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ABSTRACT
We present a new algorithm for domain adaptation improving upon
the discrepancy minimization algorithm (DM), which was previ-
ously shown to outperform a number of popular algorithms de-
signed for this task. Unlike most previous approaches adopted
for domain adaptation, our algorithm does not consist of a fixed
reweighting of the losses over the training sample. Instead, it uses a
reweighting that depends on the hypothesis considered and is based
on the minimization of a new measure of generalized discrepancy.
We give a detailed description of our algorithm and show that it can
be formulated as a convex optimization problem. We also present a
detailed theoretical analysis of its learning guarantees, which helps
us select its parameters. Finally, we report the results of experi-
ments demonstrating that it improves upon the DM algorithm in
several tasks.

1. INTRODUCTION
A standard assumption in much of learning theory and algo-

rithms is that the training and test data are sampled from the same
distribution. In practice, however, this assumption often does not
hold. The learner then faces the more challenging problem of do-
main adaptation where the source and target distributions are dis-
tinct. This problem arises in a variety of applications such as natu-
ral language processing and computer vision [Dredze et al., 2007,
Blitzer et al., 2007b, Jiang and Zhai, 2007, Leggetter and Wood-
land, 1995, Martínez, 2002, Hoffman et al., 2014] and many other
others.

The theory of domain adaptation has been developed in recent
years. Early generalization bounds were presented for this problem
by Ben-David et al. [2006] and Blitzer et al. [2007a] using a dA-
distance. In previous work [Mansour, Mohri, and Rostamizadeh,
2009a, Cortes and Mohri, 2011], we introduced the notion of dis-
crepancy, which generalizes the dA-distance to arbitrary loss func-
tions. We further showed that the discrepancy measure can be accu-
rately estimated from data and proved data-dependent Rademacher
complexity bounds for its estimation. We also gave new generaliza-
tion bounds for domain adaptation based on the discrepancy mea-
sure, which we proved to be, under some plausible assumptions,
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superior to those previously derived by Ben-David et al. [2006] or
Blitzer et al. [2007a] (which we showed in fact suffer a factor of
3 of the error that can make them vacuous). We also gave a series
of pointwise loss guarantees for the broad class of kernel-based
regularized empirical risk minimization algorithms in terms of the
empirical discrepancy. In [Mohri and Muñoz, 2012] we further
introduced and used the related notion of Y-discrepancy (later re-
discovered as integral probability metric [Zhang, Zhang, and Ye,
2012]) to derive guarantees for the problem of learning with drift-
ing distributions. This notion was later used by Germain, Habrard,
Laviolette, and Morvant [2013] to study the problem of domain
adaptation in a PAC-Bayesian setting. Altogether, these theoretical
results suggest that the discrepancy is a key quantity in the analysis
of adaptation appearing both in upper bounds and lower bounds.

Clearly, domain adaptation cannot always succeed. This depends
on the discrepancy between the source and target distribution and
some related properties of the labeling functions. This is also cor-
roborated by some negative examples given by Ben-David et al.
[2010] and Ben-David and Urner [2012]. As pointed out by these
authors, the problem becomes trivially intractable where the hy-
pothesis set contains no candidate with good performance on the
training set. However, the adaptation tasks found in applications
seem to be often more favorable than such worst cases and sev-
eral empirical results suggest that adaptation can indeed succeed.
Recent work by Wen et al. [2014] also uses a game-theoretic ap-
proach to characterize some scenarios where domain adaptation is
beneficial.

We can distinguish two broad families of adaptation algorithms.
Some consist of finding a new feature representation. The core idea
behind these algorithms is to map the source and target data into a
new feature space where the difference between source and target
distributions is reduced. Transfer Component Analysis (TCA) [Pan
et al., 2011] and the work on Frustratingly Easy Domain Adaptation
(FE) [Daumé III, 2007] belong both to this family of algorithms.
While some empirical evidence has been reported in the literature
for the effectiveness of these algorithms, we are not aware of any
theoretical guarantees in support of these techniques.

Many other adaptation algorithms can be viewed as reweight-
ing techniques. Originated in the Statistics literature on sample
bias correction, these techniques attempt to correct the difference
between distributions by multiplying every training example by a
positive weight. Most of the classical algorithms such as KMM
[Huang et al., 2006], KLIEP [Sugiyama et al., 2007] and discrep-
ancy minimization (DM) [Mansour et al., 2009b, Cortes and Mohri,
2011] fall in this category.

