
Principled Model Routing
for Unknown Mixtures of Source Domains

Christoph Dann
Google Research

Yishay Mansour
Google Research

Tel Aviv University

Teodor V. Marinov
Google Research

Mehryar Mohri
Google Research
Courant Institute

Abstract

The rapid proliferation of domain-specialized machine learning models presents a
challenge: while individual models excel in specific domains, their performance
varies significantly across diverse applications. This makes selecting the optimal
model when faced with an unknown mixture of tasks, especially with limited or
no data to estimate the mixture, a difficult problem. We address this challenge
by formulating it as a multiple-source domain adaptation (MSA) problem. We
introduce a novel, scalable algorithm that effectively routes each input to the
best-suited model from a pool of available models. Our approach provides a
strong performance guarantee: remarkably, for any mixture domain, the accuracy
achieved by the best source model is maintained. This guarantee is established
through a theoretical bound on the regret for new domains, expressed as a convex
combination of the best regrets in the source domains, plus a concentration term that
diminishes as the amount of source data increases. While our primary contributions
are theoretical and algorithmic, we also present empirical results demonstrating the
effectiveness of our approach.

1 Introduction

Fine-tuning is a key step in adapting large language models (LLMs) to specialized tasks or domains
after their general pre-training. In this process, an LLM trained on vast datasets is further trained
on smaller, task-specific datasets. As organizations and researchers fine-tune LLMs for tasks like
summarization, translation, or customer service, the result is a growing collection of models, each
optimized for different tasks.

Routing algorithms are crucial for efficiently managing this diversity of specialized models, by
determining which existing model best fits a given input. Recently, various routing algorithms have
been proposed [Chen et al., 2023; Wang et al., 2023; Hu et al., 2024; Madaan et al., 2023; Yue
et al., 2023; Lee et al., 2023; Shnitzer et al., 2023; Narayanan Hari and Thomson, 2023; Lu et al.,
2023], including some with strong theoretical and empirical guarantees [Mao et al., 2023, 2024a,b].
While these routing solutions can perform well when inputs are drawn from clearly defined task
distributions, they offer no guarantees for inputs originating from an unknown mixture of domain
distributions. Building a fine-tuned model for every possible task combination is impractical, so how
can routing be designed to handle such mixed-task inputs?

To address this problem, this paper frames model routing as a multiple-source domain adaptation
(MSA) problem [Mansour et al., 2008] and derives a principled solution for enhancing robustness
and adaptability across diverse and dynamic task distributions. Our approach grounded in strong
MSA theory [Mansour et al., 2008, 2012; Hoffman et al., 2021; Cortes et al., 2021c] ensures that our
routing model system performs as well as the best individual expert model across any task mixture.
While our contributions are primarily theoretical and algorithmic, we also provide empirical evidence
demonstrating the effectiveness of our methods. Our solution is easily implemented and compatible

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

with existing router training approaches. It enhances existing router training by strategically adjusting
task domain weights.

A detailed survey of related work is provided in Appendix A. Here, we briefly emphasize that our
setting differs significantly from routing in Mixture-of-Experts (MoE) architectures [Shazeer et al.,
2017], where experts are trainable components within a unified network. In contrast, our work focuses
on predictive model routing [Shnitzer et al., 2023; Narayanan Hari and Thomson, 2023; Lu et al.,
2023; Mao et al., 2023, 2024a,b,c, 2025], where the router selects among a fixed set of independently
trained models. The central challenge we tackle is making accurate routing decisions when the target
distribution is unknown and assumed to be an arbitrary mixture over source domains.

Our analysis builds on the multiple-source adaptation (MSA) framework, first studied theoretically
by Mansour et al. [2008, 2012], with subsequent algorithmic and theoretical advances by Hoffman
et al. [2021] and Cortes et al. [2021c,a]. Our goal, however, is not to improve theoretical bounds for
domain adaptation per se, nor to boost routing accuracy when the test-time distribution is known in
advance. Instead, we offer a practical, theoretically grounded framework for robust model routing
under unknown task mixtures.

The rest of this paper is organized as follows. In Section 2, we formally define the model routing
problem under unknown target distributions and cast it in the MSA framework. Section 3 introduces
two algorithms along with their practical implementations. Section 4 presents theoretical analyses of
our methods, including regret bounds under natural oracle assumptions. We prove a regret bound for
arbitrary target mixtures, showing that the regret is a convex combination of the best source-domain
regrets, plus a data-dependent concentration term that vanishes with increasing source data. Finally,
Section 5 reports our empirical results, demonstrating the benefits of our min-max optimization
approach.

2 Problem Formulation

We begin by introducing the model routing problem and then show how it can be framed within the
multiple-source adaptation (MSA) framework.

2.1 Model Routing

We consider a finite set of generative models, denoted by Π, where each model π∶ X → ∆(Y)
maps inputs X to probability distributions over outputs Y . For example, if Π consists of generative
language models, X would represent prompts and Y their corresponding generations. Additionally,
we assume there are k benchmark tasks, D1, . . . ,Dk, where each Di is a distribution over inputs.
Typically, access to Di is limited to a finite dataset. We will denote by D̂i the empirical distribution
consisting of ni i.i.d. samples drawn from Di. Let r⋆∶ X × Y → [0,1] represent a scoring function
that evaluates the quality of a generation y ∈ Y for a given input x ∈ X . For example, r⋆ could
indicate the probability that human evaluators prefer y over the output of a reference model. Although
r⋆ may be unknown, we assume access to a scoring oracleR that provides unbiased estimates of r⋆
for any input-output pair (x, y). For simplicity, we assume that the scoring function r⋆ is uniform
across all benchmark tasks, though this assumption can be relaxed. The value of a model π ∈ Π on an
input x or distribution over inputs D is defined as follows:

v(π,x) = E
y∼π(x)

[r⋆(x, y)] v(π,D) = E
x∼D
[v(π,x)].

Goal of predictive model routing. Given access to Π,R, and the datasets D̂1, . . . , D̂k, our goal is to
select a high-quality probabilistic routing function f ∶ X →∆(Π) from a family F of such functions.
Each routing function maps an input x ∈ X to a probability distribution over the models in Π. For
any input x, a model π ∈ Π is selected by sampling from the distribution f(x).
For any π∶ X →∆(Y) and (x, y) ∈ X ×Y , let π(y∣x) denote the probability of y under the distribution
π(x). Given a routing function f ∈ F , we define the induced distribution πf(⋅∣x) over outputs Y as:

∀(x, y) ∈ X × Y, πf(y∣x) = ∑
π∈Π

f(π∣x)π(y∣x).

The objective is for f to route inputs x, drawn from an unknown test domain D ∈∆(X), to models in
Π that yield high scores according to the oracleR. Specifically, we aim to find an f that maximizes

2

the expected score v(πf ,D), without prior knowledge of D. The performance of a routing function
f is evaluated by the regret of its induced policy πf on the test domain D, defined as:

reg(πf ,D) ∶=max
π∈Π

v(π,D) − v(πf ,D), (1)

that is the gap between the performance of the best model in Π and that of the model selected by f .

Why is the test domain unknown? The test distribution D, representing the real-world data an
application will encounter, is typically unknown during development. We often know which kind
of tasks a model may be used for but how popular a specific task is, cannot be known ahead of
deployment and may also change over time. We therefore focus on the problem where D is composed
of a mixture of the benchmark tasks D1, . . . ,Dk but the weights of this mixture are unknown at
training time of the routing function. We formalize this in the next section.

2.2 Predictive Model Routing as Multiple-Source Domain Adaptation

Multiple-source domain adaptation (MSA) is a closely related problem that has been extensively
studied, particularly in classification and regression problems [Mansour et al., 2008, 2012; Hoffman
et al., 2021; Cortes et al., 2021c]. In MSA, the task involves multiple source domains, D1, . . . ,Dk,
each associated with a near-optimal model h1, . . . , hk [Mansour et al., 2008]. The target domain, Dλ,
is defined as a λ-mixture of the source domains, Dλ = 1

k ∑
k
i=1 λiDi, where λ ∈ ∆([k]) represents

unknown mixture weights. The objective is to devise a combination rule for the models hi such that
the resulting model performs well on any target domain Dλ.

We can formulate the predictive model routing problem as a multiple-source domain adaptation task
by first selecting an appropriate model, πi, for each dataset, which we refer to as the expert model
for domain Di. In many applications, natural choices for πi arise, such as when a model π has
been fine-tuned to perform well on a specific domain Di. More generally, we can define πi as the
model in the set Π that achieves the highest value estimate for Di. Next, we augment the empirical
distributions D̂1, . . . , D̂k with score samples from each expert model. For each input x in the support
of D̂i, we compute scores r1, . . . , rk by generating responses yj ∼ πj(⋅∣x) from each expert πj and
querying the reward oracle, which returns scores rj ∼ R(x, yj). These scores, rj , serve as unbiased
estimates of the value v(πj , x). We denote the augmented version of D̂i as D̄i.

With the score-augmented distributions (D̄i)i∈[k] in hand, the objective is to find a routing function
(or combination rule) f ∶ X → ∆([k]) that maps inputs to a distribution over expert models. This
routing function induces a mixed generation policy πf(y∣x) = ∑k

i=1 f(i∣x)πi(y∣x), which is evaluated
based on its performance across any target domain Dλ. The quality of the routing function f is
measured by its regret relative to the full policy set Π, as defined in (1). For the remainder of the
paper, we adopt this domain adaptation perspective on predictive model routing, assuming that we
are provided with a score-augmented empirical distribution D̄i for each domain Di and that the goal
is to learn an effective routing function to the expert models.

3 Algorithm

To ensure robustness in model routing across test domains, we draw on two key areas of research:
multiple-source domain adaptation [Mansour et al., 2008; Cortes et al., 2021c] and minimax-regret
optimization [Alaiz-Rodrıguez et al., 2007; Rigter et al., 2021; Mohri et al., 2019; Agarwal and
Zhang, 2022]. Our approach is particularly aligned with the approaches of Cortes et al. [2021c],
Mohri et al. [2019] and Agarwal and Zhang [2022]. Specifically, we adopt the mixture over test
domains and the associated theoretical guarantees from [Cortes et al., 2021c], while the objective
formulation and optimization strategy are inspired by [Mohri et al., 2019; Agarwal and Zhang, 2022].

