x )→ x2 + 1
1+x2

The algorithm consists of iteratively replacing g with its first-order approximation and
solving the resulting convex optimization problem. The stopping criterion is checked at the
end of each iteration. Figure 1 illustrates this procedure for minimizing the non-convex
function h : x )→ − 1

1+x2 that can be decomposed into the difference of two convex functions
f and g. DCA is a primal-dual sub-differential method [46, 47], which can handle DC-
programs (1) with proper lower semi-continuous convex functions f and g. In this paper, we
propose solutions based on DCA (Algorithm 2 and Algorithm 3) for the computation of the
adversarial attack and approximate optimization problems described in Sect. 1 and further
demonstrate their effectiveness for these problems in Sect. 5.

The DCA algorithm is based on the decomposition of a function, and benefits from the
flexibility of such a decomposition. Indeed, if h = f − g is a DC-decomposition, adding a
convex auxiliary function to both f and g still results in a DC-decomposition. In practice, a
good auxiliary function such as one admitting strongly-convexity, e.g. λ∥ · ∥2 often makes
the DCA algorithm more efficient [33, 34]. The convergence of DCA has been discussed
extensively in the literature [31, 46, 47, 51, 59]. Pham Dinh and Le Thi [46] first proved that
DCA is guaranteed to converge to a critical point. The same result also holds for the CCCP
algorithm, which is a special case of DCA [51]. Moreover, DCA can find the global optimum
of the trust region problem [47]. For many DC-programs related to support vector machines
(SVM) [10], theDCAalgorithm admits linear convergence and thus its number of iterations is
relatively small [59]. In practice, an effective heuristic adopted in many applications consists
of using DCA with multiple restarting points to minimize the objective function [43, 44]. In
some applications, global optimality can be efficiently tested and in fact DCA typically leads
to the global optimum without even resorting to such heuristics [11, 19–21].
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DCA can also often be combined with branch-and-bound techniques to determine the
global optimum, which can be achieved efficiently in some instances [30, 35]. More gener-
ally, as pointed out by Le Thi and Pham Dinh [32–34], DCA admits the following benefits:
(1) Flexibility: a suitable choice of the DC-decomposition can make DCA more robust and
efficient, and even lead to the global optimum; (2) Convergence: DCA admits linear conver-
gence for general DC-programs and, in particular, admits finite convergence for polyhedral
DC-programs; (3) Versatility: DCA can recover many standard algorithms with a careful
choice of the DC-decomposition for both convex and non-convex optimization. For a convex
program, DCA can converge to the global optimum by reinterpreting it as a DC-program.

In view of these advantages, DCA can be applied to a wide range of non-convex opti-
mization problems and applications including non-convex quadratic programs [13], the trust
region problem [47], kernel selection [1], learning in second-price reserve auctions [43, 44],
forecasting time series [26–28], discrepancy estimation in domain adaptation [6], eigenvalue
problems [52] and many others, where DCA is applicable to large-scale scenarios, adapted
to flexible target needs, and benefitting from theoretical guarantees. In this paper, we will
apply DCA to two problems related to learning and optimization of neural networks.

2.2 Neural network definitions

Let X denote the input feature space and Y denote the label space. In the approximate
optimization of complex function, Y = R is real-valued, while in adversarial robustness,
the computation of the adversarial attack, Y = {1, . . . , c} is a set of c ≥ 2 classes. LetH be
a hypothesis set of functions mapping from X × Y to R and h(x) = (h(x, 1), . . . , h(x, c))
be the output vector of a hypothesis h ∈ H in multi-class classification. For each class
z ∈ {1, . . . , c}, real-valued h(x, z) can be viewed as the score assigned to class z by h. For
example, if we letH be the family of feedforward neural networks with L hidden layers (will
be introduced soon in (2)), then, h(x) is equal to a[L+2](x) and {x )→ h(x, z), z ∈ {1, . . . , c}}
are the component functions of a[L+2]. We denote by ℓ : H × X × Y → R a loss function
and thus by ℓ(h, x, y) the loss of a hypothesis h for a pair (x, y). For the hypothesis set of
neural networks, we will specifically consider the family of feedforward neural networks
(also known as multilayer perceptrons (MLPs)) and convolutional neural networks (CNNs)
[14].