The underlying idea behind common reweighting techniques is
that of minimizing the distance between the reweighted empirical
source and target distribution. A crucial component of these learn-



ing algorithms is thus the choice of divergence distance between
measures. The KLIEP algorithm is based on the minimization of
the KL-divergence, while algorithms such as KMM or the algo-
rithm of Zhang et al. [2013] use the maximum mean discrepancy
distance as the divergence to be minimized. It is worth noting that,
under some realizability assumptions the algorithm of Zhang et al.
[2013] can also be used for the case when the labeling functions
shift. The aforementioned algorithms do not provide any learn-
ing guarantees. Instead, if the source and target distributions ad-
mit densities q(x) and p(x) respectively, the authors show that the
weight on the sample point xi will converge to the importance ra-
tio p(xi)/q(xi). The use of this ratio is commonly known as im-
portance weighting and it provides and unbiased estimate for the
expected loss on the target distribution. While this unbiasedness
makes it a natural approach, it has been shown both empirically
and theoretically that importance weighting algorithms can fail for
the common case where the importance ratio becomes unbounded
unless the second-moment bounded, an assumption that cannot be
tested in general [Cortes, Mansour, and Mohri, 2010].

In contrast, in [Mansour, Mohri, and Rostamizadeh, 2009b] and
[Cortes and Mohri, 2011], we derived generalization bounds for
domain adaptation and showed that these bounds directly depend
on the discrepancy. We further derived a discrepancy minimization
(DM) algorithm that seeks to minimize this generalization bound
[Cortes and Mohri, 2011]. This algorithm was shown to perform
well in a number of adaptation tasks and to match or outperform
several other algorithms such as KMM, KLIEP and a two stage
algorithm by Bickel et. al [Bickel et al., 2007]. The main advantage
of the DM algorithm is that it takes into account the hypothesis
set and the loss function which were previously ignored by other
reweighting techniques even though these are crucial elements of
any learning algorithm.

One shortcoming of the DM algorithm, however, is that it seeks
to reweight the loss on the training samples to minimize a quan-
tity defined as the maximum over all pairs of hypotheses, including
hypotheses that the learning algorithm might not ever consider as
candidates. Thus, the algorithm tends to be too conservative. We
present an alternative theoretically well founded algorithm for do-
main adaptation that is based on minimizing a finer quantity, the
generalized discrepancy, and that seeks to improve upon DM. Un-
like the DM algorithm, our algorithm does not consist of a fixed
reweighting of the losses over the training sample. Instead, the
weights assigned to training sample losses vary as a function of the
hypothesis h. This helps us ensure that for every hypothesis, h, the
empirical loss on the source distribution is as close as possible to
the empirical loss on the target distribution for that particular h.

We first describe the learning scenario of domain adaptation in
Section 2. Then, we give a detailed description of our algorithm
and prove that it can be formulated as a convex optimization prob-
lem (Section 3). Next, we analyze the theoretical properties of our
algorithm, which guide us to choose the surrogate hypothesis set
defining our algorithm (Section 4). In Section 5, we further an-
alyze the optimization problem defining our algorithm and derive
an equivalent form that can be handled by a standard convex opti-
mization solver. In Section 6, we report the results of experiments
demonstrating that our algorithm improves upon the DM algorithm
in several tasks.

2. LEARNING SCENARIO
This section defines the learning scenario of domain adaptation

we consider, which coincides with that of Blitzer et al. [2007a],
Mansour et al. [2009a], or Cortes and Mohri [2013] and introduces
the definitions and concepts needed for the following sections. For

the most part, we follow the definitions and notation of Cortes and
Mohri [2013].

Let X denote the input space and Y ⊆ R the output space. We
define a domain as a pair formed by a distribution over X and a
target labeling function mapping from X to Y . Throughout the
paper, (Q, fQ) denotes the source domain and (P, fP ) the target
domain with Q the source and P the target distribution over X
while fQ, fP : X → Y , are the source and target labeling functions
respectively.

In the scenario of domain adaptation we consider, the learner
receives two samples: a labeled sample ofm points from the source
domain S = ((x1, y1), . . . , (xm, ym)) ∈ (X ×Y)m with x1, . . . ,
xm drawn i.i.d. according to Q and yi = fQ(xi) for i ∈ [1,m];
and an unlabeled sample T = (x′1, . . . , x

′
n) ∈ Xn of size n drawn

i.i.d. according to the target distribution P . We denote by Q̂ the
empirical distribution corresponding to x1, . . . , xm and by P̂ the
empirical distribution corresponding to T . We will be in fact more
interested in the scenario commonly encountered in practice where,
in addition to these two samples, a small amount of labeled data
from the target domain T ′ = ((x′′1 , y

′′
1 ), . . . , (x′′s , y

′′
s )) ∈ (X×Y)s

is received by the learner.
We consider a loss function L : Y × Y → R+ jointly convex

in its two arguments. The Lp losses commonly used in regression
and defined by Lp(y, y′) = |y′ − y|p for p ≥ 1 are special in-
stances of this definition. For any two functions h, h′ : X → Y and
any distribution D over X , we denote by LD(h, h′) the expected
loss of h(x) and h′(x): LD(h, h′) = Ex∼D[L(h(x), h′(x))]. The
learning problem consists of selecting a hypothesis h out of a hy-
pothesis set H with a small expected loss LP (h, fP ) with respect
to the target domain. We further extend this notation to arbitrary
functions q : X → R with a finite support as follows: Lq(h, h

′) =∑
x∈X q(x)L(h(x), h′(x)).