To design our algorithm, we begin by considering the idealized infinite-data setting and then introduce
finite-sample approximations. Rather than minimizing regret under a fixed distribution, as defined
in (1), we adopt a more robust objective inspired by the minimax regret optimization literature
[Alaiz-Rodrıguez et al., 2007; Rigter et al., 2021; Mohri et al., 2019; Agarwal and Zhang, 2022].
Specifically, we aim to minimize the worst-case regret over all possible test domains:

min
f∈F

max
λ∈∆([k])

max
π′∈Π

v(π′,Dλ) − v(πf ,Dλ). (2)

3

However, solving this optimization problem during training is challenging due to the maximization
over π′ ∈ Π. To address this challenge, we propose two practical variants that avoid optimization over
π′. Each variant minimizes regret relative to a specific policy, denoted as π⋆A or π⋆B .

Option A: Pointwise Comparator. In this first variant, we aim to compete against a policy π⋆A that,
for each input context x, achieves the performance of the best expert model. Formally, v(π⋆A, x) =
maxi∈[k] v(πi, x) for all x. This leads to the following objective:

min
f∈F

max
λ∈∆([k])

LA(f, δ) ∶=min
f∈F

max
λ∈∆([k])

v(π⋆A,Dλ) − v(πf ,Dλ). (3)

In the finite-sample setting, this min-max objective becomes:

min
f∈F

max
λ∈∆([k])

L̂A(f, δ) ∶=min
f∈F

max
λ∈∆([k])

E
i∼λ

(x,r1,...,rk)∼D̄i

[max
j∈[k]

rj −
k

∑
l=1

f(l∣x) rl]. (4)

where the maximum is taken over expert scores for each sample. While being easy to implement, this
approach introduces additional bias when there is high variance in the expert scores for a given input.

Option B: Domain Comparator. To limit bias in the finite-sample objective, we leverage the
structure of the model routing problem by using π⋆B as the comparator in the regret calculation. This
policy, π⋆B ∶ X × [k] → ∆(Y), takes both the input x and the domain label i, following the expert
model πi for samples from domain Di; that is, π⋆B(x, i) = πi(x). As we will demonstrate later, this
fixed comparator provides strong regret guarantees without requiring an additional inner optimization
over policies. This leads to the following optimization objective:

min
f∈F

max
λ∈∆([k])

LB(f, δ) ∶=min
f∈F

max
λ∈∆([k])

v(π⋆B ,Dλ) − v(πf ,Dλ) (5)

with the finite-sample counterpart:

min
f∈F

max
λ∈∆([k])

L̂B(f, δ) ∶=min
f∈F

max
λ∈∆([k])

E
i∼λ

(x,r1,...,rk)∼D̄i

[ri −
k

∑
l=1

f(l∣x) rl]. (6)

Note that π⋆A and π⋆B coincide when domain experts are perfect, producing the best score for each
individual x from their respective domain. However, in practice, even πi that are well-tuned for their
domain Di typically do not achieve this, which distinguishes π⋆A from π⋆B in general.

Algorithm. We follow the standard approach and tackle the saddle-point problems in Equation 4 or 6
as a two-player game, which can be solved by dueling two no-regret learners (see Mohri et al. [2019]
for a general Mirror descent solution). Our algorithm is shown in Algorithm 1. The max-player can
be solved efficiently with Hedge [Littlestone and Warmuth, 1994]. For the min-player, we do not
prescribe the exact update for ft as we do not wish to prescribe a specific function class F . Instead,
we follow prior work [e.g. Cheng et al., 2022] and rely on online learning oracles. When the update
aims to optimize (4) or (6) directly, which are linear losses in the predictions of ft, then we refer to
this as an OLO oracle. Alternatively, it is common in practice to frame such an objective as a weighted
classification problem and instead aim to minimize the weighted log-loss as a proxy instead. We
also support such a choice for updates and refer to it as an OLLO oracle. We formalize the notion of
oracle rigorously in the next section, but we generally assume that the oracle of choice is a no-regret
learner and note that there is a large family of online-learning algorithms available with appropriate
guarantees [Cesa-Bianchi and Lugosi, 2006].

Practical Implementation. Algorithm 1 can be seamlessly integrated into existing model training
frameworks. For instance, in the case of language model routing, the class F can be a moderate-sized
language model architecture, where the initial policy f1 is a pre-trained model with its final layer
replaced by a randomly initialized linear layer. At each round t ∈ [T], a batch of samples is drawn
from the augmented datasets, with equal proportions from each. The Hedge update of domain weights
λt can be efficiently computed in closed form with minimal computational cost.

The update of ft is handled using standard gradient-based optimizers on the objectives in (4) or (6),
augmented with a KL-regularization, similar to RLHF training objectives [Christiano et al., 2017],
such as regularization toward a uniform domain distribution or a given domain prior. This corresponds
to an OLO oracle. Alternatively, the model can be optimized with a proxy log-loss, similar to standard
supervised fine-tuning objectives and corresponding to an OLLO oracle.

4

Algorithm 1: Domain adaptation for model routing algorithm

1 Input: Score-augmented distributions D̄i for i ∈ [k] of size ni. Each sample is of the form
(x, r1, . . . , rk) where x is the context and rj is a reward estimate for expert policy πj ;

2 Output: Routing policy f ∶ X →∆k;
3 Initialize λ1 = [1k , . . . ,

1
k
]⊺ and f1 in F arbitrarily;

4 for t = 1,2, . . . , T do
5 Sample (x(i)t , r

(i)
t,1 , . . . , r

(i)
t,k) ∼ D̄i for each i ∈ [k];

6 Determine benchmark with option A y
(i)
t ∈ argmaxj∈k r

(i)
t,j or option B y

(i)
t = i;

7 Set benchmark score c
(i)
t = r

(i)
t,y
(i)
t

;

8 Max-player: Hedge
9 Update λt+1 ∝ λt exp(−γℓt) with losses ℓt ∈ Rk where ℓt,i = c(i)t −∑k

j=1 r
(i)
t,j ft(j∣x

(i)
t).

10 Min-player: no-regret online learning update
11 Update ft+1 with OLO for all i ∈ [k] contexts x(i)t and losses ℓ(i)t ∈ Rk with

ℓ
(i)
t,j = λt,i (c(i)t − r

(i)
t,j)

12 or OLLO for all i ∈ [k] contexts x(i)t and targets y(i)t with weight λt,i;

13 return f̄ = 1
T ∑

T
t=1 ft

Finally, Algorithm 1 returns an averaged model f̄ , where f̄(i∣x) = 1
T ∑

T
t=1 ft(i∣x) for all x ∈ X and

i ∈ [k]. While exact output averaging might not always be feasible, we can adopt a ”model souping”
approach by averaging the parameters θt of the models ft across iterations. The final model is then
represented by θ̄ = 1

T ∑
T
t=1 θt, a technique that has proven effective in practice [Wortsman et al., 2022;

Ramé et al., 2024].

4 Theoretical Analysis

Before formally stating our results, we first introduce the oracle assumptions.

4.1 Oracles

The first oracle we support is a no-regret learner directly on the losses linear in f :
Definition 1 (Online learning oracle). An algorithm OLO is referred to as an online learning oracle
for a class F ⊆ X → ∆k if it satisfies the following condition. Given an arbitrary, potentially
adversarial sequence of context-loss pairs (x1, ℓ1, . . . , xkT , ℓkT), OLO observes the context-loss
pairs sequentially and maintains a sequence of policies ft+1 ∈ F , updating the policy after observing
k contexts xkt, . . . xkt+k−1 and losses ℓkt, . . . , ℓkt+k−1. The regret of OLO is given by:

RegOLO
F (T) =max

f∈F

T

∑
t=1

k−1
∑
i=0
⟨f(xkt+i) − ft(xkt+i), ℓkt+i⟩,

and is sublinear RegOLO
F (T) = o(T) with probability at least 1 − δ.

We expect that standard gradient-based optimizers on the objectives in (4) or (6), augmented with
appropriate entropy regularization, are no-regret learners that satisfy this definition at least approxi-
mately. Note that our definition of online learning oracle deviates slightly from the standard no-regret
definition because it uses batched updates where ft is only updated after k predictions. This is a
minor difference and algorithms that satisfy the standard definition also satisfy our definition above
with regret increased by a factor of at most k.

For the alternate updates of ft with OLLO, we view the problem as a classification problem with
weighted datapoints and prescribe that the updates lead to small log-loss (or cross-entropy loss),
formalized as:
Definition 2 (Online log-loss oracle). An algorithm OLLO is referred to as an online log-loss oracle
for a class F ⊆ X → ∆k if it satisfies the following condition. Given an arbitrary, potentially

5

Oracle Option Main term Assumptions

OLO A reg(π⋆A,Dλ)
best expert per x deterministic & F con-
tains perfect predictor for best score on
D̂1, . . . , D̂k

OLO A reg(π⋆A,Dλ) + biasA +O(
√
1/nmin) & F contains perfect predictor for best ex-

pected score on D1, . . . ,Dk

OLO B ∑k
i=1 λi reg(πi,Di) F contains fλ,D̂ for every λ ∈∆k

OLO B ∑k
i=1 λi reg(πi,Di) + O(

√
1/nmin) F contains fλ,D for every λ ∈∆k

OLLO A & B minf∈F maxi∈[k]Ex(i)∼D̄i
[− log(f(y(i)∣x(i)))] second moment of logits bounded for all

f ∈ F
Table 1: Summary of Guarantees. nmin =mini∈[k] ni denotes the size of the smallest dataset.

adversarial sequence of context-weight-target triples (x1,w1, y1,w1, . . . , xkT ,wkT , ykT), OLLO
observes the triples sequentially and maintains a sequence of policies ft+1 ∈ F , updating the policy
after observing k contexts xkt, . . . xkt+k−1, weights wkt, . . .wkt+k−1 and targets ykt, . . . , ykt+k−1.
The regret of OLO is given by:

RegOLLO
F (T) =max

f∈F

T

∑
t=1

k−1
∑
i=0

wkt+i log(
ft(ykt+i∣xkt+i)
f(ykt+i∣xkt+i)

)

and is sublinear RegOLLO
F (T) = o(T) with prob. ≥ 1 − δ.