The feedforward neural network is a quintessential artificial neural network, which typi-
cally consists of one input layer, L hidden layers and one output layer, and can be represented
in the following form:

a[1](x) = x ∈ Rn1 ,

a[l](x) = σ
(
W [l]a[l−1](x)+ b[l]

)
∈ Rnl , for l = 2, . . . , L + 1,

a[L+2](x) = W [L+2]a[L+1](x)+ b[L+2] ∈ RnL+2 ,

(2)

where given an input x ∈ Rn1 , we use nl to denote the dimension of the output of the lth
layer, a[l](x). Here, W [l] ∈ Rnl×nl−1 and b[l] ∈ Rnl denote the weight matrix and the offset
vector at layer l, and σ denotes the ReLU activation. The expressions (2) define vector-valued
functions a[l] : Rn1 → Rnl , for l = 1, . . . , L + 2. For the MLP given by (2), we also refer
to L + 2 as its depth and nl as the number of units at the lth layer. The simplest MLPs are
those with one hidden layer, and often referred to as one-hidden-layer neural networks, i.e.,
in the form of (2) with L = 1.
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The convolutional neural network is a specialized kind of neural networks for processing
input feature vector with a known grid-like structure, such as images with a two-dimensional
grid of pixels. The CNN typically has convolution layers and pooling layers. Let X denote
the input image with height nh1 , width nw1 and the number of channels nc1 . The convolution
layers can be represented in the following form:

s[1](X) = X ∈ Rnh1×nw1×nc1 ,

s[l](X) = σ
(
W [l] ∗ s[l−1](X)+ b[l]

)
∈ Rnhl ×nwl ×ncl , for l = 2, . . . , L + 1,

(3)

where given an input image X ∈ Rnh1×nw1×nc1 , s[l](X) is the output of the lth convolution
layer with dimension nhl × nwl × ncl , for l = 2, . . . , L + 1. Here, σ is the ReLU activation,
W [l] ∈ Rkhl ×kwl ×ncl−1×ncl is the convolution kernel and b[l] ∈ R1×1×1×ncl is the offset at
layer l. The symbol ∗ is used to denote the convolution. With VALID padding and a stride
of 1 × 1 [14], the result of the convolution W [l] ∗ s[l−1](X) is of the shape nhl × nwl × ncl ,
where

nhl = nhl−1 − khl + 1,

nwl = nwl−1 − kwl + 1,

and it is defined by the following equation:

(
W [l] ∗ s[l−1](X)

)
i, j,t =

ncl−1−1∑

r=0

khl −1∑

u=0

kwl −1∑

v=0

W [l]
u,v,r ,t s

[l−1](X)i+u, j+v,r .

The pooling layers further modify the output by replacing a certain element with summary
statistics of the elements within its neighborhood. We will consider two kinds of pooling:
max-pooling and average pooling, which report the maximum output and average output
within a rectangular neighborhood respectively [14].

3 DC-decomposition of neural networks

In this section,we prove thatmany commonly used types of neural networks areDC-functions
of the input feature vector and provide an explicit DC-decomposition for these functions.
Building upon that, we present a DCA solution for the approximate optimization of complex
functions.

3.1 One-hidden-layer neural networks

We start the analysis with one-hidden-layer neural networks, which admit the following
form:

a[1](x) = x ∈ Rn1 ,

a[2](x) = σ
(
W [2]a[1](x)+ b[2]

)
∈ Rn2 ,

a[3](x) = W [3]a[2](x)+ b[3] ∈ Rn3 .

(4)

Here, given an input x ∈ Rn1 , the vectors a[1](x), a[2](x), and a[3](x) are the outputs
of the input layer, the hidden layer and the output layer with dimension n1, n2, and n3
respectively. The next theorem shows that each component function of the vector-valued
function a[3] : Rn1 → Rn3 is a DC-function of x .
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Theorem 1 For one-hidden-layer neural networks (4), the function a[3]i can be written as
f [3]i − g[3]i , for i = 1, . . . , n3, where f [3]i and g[3]i are convex in x.

Proof Since the composition with affine function preserves convexity, any component func-
tion of a[2] is convex in x . Note that the weight matrix W [3] can be expressed in terms of its
positive and negative parts as

W [3] = W [3]
+ − W [3]

− ,

where W [3]
+ and W [3]

− are both nonnegative. Therefore, a[3] admits the following decompo-
sition:

a[3] =
(
W [3]

+ a[2] + b[3]
)
−

(
W [3]

− a[2]
)
.