3. ALGORITHM
In this section, we introduce our adaptation algorithm. We first

review related previous work, next we present the key idea behind
the algorithm and derive its general form, and finally formulate it
as a convex optimization problem.

3.1 Previous work
It was shown by Mansour et al. [2009a] and Cortes and Mohri

[2011] (see also the dA-distance [Ben-David et al., 2006] in the
case of binary loss for classification) that a key measure of the dif-
ference of two distributions in the context of adaptation is the dis-
crepancy. Given a hypothesis setH , the discrepancy, disc, between
two distributions P and Q over X is defined by:

disc(P,Q) = max
h,h′∈H

∣∣LP (h′, h)− LQ(h′, h)
∣∣. (1)

The discrepancy has several advantages over a measure such as the
L1 or total variation distance [Cortes and Mohri, 2013]: it is a finer
measure than the L1 distance, it takes into account the loss function
and the hypothesis set, it can be accurately estimated from finite
samples for common hypothesis sets such as kernel-based ones, it
is symmetric and verifies the triangle inequality. It further defines a
distance in the case of an Lp loss used with a universal kernel such
as a Gaussian kernel.

Several generalization bounds for adaptation in terms of the dis-
crepancy have been given in the past [Mansour et al., 2009a, Cortes
and Mohri, 2011, 2013], including pointwise guarantees in the case
of kernel-based regularized empirical risk minimization, which in-
cludes algorithms such as support vector machines (SVM), kernel
ridge regression, or support vector regression (SVR). The bounds



given in [Mansour et al., 2009a] motivated a discrepancy minimiza-
tion algorithm. Given a positive semi-definite (PSD) kernel K, the
hypothesis returned by the algorithm is the solution of the follow-
ing optimization problem

min
h∈H

λ‖h‖2K + Lqmin (h, fQ), (2)

where ‖ · ‖K is the norm on the reproducing Hilbert space H in-
duced by the kernel K and qmin is a distribution over the support of
Q̂ such that qmin = argminq∈Q disc(q, P̂ ), where Q is the set of
all distributions defined over the support of Q̂. Using qmin instead of
Q̂ amounts to reweighting the loss on the training samples to min-
imize the discrepancy between the empirical distribution and P̂ .
Besides its theoretical motivation, this algorithm has been shown
to outperform several other algorithms in a series of experiments
carried out by Cortes and Mohri [2013].

Observe that, by definition, the objective function optimized by
qmin corresponds to a maximum over all pairs of hypotheses. But,
the maximizing pair of hypotheses may not be among the candi-
dates considered by the learning algorithm or available to it. Thus,
a learning algorithm based on discrepancy minimization tends to
be too conservative.

3.2 Main idea
Assume as in several previous studies [Mansour et al., 2009a,

Cortes and Mohri, 2013] that the standard algorithm selected by the
learner is regularized risk minimization over the Hilbert space H in-
duced by a PSD kernelK. This covers a broad family of algorithms
frequently used in applications. Ideally, that is in the absence of a
domain adaptation problem, the learner would have access to the
labels of the points in T . Therefore, he would return the hypothe-
sis h∗ solution of the optimization problem minh∈H F (h), where
F is the convex function defined for all h ∈ H by

F (h) = λ‖h‖2K + LP̂ (h, fP ), (3)

where λ ≥ 0 is a regularization parameter. Thus, h∗ can be viewed
as the ideal hypothesis.

In view of that, we can formulate our objective, in the presence
of a domain adaptation problem, as that of finding a hypothesis
h whose loss L̂P (h, fP ) with respect to the target domain is as
close as possible to L̂P (h∗, fP ). To do so, we will seek in fact a
hypothesis h that is as close as possible to h∗, which would imply
the closeness of the losses with respect to the target domains. We do
not have access to fP and can only access the labels of the training
sample S. Thus, we must resort to using in our objective function,
instead of LP̂ (h, fP ), a reweighted empirical loss over the training
sample S. The main idea behind our algorithm is to define, for any
h ∈ H, a reweighting function Qh : SX = {x1, . . . , xm} → R
such that the objective function G defined for all h ∈ H by

G(h) = λ‖h‖2K + LQh(h, fQ) (4)

is uniformly close toF , thereby resulting in close minimizers. Since
the first term of (3) and (4) coincide, the idea consists equivalently
of seeking Qh such that LQh(h, fQ) and LP̂ (h, fP ) be as close
as possible. Observe that this departs from the standard reweight-
ing methods: instead of reweighting the training sample with some
fixed set of weights, we allow the weights to vary as a function
of the hypothesis h. Note that we have further relaxed the condi-
tion commonly adopted by reweighting techniques that the weights
must be non-negative and sum to one. Allowing the weights to be
in a richer space than the space of probabilities over SX could raise
over-fitting concerns but, we will later see that this in fact does not
affect our learning guarantees and leads to good empirical results.