4.2 Guarantees

We begin by building intuition for the terms that will appear in our final error bounds. Since we do
not have access to the underlying domains Di directly, but only through datasets of finite size, we
should expect to pay for a finite-sample error for this approximation. For a test domain Dλ, this
appears in our bounds as a concentration term of the form

Conc(λ,n) = O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(

CF
δ
)

ni
+max

i

λi log(CFδ)
ni

⎞
⎟
⎠
,

where CF is an appropriate complexity measure for F , e.g. the ℓ∞ covering number of F . The
error term Conc(λ,n) decreases as the sizes of the datasets ni increase. Fortunately, λ here is the
mixture weights of the test domain and thus, the dominating first term that shrinks slowest with ni

only depends on the dataset size of source domain that build the support of Dλ.

Another source of error in Algorithm 1 is that it aims to find solutions to (6) or (4) in an iterative
fashion and if the number of iterations is small, we incur additional approximation errors. This yields
error terms of the form

Approx(T) = RegF(T)
T

+O
⎛
⎝

√
log(kCF/δ)

T

⎞
⎠

where RegF(T) is either RegOLO
F (T) or RegOLLO

F (T), depending on the oracle choice. This term
includes the error due to updates of ft (hence the RegF(T) dependency), error due to updating λt

(regret of Hedge) and uniform concentration errors due to sampling datapoints for updates from the
dataset in each iteration. As long as the chosen oracle work and RegF(T) = o(T), this Approx(T)
term will shrink with T and we can make it as close to zero as we like by running Algorithm 1
for enough iterations. Note that increasing the number of iterations T only incurs a computational
overhead but does not require more data.

We can now state our main result when ft-updates are performed by an OLO oracle. We discuss here
the results for OLO oracles and defer those for OLLO oracles to the appendix (see Table 1).
Theorem 1. Let Dλ be the test domain, F be a convex set and updated to ft performed by an OLO
oracle. Then, with probability at least 1 −O(δ), the regret of the function f̄ returned by Algorithm 1
with Option A satisfies

reg(πf̄ ,Dλ) ≤ reg(π⋆A,Dλ) + V̂ ⋆A +Approx(T) +Conc(λ,n),

6

where π⋆A is the competitor policy for option A and V̂ ⋆A = maxλ∈∆k
inff∈F L̂(f, λ) is the optimal

value of the objective in Equation 4. The same guarantee holds for Option B with π⋆A replaced by π⋆B
and V̂ ⋆A by V̂ ⋆B .

In addition to the two error terms Approx(T) and Conc(λ,n) discussed above, our performance
guarantee contains the main term reg(π⋆A,Dλ) + V̂ ⋆A . Since the game in (5) and (3) are designed to
make πf match the performance of the chosen competitor π⋆A or π⋆B , the regret of this competitor
naturally appears in the our error bound. The V̂ ⋆A term is the value of the game / saddle-point and
small as long as the function class F is expressive enough. How expressive F needs to be depends
on the chosen option.

Option B. Building on the analysis of Mansour et al. [2008], we show in Lemma 7 in the appendix
that the value V̂ ⋆B is non-positive, as long as F can represent the conditional probabilities of a
datapoint coming from each source dataset given its context x which, by Bayes rule, is

fλ,D̂(i∣x) =
λiD̂i(x)

∑k
j=1 λjD̂j(x)

.

Further note that due to the specific definition of π⋆B , its regret can be bounded by the regret of each
domain expert on its own domain

reg(π⋆B ,Qλ) =max
π′∈Π

v(π′,Dλ) −
k

∑
i=1

λiv(πi,Di) ≤
k

∑
i=1

λi reg(πi,Di).

This yields the following corollary of Theorem 1:
Corollary 1. Assume F to be a convex set and assume F contains fλ,D̂ for every λ ∈∆k. Let Dλ

be the test domain. Then, with probability at least 1 −O(δ) the regret reg(πf̄ ,Dλ) of f̄ returned by
Algorithm 1 with OLO oracle and Option B is bounded by

k

∑
i=1

λi reg(πi,Di) +Approx(T) +Conc(λ,n).

This recovers the canonical results from prior domain adaptation works, and shows that as long as the
experts are optimal on their domain, the produced routed model will be optimal on any test domain
Dλ as well , up to the error terms which decrease with T and n.

We expect that for many modern neural network architectures, the condition that F can represent
fλ,D̂ to hold. However, this condition does depend on the (randomly drawn) datasets D̂i. To obtain a
condition that does not depend on the realized datasets, we can instead just assume that the condition
holds for the true source domains Di. However, we incur an additional O(

√
k/mini ni) error term

in this case. See Table 1 for a summary and the appendix for details.

Further, we expect the algorithm performance to degrade gracefully when the realizability assumption
in Corollary 1 does not hold exactly and that the bound could be extended to reflect this through an
additional additive approximation error scaling with minf∈F maxi∈[k]Ex∼D̂i

[∣f(⋅∣x) − fλ,D̂(⋅∣x)∣1].

Computational efficiency at inference time We note that when deploying the router f̄ returned
by Algorithm 1 there is no need to call all of the domain experts πi. Instead, given a context, we
sample i ∼ f̄(⋅∣x) and only play according to πi(⋅∣x). This modification inherits the regret guarantees
of Theorem 1 as the sampled y follows exactly the same distribution as that of y ∼ πf(⋅∣x) and so
the values of the two sampling procedures are exactly the same. In Figure 2 we show an experiment
which shows the regret with respect to the above sampling for Option A with log-loss. We also
include a comparison in Table 2.

Option A. To show that V̂ ⋆A is small, we need stronger assumptions compared to Option B. In order
for V̂ ⋆A to be zero, there must be a f ∈ F that can match the performance of π⋆A which always takes
the best expert for a given sample. This f needs to satisfy

E
(x,r1,...rk)∼D̄i

[max
j

rj −
k

∑
m=1

f(m∣x)rm] = 0 ∀i. (7)

7

regret vs best expert regret vs domain expert
Loss for f Option Baseline Alg 1 Baseline Alg 1

linear A 4.60 4.28 1.65 0.49
linear B 4.60 7.09 1.64 1.08
log A 2.70 2.37 -0.06 -0.39

log (sampled) A 2.70 1.90 -0.06 -0.85
log B 7.90 7.84 0.58 0.23

Table 2: Overview of regret in the worst-case test domain (lower is better), comparing the routing
function produced by Algorithm 1 against a routing function produced by training with uniform and
fixed domain weights. Results are averages across 5 seeds. Algorithm 1 consistently reduces the
regret against the competitor targeted by the selected option.

If there is significant stochasticity in the rewards ri generated by an expert for a given x, then this
condition might be impossible to satisfy. Specifically, if there are multiple samples with the same x
but where optimal score is obtained by different experts with distinct scores, then no such mapping
can exist. However, a sufficient condition for such an f to exist is that for every x there is some
expert which with probability 1 always has the highest score among all experts. In this case, the
finite-sample approximation in (4) is an unbiased estimator of (3). If, in addition this f is contained
in F , then we can show that V̂ ⋆A = 0 and the regret bound for πf̄ becomes

reg(πf̄ ,Dλ) ≤ reg(π⋆A,Dλ) +Approx(T) +Conc(λ,n).
In general, if there are contexts for which the distributions of scores between experts overlap and the
identity of the best expert varies with the random draws of generations and score assignment, then
(4) incurs a bias and we can still show V̂ ⋆A ≤ biasA +O (

k log(CF /δ)√
mini ni

) where we incur an additional
1/√mini ni term and the bias

biasA =max
i

E
x∼D̂i

[E
r1∶k ∣x
[max

m
rm] −max

m
v(πm, x)] .

This term essentially quantifies the bias from estimating the maximum expected score by taking the
maximum over realizations, thus exchanging the expectation and maximum in the expression. There
are many scenarios where biasA is favorably small. For example, we can show that for any x

E
r1∶k ∣x
[max

m
rm] −max

m
v(πm, x) ≤

√
kmax

i
σ2
i

holds where σ2
i is the variance of ri and thus when all scores are near-deterministic biasA is small.

Another favorable case is when for every x there is some model that is always the best, in which case
biasA = 0.

Option A vs Option B. By construction, π⋆A is a stronger competitor than π⋆B , since the inequality
v(π⋆B , x) ≤ maxi∈[k] v(πi, x) = v(π⋆A, x) holds for all x ∈ X . Thus, in the most favorable cases
when V̄ ⋆A = 0, Option A is indeed preferable as reg(π∗A,Dλ) ≤ ∑k

i=1 λi reg(πi,Di). However, as we
alluded to earlier, the conditions for V̂ ⋆A = 0 are much stronger than those required for V̂ ⋆B . Thus, in
many practical settings, Option B might be preferable to Option A.

5 Empirical Evaluation

Our primary contributions are theoretical and algorithmic, but we now also validate the effectiveness
of our approach empirically. Prior studies have explored optimal strategies for learning a routing
function tailored to specific data distributions [e.g. Jiang et al., 2023; Hu et al., 2024]. We view our
algorithm as a framework that can be applied on top of these approaches, by using them as an oracle
for updating ft. Thus, we do not aim to compare different learning methodologies but to assess the
impact of applying our framework to a given oracle choice, and how it makes the routing function
more robust by adjusting the domains weights in training. We therefore compare Algorithm 1 with
and without updates to λt (i.e., γ = 0 vs. γ ≠ 0), while keeping other parameters fixed.

As oracles, we use stochastic gradient based updates on either the linear objective in (6) or (4)
directly or on a log-loss proxy, as described in Definition 2. The routing function f is initialized as a

8

0.0

0.5

1.0

1.5
Regret against domain expert

4

6

8

Regret against best expert

0.00

0.25

0.50

0.75

1.00
Domain weights

domain
Domain 0
Domain 1
Domain 2
Domain 3
Domain 4

0 2000 4000 6000 8000 10000
step

0.0

0.5

1.0

1.5

0 2000 4000 6000 8000 10000
step

4

6

8

0 2000 4000 6000 8000 10000
step

0.00

0.25

0.50

0.75

1.00

Figure 1: Comparison of Algorithm 1 with Option B (bottom row) versus the baseline without domain
weight adjustment (top row), evaluated using log-loss under an OLLO oracle. The left panel shows
the regret against each expert, the middle one the regret against the best per example expert.