We can let f [3] = W [3]
+ a[2] + b[3] and g[3] = W [3]

− a[2], since nonnegative weighted sum
preserves convexity. ⊓⊔

Theorem 1 also holds for the special case where a[3] only has one component func-
tion. This implies that any one-hidden-layer neural network (4) with n3 = 1 admits a
DC-decomposition.

Corollary 1 Any one-hidden-layer neural network with one output unit is a DC-function of
the input feature vector.

3.2 Multi-layer perceptrons

The decomposition of one-hidden-layer neural networks can be extended to multilayer
perceptrons with L hidden layers (2). The next theorem shows that for an MLP, each com-
ponent function of the vector-valued function a[l] : Rn1 → Rnl , for l = 1, . . . , L + 2, is a
DC-function of x , which generalizes Theorem 1.

Theorem 2 For multi-layer perceptrons (2), any component function of the vector-valued
function a[l], for l = 1, . . . , L + 2, is a DC-function of the input feature vector x.

Proof Clearly, any component function of a[1] is convex and thus is a DC-function of x .
Since the composition with affine function preserves convexity, any component function of
a[2] is convex and thus is a DC-function of x as well.

We then proceed by induction on l. Assume that a[l] admits the following decomposition:

a[l] = f [l] − g[l],

where the component functions of f [l] and g[l] are all convex in x . Then, c[l+1] :=
W [l+1]a[l] + b[l+1] can be written as

c[l+1] =
(
W [l+1]

+ − W [l+1]
−

)(
f [l] − g[l]

)
+ b[l+1]

=
(
W [l+1]

+ f [l] +W [l+1]
− g[l] + b[l+1]) −

(
W [l+1]

− f [l] +W [l+1]
+ g[l]

)
.

Since non-negative weighted sum preserves convexity, f̃ [l+1] := W [l+1]
+ f [l] +W [l+1]

− g[l] +
b[l+1] and g̃[l+1] := W [l+1]

− f [l] +W [l+1]
+ g[l] both have convex component functions. Hence,

the component functions of c[l+1] are DC-functions. Now, we have

a[l+1] = σ
(
f̃ [l+1] − g̃[l+1])
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= max( f̃ [l+1], g̃[l+1]) − g̃[l+1],

where the component functions of f [l+1] := max( f̃ [l+1], g̃[l+1]) and g[l+1] := g̃[l+1] are all
convex.

Note thata[L+2] = c[L+2]. Therefore, any component function of a[l], for l = 1, . . . , L+2,
is a DC-function. ⊓⊔

Similarly to Theorem 1, Theorem 2 holds for the special case where a[L+2] only has
one component function. Thus, Theorem 2 implies that any multilayer perceptron (2) with
nL+2 = 1 admits a DC-decomposition.

Corollary 2 Any multilayer perceptron with one output unit is a DC-function of the input
feature vector.

Themultilayer perceptronswith one output unit are useful for the approximation optimization
of real-valued complex functions, as indicated in Sect. 1. Our results like Corollary 1 and
Corollary 2 are thus helpful for the design of DCA solution to these problems as shown in
Sect. 3.4.

3.3 Convolutional neural networks (CNNs)

As with dense layers, DC-decomposition also works for convolution layers (3). Theorem 3
shows that DC-decomposition can be constructed for any component function of the function
s[l] at convolution layer l.

Theorem 3 For convolution layers (3), any component function of s[l], for l = 1, . . . , L + 1,
is a DC-function of the input X.

Proof Clearly, any component function of s[1] is convex and thus is a DC-function of X .
Since the composition with affine function preserves convexity, any component function of
s[2] is also convex and thus is a DC-function of X .

We then proceed with induction on l. Assume that s[l] admits a decomposition

s[l] = f [l] − g[l],

where the component functions of f [l] and g[l] are all convex in X . Then, c[l+1] := W [l+1] ∗
a[l] + b[l+1] can be written as

c[l+1] =
(
W [l+1]

+ − W [l+1]
−

)
∗

(
f [l] − g[l]

)
+ b[l+1]

=
(
W [l+1]

+ ∗ f [l] +W [l+1]
− ∗ g[l] + b[l+1]) −

(
W [l+1]

− ∗ f [l] +W [l+1]
+ ∗ g[l]

)
.