5.0

2.5

0.0

2.5

Regret against domain expert

0

2

4

6
Regret against best expert

0.00

0.25

0.50

0.75

1.00
Domain weights

domain
Domain 0
Domain 1
Domain 2
Domain 3
Domain 4

0 2000 4000 6000 8000 10000
step

5.0

2.5

0.0

2.5

0 2000 4000 6000 8000 10000
step

0

2

4

6

0 2000 4000 6000 8000 10000
step

0.00

0.25

0.50

0.75

1.00

Figure 2: Comparison of Algorithm 1 with Option A (bottom) where rewards are sampled according
to the computationally efficient inference procedure against Algorithm 1 with Option A without
sampling (top), corresponding to an OLLO oracle.

pre-trained Gemma 2B model [Team et al., 2024], with the final layer replaced by a fully connected,
randomly initialized linear layer to produce the logits of f . When we use Algorithm 1 with Option A,
we use a learning rate γ = 1e − 4 and with Option B a learning rate γ = 1e − 3 to update the domain
weights. We choose different learning rates as the magnitude of regret for the max-player is different
due the the different comparator in the regret. We train each routing function for 10,000 batches of
256 samples from each domain. Each experiment is repeated 5 times where the datasets are shuffled
between instances of the same experiment.

We conduct our evaluation on the MixInstruct benchmark by Jiang et al. [2023] which consists of
5 individual domains. Each domain D̂i contains samples with prompts and various metrics for the
generations of 11 open-source LLMs. We focus exclusively on the BLEU score and select the model
with the highest average BLEU score per domain from the training split to serve as the domain expert.

Table 2 shows a summary of our empirical results, listing for each choice of oracle (loss function
linear or log-loss) and algorithm option (A or B) the average regret of our algorithm per step against
the baseline which does not update domain weights during training on the the worst-case domain
mixture. Algorithm 1 reduces in all cases the regret targeted by the chosen option, regret against best
expert for Option A and regret against domain expert for Option B. While this typically results in
a reduction of the other notion of regret, an increase may happen (e.g., for linear loss and Option
B). The regret is computed with respect to πf , that is with respect to ∑k

j=1 ft(i∣x
(i)
t)r

(i)
t,j , except for

log (sampled), where we sample j ∼ ft(⋅∣x(i)t) and play the corresponding r
(i)
t,j . Overall, the

table shows that the efficient inference strategy performs on par with, or better than, computing regret
using the full distribution ft(⋅ ∣ x(i)t).

9

Figure 1 shows the regret of the routing model on each domain during training, for the example of
log-loss and Option B. We show both the regret against each of the domain experts in the first column
and the regret against the best per example expert in the second column. The baseline experiment is
in the top row and Algorithm 1 with Option B and OLLO is in the bottom row. As expected from the
min-max game formulation we see that the regrets against each of the domain experts across domains
are being equalized by Algorithm 1. This leads to a decreased regret on Domain 4, compared to the
baseline, a regret which matches that of the baseline on domains 1 and 3, and a slightly increased
regret for Domain 4 and Domain 0. This is in accordance with how the domain weights, λt ∈ ∆k,
change over the course of the game, that is high regret on Domain 4 is penalized more compared to
the baseline uniform distribution and the regret of Domain 0 and Domain 2 is penalized less. The
second column of Figure 1 shows that, for the harder objective of competing against the per-example
best, Algorithm 1 decreases the regret of Domain 4 while maintaining performance on the others.
Figure 2 compares the efficient inference strategy with against using the full distribution defined
by ft on our best performing setting for Algorithm 1. As expected, the sampling strategy performs
similarly both with respect to the regret and domain weight behavior.

In Appendix D we present results for the remaining 3 settings of Algorithm 1 with Option A and
Option B with OLO oracle and with Option A with OLLO oracle. Overall we find the results to be
consistent with our observations for Figure 1 and that there is always a benefit to using the min-max
optimization approach compared to the uniform weights of the baseline.

6 Conclusion

We presented a novel approach for combining multiple domain expert algorithms through the use of
online learning oracles, achieving regret bounds that are tightly linked to the performance of these
oracles. Our method offers strong theoretical guarantees, ensuring robustness across a broad range of
scenarios, including settings with unknown mixtures of source domains. Empirically, we validated
the effectiveness of our model routing strategy on the MixInstruct dataset, demonstrating its practical
advantages in real-world tasks. These results underscore the promise of our approach as a principled
and scalable solution for predictive model selection in heterogeneous environments. Appendix B
briefly discusses further extensions of our results.

References
A. Agarwal and T. Zhang. Minimax regret optimization for robust machine learning under distribution

shift. In Conference on Learning Theory, pages 2704–2729. PMLR, 2022.

R. Alaiz-Rodrıguez, A. Guerrero-Curieses, and J. Cid-Sueiro. Minimax regret classifier for imprecise
class distributions. Journal of Machine Learning Research, 8:103–130, 2007.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge university press, 2006.

L. Chen, M. Zaharia, and J. Zou. Frugalgpt: How to use large language models while reducing cost
and improving performance. arXiv preprint arXiv:2305.05176, 2023.

C.-A. Cheng, T. Xie, N. Jiang, and A. Agarwal. Adversarially trained actor critic for offline
reinforcement learning. In International Conference on Machine Learning, pages 3852–3878.
PMLR, 2022.

P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement learning
from human preferences. Advances in neural information processing systems, 30, 2017.

C. Cortes, M. Mohri, D. Storcheus, and A. T. Suresh. Boosting with multiple sources.
In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, edi-
tors, Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 17373–17387, 2021a. URL https://proceedings.neurips.cc/paper/2021/
hash/9103820024efb30b451d006dc4ab3370-Abstract.html.

10

https://proceedings.neurips.cc/paper/2021/hash/9103820024efb30b451d006dc4ab3370-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/9103820024efb30b451d006dc4ab3370-Abstract.html

C. Cortes, M. Mohri, and A. T. Suresh. Relative deviation margin bounds. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages
2122–2131. PMLR, 2021b.

C. Cortes, M. Mohri, A. T. Suresh, and N. Zhang. A discriminative technique for multiple-source
adaptation. In International Conference on Machine Learning, pages 2132–2143. PMLR, 2021c.

G. DeSalvo, M. Mohri, and U. Syed. Learning with deep cascades. In Algorithmic Learning Theory:
26th International Conference, ALT 2015, Banff, AB, Canada, October 4-6, 2015, Proceedings 26,
pages 254–269. Springer, 2015.

D. J. Foster, S. Kale, H. Luo, M. Mohri, and K. Sridharan. Logistic regression: The importance of
being improper. In Conference on learning theory, pages 167–208. PMLR, 2018.

E. Hazan, T. Koren, and K. Y. Levy. Logistic regression: Tight bounds for stochastic and online
optimization. In Conference on Learning Theory, pages 197–209. PMLR, 2014.

J. Hoffman, M. Mohri, and N. Zhang. Multiple-source adaptation theory and algorithms. Ann. Math.
Artif. Intell., 89(3-4):237–270, 2021.

Q. J. Hu, J. Bieker, X. Li, N. Jiang, B. Keigwin, G. Ranganath, K. Keutzer, and S. K. Upadhyay.
Routerbench: A benchmark for multi-llm routing system. arXiv preprint arXiv:2403.12031, 2024.

D. Jiang, X. Ren, and B. Y. Lin. Llm-blender: Ensembling large language models with pairwise
ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

S. M. Kakade and A. Ng. Online bounds for bayesian algorithms. Advances in neural information
processing systems, 17, 2004.

C.-H. Lee, H. Cheng, and M. Ostendorf. Orchestrallm: Efficient orchestration of language models
for dialogue state tracking. arXiv preprint arXiv:2311.09758, 2023.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and computation,
108(2):212–261, 1994.

K. Lu, H. Yuan, R. Lin, J. Lin, Z. Yuan, C. Zhou, and J. Zhou. Routing to the expert: Efficient
reward-guided ensemble of large language models. arXiv preprint arXiv:2311.08692, 2023.

A. Madaan, P. Aggarwal, A. Anand, S. P. Potharaju, S. Mishra, P. Zhou, A. Gupta, D. Rajagopal,
K. Kappaganthu, Y. Yang, et al. Automix: Automatically mixing language models. arXiv preprint
arXiv:2310.12963, 2023.

Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation with multiple sources. Advances
in neural information processing systems, 21, 2008.

Y. Mansour, M. Mohri, and A. Rostamizadeh. Multiple source adaptation and the rényi divergence.
arXiv preprint arXiv:1205.2628, 2012.

A. Mao, C. Mohri, M. Mohri, and Y. Zhong. Two-stage learning to defer with multiple experts. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

A. Mao, M. Mohri, and Y. Zhong. Principled approaches for learning to defer with multiple experts.
In R. P. Barneva, V. E. Brimkov, C. Gentile, and A. Pacchiano, editors, Artificial Intelligence and
Image Analysis - 18th International Symposium on Artificial Intelligence and Mathematics, ISAIM
2024, and 22nd International Workshop on Combinatorial Image Analysis, IWCIA 2024, Fort
Lauderdale, FL, USA, January 8-10, 2024, Revised Selected Papers, volume 14494 of Lecture
Notes in Computer Science, pages 107–135. Springer, 2024a.

11

A. Mao, M. Mohri, and Y. Zhong. Regression with multi-expert deferral. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024b.

A. Mao, M. Mohri, and Y. Zhong. Realizable h-consistent and bayes-consistent loss functions for
learning to defer. In A. Globersons, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. M. Tomczak, and
C. Zhang, editors, Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024c.

A. Mao, M. Mohri, and Y. Zhong. Mastering multiple-expert routing: Realizable H-consistency
and strong guarantees for learning to defer. In G. Kamath and P. Loh, editors, 42nd International
Conference on Machine Learning (ICML 2025), Proceedings of ICML 2025, 2025.

H. B. McMahan and M. Streeter. Open problem: Better bounds for online logistic regression. In
Conference on Learning Theory, pages 44–1. JMLR Workshop and Conference Proceedings, 2012.

M. Mohri, G. Sivek, and A. T. Suresh. Agnostic federated learning. In K. Chaudhuri and R. Salakhut-
dinov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 4615–4625. PMLR, 2019.

S. Narayanan Hari and M. Thomson. Tryage: Real-time, intelligent routing of user prompts to large
language models. arXiv e-prints, pages arXiv–2308, 2023.

A. Ramé, J. Ferret, N. Vieillard, R. Dadashi, L. Hussenot, P.-L. Cedoz, P. G. Sessa, S. Girgin,
A. Douillard, and O. Bachem. Warp: On the benefits of weight averaged rewarded policies. arXiv
preprint arXiv:2406.16768, 2024.

M. Rigter, B. Lacerda, and N. Hawes. Minimax regret optimisation for robust planning in uncertain
markov decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35 (13), pages 11930–11938, 2021.

G. I. Shamir. Logistic regression regret: What’s the catch? In Conference on Learning Theory, pages
3296–3319. PMLR, 2020.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton, and J. Dean. Outrageously
large neural networks: The sparsely-gated mixture-of-experts layer. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

T. Shnitzer, A. Ou, M. Silva, K. Soule, Y. Sun, J. Solomon, N. Thompson, and M. Yurochkin. Large
language model routing with benchmark datasets. arXiv preprint arXiv:2309.15789, 2023.

G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Rivière, M. S.
Kale, J. Love, et al. Gemma: Open models based on gemini research and technology. arXiv
preprint arXiv:2403.08295, 2024.

Y. Wang, K. Chen, H. Tan, and K. Guo. Tabi: An efficient multi-level inference system for large
language models. In Proceedings of the Eighteenth European Conference on Computer Systems,
pages 233–248, 2023.

M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S. Morcos, H. Namkoong,
A. Farhadi, Y. Carmon, S. Kornblith, et al. Model soups: averaging weights of multiple fine-tuned
models improves accuracy without increasing inference time. In International conference on
machine learning, pages 23965–23998. PMLR, 2022.

L. Xiao. Dual averaging method for regularized stochastic learning and online optimization. Advances
in Neural Information Processing Systems, 22, 2009.

M. Yue, J. Zhao, M. Zhang, L. Du, and Z. Yao. Large language model cascades with mixture of
thoughts representations for cost-efficient reasoning. arXiv preprint arXiv:2310.03094, 2023.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Algorithm is introduced in Section 3, the theoretical guarantees in Section 4
and the empirical results in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss a thorough discussion of the quality of the theoretical bounds, i.e.,
when each term is favorably small, and also discuss the assumptions required in Section 4.
We also acknowledge the limitations of the empirical comparison in Section 5, as our primary
contribution is theoretical and algorithmic.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

13

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All statements and full proofs included in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details of the practical implementation of the algorithm provided at the end of
Section 3 and the setup of our empirical evaluation is contained in Section 5 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We are unable to provide the source code but our experiments only rely on
public models and datasets and we aimed to provide all details necessary to reproduce our
results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The setup of our empirical evaluation is described in detail in Section 5 and
Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the number of independent trials of our evaluation (5) and figures
contain error bands.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide this information in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not anticipate a societal impact of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

16

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No models or data released with paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Original papers of the used model (Gemma) and dataset (MixInstruct) cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

17

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our methods can be applied to routing to LLMs but is not specific to them.
Our method development did not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

Contents of Appendix

A Related Work 21

B Extensions to other settings 21

C Theoretical Analysis 21

C.1 Analysis for Option A . 24

C.2 Analysis for Option B . 25

C.3 Alternate Oracles . 27

D Experiments 30

D.1 Experimental setup details . 30

D.2 Additional results . 30

E Unbounded loss bound 30

20

A Related Work

Mixture-of-experts vs. model routing. The term model routing has been used in the literature to
describe related but distinct problems, including token-level routing in Mixture-of-Experts (MoE)
architectures [Shazeer et al., 2017]. In MoEs, individual tokens are routed, at each routing layer within
a transformer network, to a small subset of expert modules, typically feed-forward networks. These
routing layers are trained jointly with the experts, and key challenges include maintaining diversity
and ensuring balanced utilization across experts. In contrast, the routing problem we consider in
this paper involves assigning the entire input, rather than individual tokens, to one of several fixed
(pre-trained) expert models, each specialized for a particular task. When we refer to model routing in
this work, we mean this form of input-level assignment. In this setting, load balancing and diversity
are not primary concerns.

Model routing. Learning a routing function for a collection of fixed specialized models has been
studied in the literature in several variations. We can categorize existing work based on the input
of the routing function: In post-hoc routing [Chen et al., 2023; Wang et al., 2023; Hu et al., 2024;
Madaan et al., 2023; Yue et al., 2023; Lee et al., 2023], the inputs are first processed by the experts
and the routing function and selects the best output after seeing both the input and the output
from each expert. A specific form of post-hoc routing, known as cascading routing, was studied
by Chen et al. [2023]; Wang et al. [2023]; Yue et al. [2023]; Hu et al. [2024], where inputs are
processed sequentially by experts until a sufficiently high-quality response is obtained. Theoretical
investigations of cascading ideas in classification have been conducted by DeSalvo et al. [2015].
Relatedly, Mao et al. [2023, 2024a,b] have introduced deferral algorithms, which can be used in
particular for routing applications, together with an extensive theoretical guarantees. In predictive
routing [Shnitzer et al., 2023; Narayanan Hari and Thomson, 2023; Lu et al., 2023] the router only
gets to see the input and selects the expert, which alone processes it. Recent efforts by Hu et al.
[2024] and Jiang et al. [2023] have proposed benchmarks for evaluating mixtures of LLMs. For a
more comprehensive review of this literature, we refer readers to Hu et al. [2024]. Our work focuses
on the predictive routing setting, but our techniques can also be applied to other forms of model
routing, such as post-hoc routing.

Multiple-source domain adaptation. The multiple-source adaptation (MSA) problem was theoreti-
cally studied by Mansour et al. [2008, 2012]. Later, Hoffman et al. [2021] introduced an efficient
algorithm based on domain density estimation. This approach was subsequently improved by Cortes
et al. [2021c], who replaced density estimation with a domain classifier. However, despite this
simplification, their method still requires solving a difference of convex (DC) programming problem,
which may not be well-suited for modern LLM inference scenarios.

B Extensions to other settings

For the sake of exposition, we focus in this paper on predictive routing for generative models.
However, our approach can be readily extended to other settings as well. For example, our algorithm
can be used without modifications with discrimative base models π, e.g. for classifying inputs x.
In that case Y corresponds to class labels and policies output class probabilities. When we choose
scores as binary indicator for a correct classification, our regret guarantees below naturally provide
a bound on the misclassification rate of the resulting classifier πf . Further, we can tackle post-hoc
routing problems, where the decision which model to use is done after seeing the generations from
the candidate models, by a small modification of the framework above: Instead of routing functions
f ∶ X →∆([k]), we consider functions f ∶ X ×Yk →∆([k]) that additionally receive the generations
from all candidates as input. In practice this simply corresponds to appending the generations to the
prompt x with appropriate divider tokens. Up to passing in this additional information to the routing
models, our algorithm remains unaffected and the theoretical guarantees continue to hold.

C Theoretical Analysis

Our main performance guarantees for Algorithm 1 with OLO stated in Theorem 1 in the main paper
are proven separately for each option in Theorem 2 and Theorem 3 below. The guarantee with OLLO
is proven in Theorem 4 afterwards in Appendix C.3

21

We first derive a set of useful results that apply to all variants. Recall the definitions of the objectives
used by our algorithms as

LA(f, λ) = E
i∼λ

E
x∼Di

E
j∼f(x)

[max
m

v(πm, x) − v(πj , x)] (8)

L̂A(f, λ) = E
i∼λ

E
(x,r1,...,rk)∼D̂i

E
j∼f(x)

[max
m

rm − rj] (9)

LB(f, λ) = E
i∼λ

E
x∼Di

E
j∼f(x)

[v(πi, x) − v(πj , x)] (10)

L̂B(f, λ) = E
i∼λ

E
(x,r1,...,rk)∼D̂i

E
j∼f(x)

[ri − rj]. (11)

In the following, we refer by L jointly to LA or LB and L̂ to L̂A or L̂B respectively.

Lemma 1. The objectives LA,LB , L̂A, L̂B are bilinear in f and λ. If F ⊆ X →∆k is convex, then

inf
f∈F

max
λ∈∆k

LA(f, λ) = max
λ∈∆k

inf
f∈F
LA(f, λ). (12)

and analogously for LB , L̂A and L̂B .

Proof. We see directly from (8) that all objectives are linear in both arguments. The second part
follows from Sion’s minimax theorem, since both ∆k and F are convex and ∆k is compact.

The following lemma shows that the costs and rewards concentrate around their expectations.

Lemma 2. The following hold

P
⎛
⎝

sup
λ∈∆(k)

T

∑
t=1

k

∑
i=1

λi(c(i)t −E[c
(i)
t] −

k

∑
j=1

ft(j∣x(i)t)(r
(i)
t,j −E[r

(i)
t,j])) ≥ 2

√
T log(k/δ)

⎞
⎠
≤ δ

P
⎛
⎝
sup
f∈F

T

∑
t=1

k

∑
i=1

λt,i(c(i)t −E[c
(i)
t] −

k

∑
j=1

f(j∣x(i)t)(r
(i)
t,j −E[r

(i)
t,j])) ≥ 2

√
T log(∣F∣/δ)

⎞
⎠
≤ δ.

Proof. We start by showing the first inequality. First note that for every i ∈ [k], {c(i)t − E[c
(i)
t] −

∑k
j=1 ft(j∣x

(i)
t)(r

(i)
t,j −E[r

(i)
t,j])}t∈[T] is a martingale difference sequence with respect to the filtration

created by the online oracle. Azuma-Hoeffding’s inequality and a union bound implies that

P
⎛
⎝
sup
i∈[k]

T

∑
t=1
(c(i)t −E[c

(i)
t] −

k

∑
j=1

ft(j∣x(i)t)(r
(i)
t,j −E[r

(i)
t,j])) ≥ 2

√
T log(k/δ)

⎞
⎠
≤ δ.

Next, we have

sup
λ∈∆(k)

k

∑
i=1

λi

T

∑
t=1
(c(i)t −E[c

(i)
t] −

k

∑
j=1

ft(j∣x(i)t)(r
(i)
t,j −E[r

(i)
t,j]))

= sup
i∈[k]

T

∑
t=1
(E[c(i)t] − c

(i)
t −

k

∑
j=1

ft(j∣x(i)t)(E[r
(i)
t,j] − r

(i)
t,j)),

since∑k
i=1 λi∑T

t=1 (c
(i)
t −E[c

(i)
t]−∑k

j=1 ft(j∣x
(i)
t)(r

(i)
t,j −E[r

(i)
t,j])) is linear in λ and the supremum

will be achieved at one of the corners of the probability simplex.

The second inequality holds in a similar way by using Azuma-Hoeffding’s inequality and a union
bound over F .

We note that the notation log(∣F∣) is overloaded to mean the metric entropy for function classes
which have infinite cardinality. For the rest of the paper we consider log(∣F∣) to be the metric entropy
with respect to the following distance d(f, f ′) = supx∈X ∥f(x) − f ′(x)∥1.