Since non-negative weighted sum preserves convexity, f̃ [l+1] := W [l+1]
+ ∗ f [l] + W [l+1]

− ∗
g[l]+b[l+1] and g̃[l+1] := W [l+1]

− ∗ f [l]+W [l+1]
+ ∗g[l] both have convex component functions.

Hence, the component functions of c[l+1] are DC-functions. Now we have

s[l+1] = σ
(
f̃ [l+1] − g̃[l+1])

= max( f̃ [l+1], g̃[l+1]) − g̃[l+1],

where the component functions of f [l+1] := max( f̃ [l+1], g̃[l+1]) and g[l+1] := g̃[l+1] are all
convex.

Therefore, any component function of s[l], for l = 1, . . . , L + 1, is a DC-function. ⊓⊔
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DC-decomposition is also compatible with pooling layers. We give the analysis for both
average pooling and max pooling as follows.
Average pooling. LetA denote the average pooling operation. Theorem 4 shows that the DC
structure is preserved by the average pooling.

Theorem 4 If all the component functions of s[l] are DC-functions of the input x, then the
component functions of A ◦ s[l] are also DC-functions of x.

Proof Suppose that s[l] admits a decomposition

s[l] = f [l] − g[l],

where the component functions of f [l] and g[l] are all convex in x . Since the average pooling
operation is linear, A ◦ s[l] can be written as

A ◦ s[l] = A ◦ f [l] − A ◦ g[l].

Since non-negative weighted sum preserves convexity, the component functions of A ◦ f [l]

and A ◦ g[l] are all convex in x . ⊓⊔

Maxpooling.LetM denote themaxpooling operation. Theorem5 shows that theDCstructure
is preserved by the max pooling.

Theorem 5 If all the component functions of s[l] are DC-functions of the input x, then the
component functions ofM ◦ s[l] are also DC-functions of x.

Proof Suppose that s[l] admits a decomposition

s[l] = f [l] − g[l],

where the component functions of f [l] and g[l] are all convex in x . Assume that the kernel
size of the max pooling layer is kh × kw . Then,M ◦ s[l] can be written as

M ◦ s[l] =
(
M ◦ s[l] + khkwA ◦ g[l]

)
− khkwA ◦ g[l].

Since non-negative weighted sum preserves convexity, the component functions of khkwA ◦
g[l] are all convex in x . The component functions of M ◦ s[l] + khkwA ◦ g[l] are all convex
in x as well. Indeed, each one of them is of the following form:

max
0≤u≤kh−1
0≤v≤kw−1

{ f [l]i+u, j+v,r − g[l]i+u, j+v,r } + khkw
1

khkw

kh−1∑

u′=0

kw−1∑

v′=0

g[l]i+u′, j+v′,r

= max
0≤u≤kh−1
0≤v≤kw−1

{ f [l]i+u, j+v,r +
kh−1∑

u′=0

kw−1∑

v′=0

g[l]i+u′, j+v′,r − g[l]i+u, j+v,r },

for some i, j, r . It is convex in x since sum and pointwise maximum preserve convexity. ⊓⊔

Theorem 3, Theorem 4 and Theorem 5 imply that any convolutional neural network with
one output unit admits a DC-decomposition.

Corollary 3 Any convolutional neural network with one output unit is a DC-function of the
input X.
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Algorithm 2 DCA solution for the approximate optimization of complex functions.

input: Maximum number of iterations T , sample {∗}(xi , F(xi ))mi=1, loss function ℓ, initial point x1,
tolerances ϵ1 and ϵ2
learn neural networks: hNN−aprox ∈ argminh∈HNN−aprox

∑m
i=1 ℓ(h, xi , F(xi ))

decompose by Section 3: hNN−aprox = fNN−aprox − gNN−aprox
for each round t = 1, . . . , T do

xt+1 ∈ argmin{∗} fNN−aprox(x) − gNN−aprox(xt ) − ∂gNN−aprox(xt ) · (x − xt ) : x ∈ Rn

if |( fNN−aprox − gNN−aprox)(xt+1) − ( fNN−aprox − gNN−aprox)(xt )| ≤ ϵ1 or ∥ ∗ ∥xt+1 − xt ≤ ϵ2
then

break
end if

end for

As with the multilayer perceptrons, convolutional neural networks with one output unit
can also be used for the approximation optimization of real-valued complex functions. Thus,
Corollary 3 can serve as a tool for the design of a DCA solution for approximation opti-
mization problems with CNNs. Furthermore, we will see that the results such as Corollary 3
are also helpful for the design of a DCA solution for the margin minimization in adversarial
robustness where convolutional neural networks are used as common hypotheses, as detailed
in Sect. 4 and Sect. 5.

3.4 DCA solution for approximate optimization

Section 3 shows that there exists a DC-decomposition for the feedforward neural networks
and convolutional neural networks. Building upon this, we can give our DCA solution for the
approximate optimization problem introduced in Sect. 1 using such neural networks with one
output unit, denoted asHNN−aprox. The pseudocode of our algorithm is given in Algorithm 2.

In Sect. 5, we also report the empirical results which further demonstrate the effectiveness
of our Algorithm 2.

4 DC-decomposition of confidencemargin

In this section, we show that the margin of a hypothesis h, if viewed as a function of x , is
also a DC-function, when for each class z, x )→ h(x, z) is a DC-function. We then present a
DCA solution for the adversarial attack computation for adversarial robustness.

For a real-valued hypothesis h, the multi-class margin ρh(x, y) for a labeled pair (x, y)
is defined by

ρh(x, y) = h(x, y) − max
y′ ̸=y

h(x, y′). (5)

Table 1 shows the standard and adversarial loss, where " : R → R+ is a non-increasing
function upper bounding the indicator function t )→ 1t≤0. Here, ∥ ∗ ∥ · denotes a norm
on the input feature space X, and γ is the size of a perturbation. Observe that since " is
non-increasing, we can rewrite the adversarial margin-based loss as the following equality
[60]:

"̃(h, x, y) = sup
x ′ : ∥x−x ′∥≤γ

"(ρh(x ′, y)) = "

(
inf

x ′ : ∥x−x ′∥≤γ
ρh(x ′, y)

)
. (6)
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Table 1 Target loss and surrogate margin-based loss in standard and adversarial classification

Standard classification Adversarial classification

Target loss ℓ0−1 = 1ρh (x,y)≤0 ℓγ = supx ′ : ∥x−x ′∥≤γ 1ρh (x ′,y)≤0

Surrogate margin-based loss "(ρh(x, y)) "̃ = supx ′ : ∥x−x ′∥≤γ "(ρh(x ′, y))

Thus, to optimize "̃, we need to solve the following adversarial attack computation problem
for each labeled pair (x, y), often with the hypothesis h being a neural network:

min
x ′ : ∥x−x ′∥≤γ

ρh(x ′, y) = min
x ′ : ∥x−x ′∥≤γ

(
h(x ′, y) − max

y′ ̸=y
h(x ′, y′)

)
. (7)

We now show that for a fixed y, the function x )→ ρh(x, y) admits a DC-decomposition
when for each class z, the function x )→ h(x, z) is a DC-function. This condition is satisfied
by all neural networks commonly used in practice (see Sect. 3).

Theorem 6 Assume that for each class z ∈ {1, . . . , c}, h(x, z) admits the DC-decomposition
h(x, z) = fz(x)− gz(x), where fz and gz are convex functions. Then, for any y, the function
x )→ ρh(x, y) admits the following DC-decomposition:

ρh(x, y) =

⎛

⎝ fy(x)+
∑

z∈Y : z ̸=y

gz(x)

⎞

⎠ − max
y′ ̸=y

⎛

⎝ fy′(x)+
∑

z∈Y : z ̸=y′
gz(x)

⎞

⎠ ,

where x )→ ( fy(x)+
∑

z∈Y : z ̸=y gz(x)) and x )→ maxy′ ̸=y( fy′(x)+∑
z∈Y : z ̸=y′ gz(x)) are

convex functions with respect to x.