22

Lemma 3. Let f̄ = 1
T ∑

T
t=1 ft, λ̄ = 1

T ∑
T
t=1 λt be the average iterates of Algorithm 1. Then

max
λ∈∆k,f∈F

[L̂(f̄ , λ) − L̂(f, λ̄)] ≤ RegF(T)
T

+O
⎛
⎝

√
log(k∣F∣/δ)

T

⎞
⎠

(13)

with high probability at least 1 −O(δ), where RegF(T) is the regret of the online learning oracle
from Definition 1.

Proof. We begin by noting that

L̂(f̄ , λ) = Ei∼λ,x(i)∼D̄i
[

k

∑
i=1

λi(c(i) − ⟨f̄ , r(i)⟩] =
1

T

T

∑
t=1

k

∑
i=1

λi(E[c(i)t] −
k

∑
j=1

ft(j∣x(i)t)E[r
(i)
t,j])

L̂(f, λ̄) = Ei∼λ,x(i)∼D̄i
[

k

∑
i=1

λ̄i(c(i) − ⟨f, r(i)⟩] =
1

T

T

∑
t=1

k

∑
i=1

λt,i(E[c(i)t] −
k

∑
j=1

f(j∣x(i)t)E[r
(i)
t,j])

Further, using Lemma 2, we can write that, with probability 1 − δ for all f ∈ F and all λ ∈∆(k), the
following holds:

L̂(f̄ , λ) − L̂(f, λ̄)

= 1

T

T

∑
t=1

k

∑
i=1

λi(E[c(i)t] −
k

∑
j=1

ft(j∣x(i)t)E[r
(i)
t,j]) −

1

T

T

∑
t=1

k

∑
i=1

λt,i(E[c(i)t] −
k

∑
j=1

f(j∣x(i)t)E[r
(i)
t,j])

≤ 1

T

T

∑
t=1

k

∑
i=1

λi(c(i)t −
k

∑
j=1

ft(j∣x(i)t)r
(i)
t,j) −

1

T

T

∑
t=1

k

∑
i=1

λt,i(c(i)t −
k

∑
j=1

f(j∣x(i)t)r
(i)
t,j) +O

⎛
⎝

√
log(k∣F∣/δ)

T

⎞
⎠

= 1

T

T

∑
t=1
⟨λ − λt, ℓ

′
t⟩ +

1

T

T

∑
t=1

k

∑
i=1
⟨ℓ(i)t , ft(x(i)t) − f(x

(i)
t)⟩ +O

⎛
⎝

√
log(k∣F∣/δ)

T

⎞
⎠

≤ RegΛ(T)
T

+ RegF(T)
T

+O
⎛
⎝

√
log(k∣F∣/δ)

T

⎞
⎠
.

Since RegΛ(T) = O (
√
T log(k∣F∣/δ)) with probability at least 1 −O(δ), the result follows.

Lemma 4. Let V ⋆ = inff∈F maxλ∈∆k
L(f, λ) be the optimal value of the saddle-point. Then

Algorithm 1 converges to that value with probability at least 1 −O(δ), that is,

max
λ∈∆k

L̂(f̄ , λ) ≤ V̂ ⋆ + RegF(T)
T

+O
⎛
⎝

√
log(k∣F∣/δ)

T

⎞
⎠
.

This statement is true for either option A and option B.

Proof. By Lemma 1, the following chain of inequalities holds

inf
f∈F
L̂(f, λ̄) ≤ max

λ∈∆k

inf
f∈F
L̂(f, λ) = V̂ ⋆ = inf

f∈F
max
λ∈∆k

L̂(f, λ) ≤ max
λ∈∆k

L̂(f̄ , λ).

Rearranging terms yields

L̂(f̄ , λ) ≤ V̂ ⋆ +max
λ∈∆k

L̂(f̄ , λ) − inf
f∈F
L̂(f, λ̄)

≤ V̂ ⋆ + RegF(T)
T

+O
⎛
⎝

√
log(k∣F∣/δ)

T

⎞
⎠
. (Lemma 3)

23

C.1 Analysis for Option A

Lemma 5 (Concentration for option A). For a fixed λ and f ∈ F , we have with probability at least
1 − δ

LA(f, λ) − L̂A(f, λ) ≤O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(1/δ)

ni
+max

i

λi log(1/δ)
ni

⎞
⎟
⎠

L̂A(f, λ) − LA(f, λ) ≤O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(1/δ)

ni
+max

i

λi log(1/δ)
ni

⎞
⎟
⎠
+ ∣

k

∑
i=1

λi biasA(i)∣

where

biasA(i) =
1

ni

ni

∑
t=1

⎡⎢⎢⎢⎢⎣
max
m

v(πm, x
(i)
t) − E

r1,...,rm∣x=x(i)t

[max
m

rm]
⎤⎥⎥⎥⎥⎦
.

Proof. Consider and ordering of the samples in each augmented dataset and denote by
(x(i)t , r

(i)
t,1 , . . . , r

(i)
t,m) the t-th sample in D̄i. Further define

biasA(i) =
1

ni

ni

∑
t=1

⎡⎢⎢⎢⎢⎣
max
m

v(πm, x
(i)
t) − E

r1,...,rm∣x=x(i)t

[max
m

rm]
⎤⎥⎥⎥⎥⎦

and

Yi,t = E
r1,...,rm∣x=x(i)t

[max
m

rm] −max
m

r
(i)
t,m − v(πf , x

(i)
t) +

k

∑
m=1

r
(i)
t,mf(m∣x(i)t)

Then we can decompose the difference in losses as

LA(f, λ) − L̂A(f, λ) =
k

∑
i=1

λi biasA(i) +
k

∑
i=1

λi

ni

ni

∑
t=1

Yi,t.

Since Yi,t are all independent from each other, we can bound the second term using concentration
arguments as

k

∑
i=1

λi

ni

ni

∑
t=1

Yi,t ≤ O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(1/δ)

ni
+max

i

λi log(1/δ)
ni

⎞
⎟
⎠

with probability at least 1 − O(δ). Note that we can bound the negative, −∑ni

t=1 Yi,t analogously.
Further, by Jensen’s inequality, biasA(i) ≤ 0 for all i. Combining these bounds yields the desired
statement.

Theorem 2 (Regret bound for Option A). Assume that the function class F is convex. Then the
solution f̄ returned by Algorithm 1 with Option A satisfies with probability at least 1 −O(δ)

reg(πf̄ ,Dλ) ≤ reg(πpt,Dλ) + V̂ ⋆A +
RegF(T)

T
+O
⎛
⎝

√
log(k∣F∣/δ)

T

⎞
⎠

(14)

+O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(∣F∣/δ)

ni
+max

i

λi log(∣F∣/δ)
ni

⎞
⎟
⎠

(15)

Further, if there exists an f ∈ F which perfectly predicts the maximum score per sample,
i.e., ∑k

i=1E(x,r1,...,rk)∼D̄i
[maxm rm] = ∑k

i=1E(x,r1,...,rk)∼D̄i
Ej∼f(x) rj , then V̂ ⋆A ≤ 0. If this

only holds on a population level and for expected scores, i.e., ∑k
i=1Ex∼Di maxm v(πm, x) =

∑k
i=1Ex∼Di v(πf , x), then we can still bound V̂ ⋆A ≤maxi ∣biasA(i)∣ +O (log(∣F∣/δ)√

mini ni
).

24

Proof. We can decompose the regret of f̄ on Dλ as

reg(πf̄ ,Dλ) =max
π∈Π

v(π,Dλ) − E
x∼Dλ

[max
m

v(πm, x)] + E
x∼Dλ

[max
m

v(πm, x)] − v(πf̄ ,Dλ)

=max
π∈Π

v(π,Dλ) − E
x∼Dλ

[max
m

v(πm, x)] + LA(f̄ , λ)

≤max
π∈Π

v(π,Dλ) − E
x∼Dλ

[max
m

v(πm, x)] + L̂A(f̄ , λ)

+O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(∣F∣/δ)

ni
+max

i

λi log(∣F∣/δ)
ni

⎞
⎟
⎠

(Lemma 5)

To obtain a bound on L̂A(f̄ , λ), we apply the game-theoretic arguments from Lemma 4

L̂A(f̄ , λ) ≤ V̂ ⋆A +
RegF(T)

T
+O
⎛
⎝

√
log(k∣F∣/δ)

T

⎞
⎠

and it only remains to control the optimal value of the game V̂ ⋆A .

V̂ ⋆A = max
λ∈∆k

inf
f∈F

E
(x,r1,...,rk)∼D̄λ

E
j∼f(x)

[max
m

rm − rj]

≤ V ⋆A +max
λ∈∆k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣
k

∑
i=1

λi biasA(i)∣ +O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(∣F∣/δ)

ni
+max

i

λi log(∣F∣/δ)
ni

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ V ⋆A +max
i
∣biasA(i)∣ +O (

log(∣F∣/δ)√
mini ni

)

C.2 Analysis for Option B

Lemma 6 (Concentration for option B). For a fixed λ and f ∈ F , we have with probability at least
1 −O(δ)

∣LB(f, λ) − L̂B(f, λ)∣ ≤ O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(1/δ)

ni
+max

i

λi log(1/δ)
ni

⎞
⎟
⎠

and

∣LB(f, λ) − L̂B(f, λ)∣ ≤ O
⎛
⎝

k

∑
i=1

λi

√
log(1/δ)

ni

⎞
⎠

Proof. Consider a fixed λ, f and i ∈ [k]. Order D̄i arbitrarily and denote (xt, rt,1, . . . , rt,k) the
t-th datapoint in D̄i. Then Yi,t = Ej∼f(xt)[rt,i − rt,j] are i.i.d. random variables with mean
EYi,t = v(πi,Di) − v(πf ,Di). Since scores are bounded, Yi,t centered to its mean is sub-Gaussian
and we can bound with probability at least 1 − δ

LB(f, λ) − L̂B(f, λ) =
k

∑
i=1

λi

ni

ni

∑
t=1
[EYi,t − Yi,t]

≤ O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

ni

∑
t=1

λ2
i

n2
i

log(1/δ) +max
i

λi log(1/δ)
ni

⎞
⎟
⎠

= O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(1/δ)

ni
+max

i

λi log(1/δ)
ni

⎞
⎟
⎠

25

Lemma 7 (Value of the game for option B). Let V ⋆B = inff∈F maxλ∈∆k
LB(f, λ) be the optimal

value of the saddle-point. Assume that the function class F contains fλ for every λ ∈∆k, where fλ,D
is defined as fλ(i∣x) = λiDi(x)

∑k
j=1 λjDj(x) . Then the value of the game is non-positive, i.e., V ⋆B ≤ 0.