Proof For a labeled example (x, y), the margin can be expressed as follows:

ρh(x, y) = h(x, y) − max
y′ ̸=y

h(x, y′)

=
(
fy(x) − gy(x)

)
− max

y′ ̸=y

(
fy′(x) − gy′(x)

)

=

⎛

⎝ fy(x)+
∑

z∈Y
gz(x) − gy(x)

⎞

⎠ − max
y′ ̸=y

⎛

⎝ fy′(x)+
∑

z∈Y
gz(x) − gy′(x)

⎞

⎠

=

⎛

⎝ fy(x)+
∑

z∈Y : z ̸=y

gz(x)

⎞

⎠ − max
y′ ̸=y

⎛

⎝ fy′(x)+
∑

z∈Y : z ̸=y′
gz(x)

⎞

⎠ .

The convexity of the function x )→ ( fy(x) + ∑
z∈Y : z ̸=y gz(x)) and that of x )→

maxy′ ̸=y( fy′(x) + ∑
z∈Y : z ̸=y′ gz(x)) hold by the assumption and the fact that convexity

is preserved under sum and pointwise maximum. ⊓⊔

As discussed in Sect. 1, the computation of the adversarial attack for adversarial robustness
is an important problem in practice, with the form in (7), for a given hypothesis h ∈ H,
sample (x, y) and perturbation size γ . Combining the results of Sect. 3 and Theorem 6, the
problem can be cast as an instance of DC-programming [46, 47], for which we can make use
of the DCA algorithm. The pseudocode of our algorithm to solve the optimization problem
(7) is given in Algorithm 3. This provides a DCA-based solution for the computation of the
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Algorithm 3 DCA solution for the computation of the adversarial attack for adversarial
robustness.
input: Maximum number of iterations T , hypothesis hNN−adv ∈ HNN−adv, example (x, y), perturbation
size γ , initial point x ′

1, tolerances ϵ1 and ϵ2
decompose by Section 3: hNN−adv(x, z) = fz(x) − gz(x), for z ∈ {∗}1, . . . , c
decompose by Theorem 6: ρhNN−adv (x, y) = fNN−adv(x) − gNN−adv(x), where

fNN−adv(x) = fy(x)+
∑

z∈Y : z ̸=y

gz(x), gNN−adv(x) = max
y′ ̸=y

(∗) fy′ (x)+
∑

z∈Y : z ̸=y′
gz(x)

for each round t = 1, . . . , T do
x ′
t+1 ∈ argmin{∗} fNN−adv(x ′) − gNN−adv(x ′

t ) − ∂gNN−adv(x ′
t ) · (x ′ − x ′

t ) : ∥x − x ′∥ ≤ γ

if |( fNN−adv − gNN−adv)(x ′
t+1) − ( fNN−adv − gNN−adv)(x ′

t )| ≤ ϵ1 or ∥ ∗ ∥x ′
t+1 − x ′

t ≤ ϵ2 then
break

end if
end for

adversarial attack for the family of feedforward neural networks and that of convolutional
neural networks, denoted as HNN−adv.

Here, we wish to further emphasize the significance of our DCA solution for the compu-
tation of the adversarial attack for adversarial robustness. The adversarial attack computation
problem has been extensively studied in the adversarial robustness literature, which is crucial
for both adversarial training and evaluation. The existing typical methods for the computation
of the adversarial attack include the single-step Fast Gradient Sign Method (FGSM) [15], its
stronger version Projected Gradient Descent (PGD)method [25, 37], and the state-of-the-art
Auto-PGD (APGD) method [12]. To compare with our Algorithm 3, we describe FGSM
and PGD for solving (7) with ℓ∞ norm in the following, and refer interested readers to [12,
Algorithm 1] for details of APGD. Here, we adopt the same notation as for Algorithm 3.

• Fast Gradient Sign Method (FGSM):

x ′ = x − γ sign(∂ρhNN−adv(x, y)).

• Projected Gradient Descent (PGD): for each round t = 1, . . . , T ,

x ′
t+1 = Proj{x ′:∥x−x ′∥≤γ }(x

′
t − α · sign(∂ρhNN−adv(x

′
t , y))),

where α is the step size and ProjB(β) := argminβ ′∈B ∥β − β ′∥2 is the projection.
Nevertheless, none of these methods is guaranteed to produce the strongest attack, that is,

the margin minimizer. On the one hand, it has been observed that using a single-step method
likeFGSMduring adversarial training suffers from the issue of “catastrophic overfitting” [58],
which suggests that stronger attack method or real margin minimization is needed during the
training. On the other hand, [12, Table 2] show that the adversarial test accuracy for most
of the studied defenses can be further reduced if evaluated on APGD, which implies that
previous methods are not really reliable for the adversarial evaluation. Instead, our solution
for the adversarial attack computation is built upon the DCA algorithm and benefits from
its convergence guarantees [46], which can produce stronger attacks than PGD and is also
comparable with the state-of-the-art method APGD in certain cases as shown in Sect. 5.
Furthermore, our proposed method can also be combined or incorporated into other targeted
attack or ensemble attack methods like AutoAttack [12], which can be helpful for both
adversarial training and evaluation.
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Fig. 2 Left: a fourth degree polynomial F : x )→ 3x4 − 4x3 − 12x2. Right: DC-components fNN−aprox and
gNN−aprox of the trained two-hidden-layer neural network

5 Experiments

Here, we present experiments on simulated data and real-world datasets to validate the
effectiveness of our algorithms for the approximate optimization and adversarial attack com-
putation problems. In the approximate optimization example,we show that ourDCAsolution,
Algorithm 2, can effectively minimize a polynomial function with only access to its samples
using a feedforward neural network. In the adversarial attack computation example, we show
that our DCA solution, Algorithm 3, can effectively achieve margin minimization for an
adversarially trained convolutional neural network on CIFAR-10 [23].
Approximate optimization. The function to minimize is a fourth-degree polynomial F : x )→
3x4 −4x3 −12x2 whose plot is shown in Fig. 2. Its derivative is F ′(x) = 12(x+1)x(x −2).
Function F admits a global minimum F(2) = −32 at x = 2 and a local minimum
F(−1) = −5 at x = −1. Assume that we have access to samples {(xi , F(xi ))}mi=1, where
{xi }mi=1 are drawn from the uniform distribution on the interval [−2, 3]. We train a feedfor-
ward neural network with 2 hidden-layers and 100 units in each layer using 5,000 training
samples. As shown in Theorem 2, the trained neural network, denoted by hNN−aprox, admits
a DC-decomposition hNN−aprox = fNN−aprox − gNN−aprox. The two convex DC-components
fNN−aprox and gNN−aprox are illustrated in Fig. 2. With a randomly chosen initial point
x = 0.47, DCA rapidly converges to hNN−aprox(2.05) = −32.20. The iteration points are
marked in Fig. 2, which closely match the polynomial F and approach its minimum value,
though the form of F is unknown to the neural network.
Adversarial attacks for adversarial robustness. Here, we also report the computation results
of the adversarial attack for an adversarially trained convolutional neural network on images
from CIFAR-10 [23]. The architecture of the CNN is described in Table 2. The adversarial
attacks are ℓ∞-norm bounded perturbations of size γ = 8/255. Figure 3 displays histograms
of the margin value over 100 trials for each image. We ran 10-step PGD on the margin loss
with random starts and then ran DCA for 20 rounds starting from the returned point. The
vertical line indicates the margin value corresponding to the adversarial attack found by 100-
step APGD on the margin loss. Figure 3 shows that DCA can improve upon PGD attacks
and is comparable with strong APGD attacks.
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Table 2 Architecture of the
convolutional neural network
used in Sect. 5 for the
computation of the adversarial
attack

Layer Kernel (Weight) size Stride

Convolution 3 × 3 × 3 × 32 1 × 1

ReLU – –

Average pooling 2 × 2 2 × 2

Convolution 3 × 3 × 32 × 64 1 × 1

ReLU – –

Average pooling 2 × 2 2 × 2

Convolution 3 × 3 × 64 × 64 1 × 1

ReLU – –

Fully connected 64 × 1024 –

ReLU – –

Fully connected 10 × 64 –

Fig. 3 Histograms of the margin value over 100 trials for each image. We ran 10-step PGD on the margin loss
with random starts and then ran DCA for 20 rounds starting from the returned point. The vertical line indicates
the margin value corresponding to the adversarial attack found by 100-step APGD on the margin loss

6 Conclusion

We presented the study of two key problems related to neural network optimization: the
computation of the adversarial attack for adversarial robustness and approximate optimization
based on neural networks. Our results include new DCA solutions which are shown to be
effective, as demonstrated by our experiments. Our results can help design better adversarial
training algorithms or stronger adversarial attacks during evaluation in adversarial robustness.
They can be extended to many other neural network architectures using a similar proof
technique, and can be extended to many other neural network learning and optimization
problems.
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