Proof. Let λ ∈∆k be arbitrary and consider f(i∣x) = λiDi(x)
∑k

j=1 λjDj(x) . We then have

LB(f, λ) = v(πdom,Qλ) − v(πf ,Dλ)

=
k

∑
i=1

λi ∑
x∈X

Di(x)⟨πdom(x, i), r⋆(x)⟩ − ∑
x∈X

Dλ(x)⟨πf(x), r⋆(x)⟩

=
k

∑
i=1

λi ∑
x∈X

Di(x)⟨πdom(x, i), r⋆(x)⟩ − ∑
x∈X

k

∑
i=1

λiDi(x)⟨πi(x), r⋆(x)⟩

(definition of f)

=
k

∑
i=1

λi ∑
x∈X

Di(x)⟨πdom(x, i) − πi(x), r⋆(x)⟩

= 0 (πdom(x, i) = πi(x))

Theorem 3 (Regret bound for Option B). Assume that the function class F is convex. Then the
solution f̄ returned by Algorithm 1 with Option B satisfies with probability at least 1 −O(δ) for any
fixed λ

reg(πf̄ ,Dλ) ≤
k

∑
i=1

λi reg(πi,Di) + V̂ ⋆B +
RegF(T)

T
+O
⎛
⎝

√
log(k∣F∣/δ)

T

⎞
⎠

(16)

+O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λi

ni
log
∣F∣
δ
+max

i

λi

ni
log
∣F∣
δ

⎞
⎟
⎠

(17)

Further, if the function class F contains fλ,D̂ for every λ ∈∆k, where fλ,D̂ is defined as fλ(i∣x) =
λiD̂i(x)

∑k
j=1 λjD̂j(x)

, then V̂ ⋆B ≤ 0. If this only holds on a population level, i.e., F ≤ {fλ,D ∶ λ ∈∆k}, then

we can still bound V̂ ⋆B = O (
√

k log(1/δ)
mini ni

).

Proof. We can decompose the regret of f̄ on Dλ as
reg(πf̄ ,Dλ) =max

π∈Π
v(π,Dλ) − v(π⋆,Qλ) + v(π⋆,Qλ) − v(πf̄ ,Dλ)

=max
π∈Π

v(π,Dλ) − v(π⋆,Qλ) + LB(f̄ , λ)

≤max
π∈Π

v(π,Dλ) − v(π⋆,Qλ) + L̂B(f̄ , λ) +O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λi

ni
log
∣F∣
δ
+max

i

λi

ni
log
∣F∣
δ

⎞
⎟
⎠

(Lemma 6)
where the last inequality follows from a union bound over f ∈ F and holds with probability at least
1 −O(δ). The first two terms can be upper-bounded by the regret of each expert policy πi on its own
dataset, weighted by λ, i.e.,

max
π∈Π

v(π,Dλ) − v(π⋆,Qλ) =max
π∈Π

k

∑
i=1

λi (v(π,Di) − v(πi,Di)) ≤
k

∑
i=1

λi reg(πi,Di).

We now bound L̂B(f̄ , λ) further by Lemma 4 with probability at least 1 −O(δ) as

L̂B(f̄ , λ) ≤ V̂ ⋆B +
RegF(T)

T
+O
⎛
⎝

√
log(k∣F∣/δ)

T

⎞
⎠
.

Plugging both bounds in the previous decomposition yields the desired bound. For the bound on V̄ ⋆B ,
we apply Lemma 7 on D̂ directly or on D and apply Lemma 6 with a union bound over ∆k.

26

C.3 Alternate Oracles

In this section we consider replacing the linear losses, ℓ(i)t , from Algorithm 1 with a log-loss. Such
a choice is natural whenever we consider F to be some family of Transformer networks for which
modern ML packages use optimizers tailored to the cross-entropy loss. The losses constructed
by Algorithm 1 are log-losses and so we need a different version of the Online Learning Oracle
which we defined in Definition 2 The problem of Online Logistic Regression has been extensively
studied in the online learning literature [Kakade and Ng, 2004; Xiao, 2009; McMahan and Streeter,
2012; Hazan et al., 2014; Foster et al., 2018; Shamir, 2020]. Using OLLO we can instantiate a
new version of Algorithm 1 with the following losses for the min-player ℓ(i)

′

t = −λt,iey(i)t
where

y
(i)
t ∈ {j ∈ [k]∶ r

(i)
t,j = c

(i)
t }. Option A and Option B then correspond to the following two choices of

y
(i)
t

y
(i)
t =

⎧⎪⎪⎨⎪⎪⎩

argmaxj∈[k] r
(i)
t,j Option A

r
(i)
t,i Option B.

Next, we prove the counterpart to Lemma 4 for the classifier setting.
Lemma 8. For any λ ∈∆(k) it holds that

T

∑
t=1

k

∑
i=1

λi(c(i)t −
k

∑
j=1

ft(j∣x(i)t)r
(i)
t,j)

≤min
f∈F

T

∑
t=1

k

∑
i=1
−λt,i log(f(y(i)t,i ∣x

(i)
t)) +RegOLLO

F (T) +O(
√
kT log(k∣F∣/δ)),

with probability 1 −O(δ).

Proof. The definition of OLLO together with the standard analysis for the regret of the max-player
imply the following holds with probability 1 −O(δ)

T

∑
t=1

k

∑
i=1
−λt,i(log(ft(y(i)t ∣x

(i)
t)) − log(f(y

(i)
t ∣x

(i)
t))) ≤ RegOLLO

F (T)

T

∑
t=1

k

∑
i=1

λi(c(i)t −
k

∑
j=1

ft(j∣xi,t)r(i)t,j)

−
T

∑
t=1

k

∑
i=1

λt,i(c(i)t −
k

∑
j=1

ft(j∣xi,t)r(i)t,j) ≤ O(
√
kT log(k∣F∣/δ))

And so for any fixed λ ∈∆(k) we have

T

∑
t=1

k

∑
i=1

λi(c(i)t −
k

∑
j=1

ft(j∣x(i)t)r
(i)
t,j)

≤
T

∑
t=1

k

∑
i=1

λt,i(c(i)t −
k

∑
j=1

ft(j∣x(i)t)r
(i)
t,j) +O(

√
kT log(k∣F∣/δ))

≤
T

∑
t=1

k

∑
i=1

λt,ir
(i)
t,y
(i)
t

(1 − ft(y(i)t ∣x
(i)
t)) +O(

√
kT log(k∣F∣/δ))

≤
T

∑
t=1

k

∑
i=1
−λt,ir

(i)
t,y
(i)
t

log(ft(y(i)t ∣x
(i)
t)) +O(

√
kT log(k∣F∣/δ)).

for any i, where the last inequality uses 1 − x ≤ − log(x), x ∈ [0,1]. The min-player regret guarantee
together with the fact that r(i)

t,y
(i)
t

∈ [0,1] imply

T

∑
t=1

k

∑
i=1

λi(c(i)t −
k

∑
j=1

ft(j∣x(i)t)r
(i)
t,j)

27

≤min
f∈F

T

∑
t=1

k

∑
i=1
−λt,i log(f(y(i)t,i ∣x

(i)
t)) +RegOLLO

F (T) +O(
√
kT log(k∣F∣/δ)).

We need the following assumption to be able to guarantee concentration of the empirical log-loss to
the expected log-loss.

Assumption 1. We assume that Ei∼λ,x(i)∼Di,y(i)[− log(f(y(i)∣x(i)))2] < +∞ for all f ∈ F , λ ∈∆(k)
and y(i) defined according to option A or option B.

This assumption is weaker than just assuming the log-loss is bounded which can be achieved by
simply mixing ε of the uniform distribution with the predictors in F . Under Assumption 1 we have
the following corollary which follows from Theorem 5 stated in Appendix E.
Corollary 2. Suppose that Assumption 1 holds and fix an ε ∈ (0,1). Then w.p. 1 − δ it holds that for
all f ∈ F

E
i∼λ̄i,x((i)∼D̂i

[− log(f(y(i)∣x(i)))] − E
i∼λ̄i,x((i)∼D̄i

[− log(f(y(i)∣x(i)))]

≤ O
⎛
⎜
⎝
log(T)

¿
ÁÁÀ E

i∼λ̄i,x((i)∼D̄i

[− log(f(y(i)∣x(i)))2]
log(E[N∞(− log(F), ε/2, x(i)1∶2T , i ∈ [k])/δ)]

T

⎞
⎟
⎠
+ ε

where N∞ denotes the ℓ∞ covering number of the log-losses of F with respect to a sample from the
empirical process induced by Algorithm 1 for 2T rounds.

The main result for OLLO found in Theorem 4 below is very similar to that for OLO. The terms
Approx(T),Conc(λ,n) which depend on the oracle’s regret and number of samples from the
population still appear in the bound, however, reg(π⋆A,Dλ) + V̂ ⋆A is replaced by the log-loss of the
best f ∈ F on the game: maxi∈[k]Ei∼λ̄,x(i)∼D̄i

[− log(f(y(i)∣x(i)))]. This term depends on both the
max-player’s actions throughout the empirical game, λ̄, and on the population through D̄i, i ∈ [k].
The only difference between Option A and Option B is that y(i) = argmaxy r

⋆(y, x(i)) for Option
A and y(i) = i for Option B. Comparing Option A vs. Option B is similar to the comparison
for the OLO. In particular minf∈F Ex(i)∼D̄i

[− log(f(y(i)∣x(i)))] is negligible under much stricter
conditions for Option A, as outlined for OLOs, compared to Option B, where existence of an accurate
domain classifier in F is sufficient. Finally, because the log-loss is potentially unbounded we need
boundedness of its second moment for all f ∈ F to be able to show concentration of measure.
Theorem 4. Fix ε ∈ (0,1). Under Assumption 1 with probability 1 − δ it holds that for any λ ∈∆(k)
and f ∈ F

1Ei∼λ,x∼Di[c(i) − ⟨f̄ , r(i)⟩] ≤ Ei∼λ̄,x(i)∼D̄i
[− log(f(y(i)∣x(i)))]

+ RegOLLO
F (T)
T

+O
⎛
⎝

√
log(∣F∣/δ)

T
+
√

log(k/δ)
T

+ log(T)
¿
ÁÁÀ E

i∼λ̄i,x((i)∼D̄i

[− log(f(y(i)∣x(i)))2] log(∆T /δ)
T

+ ε
⎞
⎠

+O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(k∣F∣T /δ)

ni
+max

i

λi log(k∣F∣T /δ)
ni

⎞
⎟
⎠
,

where ∆T denotes the covering number from Corollary 2.

Proof. We begin by arguing that

Ei∼λ,x∼D̄i
[c(i) − ⟨f̄ , r(i)⟩] ≤ Ei∼λ̄,x(i)∼D̄i

[− log(f(y(i)∣x(i)))]

+ RegOLLO
F (T)
T

+O
⎛
⎝

√
log(∣F∣/δ)

T
+
√

log(k/δ)
T

⎞
⎠

28

+O
⎛
⎝
log(T)

¿
ÁÁÀ E

i∼λ̄i,x((i)∼D̄i

[− log(f(y(i)∣x(i)))2] log(∆T /δ)
T

+ ε
⎞
⎠

This holds as follows. We combine the regret bound from Lemma 8 together with the concentration
of Lemma 2 and Corollary 2.

Finally, we convert the LHS of the above lemma to a concentration over the population
Ei∼λ,x∼Di[c(i) − ⟨f̄ , r(i)⟩] as follows. First note that for any fixed f ∈ F :

Ei∼λ,x∼Di[c(i) − ⟨f, r(i)⟩] =
k

∑
i=1

λi

ni

ni

∑
j=1

c
(i)
j − ⟨f, r

(i)
j ⟩.

We can then argue as in Lemma 2 that for all λ ∈∆(k) uniformly it holds that

k

∑
i=1

λi

ni

ni

∑
j=1

E[c(i)j − ⟨f, r
(i)
j ⟩] −

k

∑
i=1

λi

ni

ni

∑
j=1

c
(i)
j − ⟨f, r

(i)
j ⟩ ≤ O

⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(k/δ)

ni
+max

i

λi log(k/δ)
ni

⎞
⎟
⎠
,

w.p. 1 −O(δ), where we use Bernstein’s inequality instead of Hoeffding’s inequality. An additional
union bound over F now implies

P
⎛
⎝

sup
λ∈∆(k),f∈F

k

∑
i=1

λi

ni

ni

∑
j=1

E[c(i)j − ⟨f, r
(i)
j ⟩] −

k

∑
i=1

λi

ni

ni

∑
j=1

c
(i)
j − ⟨f, r

(i)
j ⟩

≥ Ω
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(k∣F∣/δ)

ni
+max

i

λi log(k∣F∣/δ)
ni

⎞
⎟
⎠
⎞
⎠
≤ δ.

Finally, we note that f̄ ∈ F by convexity of F . and thus we need an extra union bound over T . This
completes the proof of the theorem.

We can now show counterparts to Theorem 2 and Theorem 3.
Corollary 3. Fix ε ∈ (0,1). For any convex F for which Assumption 1 holds we have that for all
λ ∈∆(k) with probability 1 − δ

reg(πf̄ ,Dλ) ≤min
f∈F

Ei∼λ̄,x(i)∼D̄i
[− log(f(y(i)∣x(i)))]

+ RegOLLO
F (T)
T

+O
⎛
⎝

√
log(∣F∣/δ)

T
+
√

log(k/δ)
T

⎞
⎠

+O
⎛
⎝
log(T)

¿
ÁÁÀ E

i∼λ̄i,x((i)∼D̄i

[− log(f(y(i)∣x(i)))2] log(∆T /δ)
T

+ ε
⎞
⎠

+O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(k∣F∣T /δ)

ni
+max

i

λi log(k∣F∣T /δ)
ni

⎞
⎟
⎠
,

where for Option A we have y(i) = argmaxy∈[k] r
⋆(y, x(i)) and for Option B we have y(i) = i.

Proof. The definition of regret for Option A implies that

reg(πf̄ ,Dλ) = v(π⋆A,Dλ) − v(f,Dλ) = Ei∼λ,x∼Di[max
j∈[k]

v(πj , x
(i)) − v(f̄ , x(i))]

≤ Ei∼λ,x∼Di[argmax
y∈[k]

r⋆(y, x(i)) − ⟨f̄ , r⋆(⋅, x(i))⟩]

= Ei∼λ,x∼Di[c(i) − ⟨f̄ , r(i)⟩].
The bound now follows from Theorem 4. For Option B we have a similar derivation with

reg(πf̄ ,Dλ) = v(π⋆A,Dλ) − v(πf̄ ,Dλ) = Ei∼λ,x∼Di[v(πi, x
(i)) − v(πf̄ , x

(i))]

29

= Ei∼λ,x∼Di,j∼πi(x(i)) [r
⋆(j, x(i)) −

k

∑
l=1

k

∑
s=1

f̄(s∣x(i))πs(l∣x(i))r⋆(l, x(i))]

= Ei∼λ,x∼Di,j∼πi(x(i))[c
(i) − ⟨f̄ , r(i)⟩].

The bound again follows from Theorem 4.

D Experiments

D.1 Experimental setup details

We identify a domain in the mix-instruct dataset by the prefix in the sample id, which is dolly 15k,
itwgpt4, laion, sharegpt, or unified chip2. The number of samples for each domain
are 6858, 20754, 106, 2719 and 69563 respectively.

Results report the regret during training and Table 2 shows metrics aggregated from all checkpoints
during training. Since we had metrics available for each checkpoint, there was no need for creating a
single routing function, e.g., through model souping. The same evaluation procedure was used for all
approaches including baselines.

All reported results are averaged over 5 replications.

We conducted our experiment on a cluster with 256 v5e TPUs. A single experiment run took about
2 hours. We estimate that all experiments involved in this research project took about 1 week of
compute time.

D.2 Additional results

In Figure 3, Figure 4 and Figure 5 we present the remaining comparisons for Algorithm 1 for OLO
Option B and Option A, and for OLLO Option A respectively.

For Figure 3, OLO with Option B, we make the same observations as in the main text for OLLO with
Option B, that Algorithm 1 tries to equalize the regrets across all domains which leads to reduced
regret for Domain 4, but slightly higher regret for the remaining domains. The regret against the
best per example expert is uniformly higher across domains compared to the baseline. This is not
surprising as the objective which Algorithm 1 works with in this setting is not aimed at optimizing
the regret against this stronger competitor.

For Figure 4, OLO with Option A, and Figure 5, OLLO with Option A we make the following
observations. The regret against the best per example expert is decreased compared to the baseline
across all domains for the OLO oracle and is decreased or remains the same for the OLLO oracle.
This is in contrast with the results for Option B, where we see that the regret for domains increases
when the domain weight is decreased by the max player. Further, we see that minimizing the regret
to the best expert per token results in smaller regret against the domain experts as well. This is to be
expected as the competitor defining the regret for Option A is stronger compared to that of Option B.

E Unbounded loss bound

The following generalization bound follows directly Theorem 3 of [Cortes et al., 2021b]. It holds for
any unbounded loss function with bounded second-moment. In particular, it can be applied to the log
loss when the second-moment is bounded.
Theorem 5. Fix ε ∈ (0,1). Then, for any hypothesis set H such that Ex∼D[ℓ2(h,x)] < +∞ for all
h ∈H , the following holds with probably at least 1 − δ over the draw of a sample of size m from D:

E
x∼D
[ℓ(h,x)] − E

x∼S
[ℓ(h,x)] ≤ γ

√
E

x∼D
[ℓ2(h,x)]∆m

m
+ ε,

where ∆m = logE[N∞(ℓ(H), ε2 , x
2m
1)] + log 1

δ
, γ = Γ0(

√
∆m

m
) = O(logm), and Γ0(µ) = 1

2
+

√
1 + 1

2
log 1

µ
for any µ > 0. N∞(ℓ(H), ε2 , x

2m
1) represents the ℓ∞-covering number of the ℓ-losses

associated with the hypotheses in H based on a sample of size 2m, denote by x2m
1 , with a precision

of ε
2

.

30

4

2

0

2

Regret against domain expert

2

4

6

8

Regret against best expert

0.00

0.25

0.50

0.75

1.00
Domain weights

domain
Domain 0
Domain 1
Domain 2
Domain 3
Domain 4

0 2000 4000 6000 8000 10000
step

4

2

0

2

0 2000 4000 6000 8000 10000
step

2

4

6

8

0 2000 4000 6000 8000 10000
step

0.00

0.25

0.50

0.75

1.00

Figure 3: Comparison of Algorithm 1 with Option B (bottom) against baseline (top) without domain
weight adjustment using linear loss, corresponding to an OLO oracle.

5.0

2.5

0.0

2.5

Regret against domain expert

2

4

6

Regret against best expert

0.00

0.25

0.50

0.75

1.00
Domain weights

domain
Domain 0
Domain 1
Domain 2
Domain 3
Domain 4

0 2000 4000 6000 8000 10000
step

5.0

2.5

0.0

2.5

0 2000 4000 6000 8000 10000
step

2

4

6

0 2000 4000 6000 8000 10000
step

0.00

0.25

0.50

0.75

1.00

Figure 4: Comparison of Algorithm 1 with Option A (bottom) against baseline (top) without domain
weight adjustment using linear loss, corresponding to an OLO oracle.

5.0

2.5

0.0

2.5

Regret against domain expert

0

2

4

6
Regret against best expert

0.00

0.25

0.50

0.75

1.00
Domain weights

domain
Domain 0
Domain 1
Domain 2
Domain 3
Domain 4

0 2000 4000 6000 8000 10000
step

5.0

2.5

0.0

2.5

0 2000 4000 6000 8000 10000
step

0

2

4

6

0 2000 4000 6000 8000 10000
step

0.00

0.25

0.50

0.75

1.00

Figure 5: Comparison of Algorithm 1 with Option A (bottom) against baseline (top) without domain
weight adjustment using log-loss, corresponding to an OLLO oracle.

31

In particular, we can choose ε = 1
m

in the bound. The result generalizes to the case where only a
higher-order moment of the loss (higher than 2) is bounded.

32

	Related Work
	Extensions to other settings
	Theoretical Analysis
	Analysis for Option A
	Analysis for Option B
	Alternate Oracles

	Experiments
	Experimental setup details
	Additional results

	Unbounded loss bound