Of course, searching for Qh to directly minimize |LQh(h, fQ)−
LP̂ (h, fP )| is in general not possible since we do not have access
to fP , but it is instructive to consider the imaginary case where the
average loss LP̂ (h, fP ) is known to us for any h ∈ H. Qh could
then be determined via

Qh = argmin
q∈F(SX,R)

|Lq(h, fQ)− LP̂ (h, fP )|, (5)

where F(SX,R) is the set of real-valued functions defined over
SX . For any h, we can in fact select Qh such that LQh(h, fQ) =
LP̂ (h, fP ) since Lq(h, fQ) is a linear function of q and thus the
optimization problem (5) reduces to solving a simple linear equa-
tion. With this choice of Qh, the objective functions F and G
coincide and by minimizing G we can recover the ideal solution
h∗. Note that, in general, the DM algorithm could not recover that
ideal solution. Even a finer discrepancy minimization algorithm
exploiting the knowledge of LP̂ (h, fP ) for all h and seeking a dis-
tribution q′min minimizing maxh∈H |Lq(h, fQ)−LP̂ (h, fP )| could
not, in general, recover the ideal solution since we could not have
Lq′min

(h, fQ) = LP̂ (h, fP ) for all h ∈ H.
Of course, in practice, LP̂ (h, fP ) is not available since the sam-

ple T is unlabeled. Instead, we will consider a non-empty convex
set of candidate hypotheses H ′′ ⊆ H that could contain a good
approximation of fP . UsingH ′′ as a set of surrogate labeling func-
tions leads to the following definition of Qh instead of (5):

Qh = argmin
q∈F(SX,R)

max
h′′∈H′′

|Lq(h, fQ)− LP̂ (h, h′′)|. (6)

The choice of the subset H ′′ is of course key. Our choice will be
based on the theoretical analysis of Section 4. Nevertheless, in the
following section, we present the formulation of the optimization
problem for an arbitrary choice of the convex subset H ′′.

3.3 Formulation of optimization problem
The following result provides a more explicit expression for
LQh(h, fQ) leading to a simpler formulation of the optimization
problem defining our algorithm.

Proposition 1. For any h ∈ H, let Qh be defined by (6). Then, the
following identity holds for any h ∈ H:

LQh(h, fQ) =
1

2

(
max
h′′∈H′′

LP̂ (h, h′′) + min
h′′∈H′′

LP̂ (h, h′′)
)
.

Proof. For any h ∈ H, the equation Lq(h, fQ) = l with l ∈ R
admits a solution q ∈ F(SX,R). Thus, for any h ∈ H, we can
write

LQh(h, fQ)

= argmin
l∈{Lq(h,fQ) : q∈F(SX,R)}

max
h′′∈H′′

|l − LP̂ (h, h′′)|

= argmin
l∈R

max
h′′∈H′′

|l − LP̂ (h, h′′)|

= argmin
l∈R

max
h′′∈H′′

max
{
LP̂ (h, h′′)− l, l − LP̂ (h, h′′)

}
= argmin

l∈R
max

{
max
h′′∈H′′

LP̂ (h, h′′)− l, l − min
h′′∈H′′

LP̂ (h, h′′)
}

=
1

2

(
max
h′′∈H′′

LP̂ (h, h′′) + min
h′′∈H′′

LP̂ (h, h′′)
)
,

since the minimizing l is obtained for max
h′′∈H′′

LP̂ (h, h′′) − l= l −

min
h′′∈H′′

LP̂ (h, h′′).



In view of this proposition, with our choice of Qh based on (6),
the objective function G of our algorithm (4) can be equivalently
written for all h ∈ H as follows:

G(h) = λ‖h‖2K+
1

2

[
max
h′′∈H′′

LP̂ (h, h′′)+ min
h′′∈H′′

LP̂ (h, h′′)
]
. (7)

The function h 7→ maxh′′∈H′′ LP̂ (h, h′′) is convex as a pointwise
maximum of the convex functions h 7→ LP̂ (h, h′′). Since the loss
function L is jointly convex, so is LP̂ , therefore, the function de-
rived by partial minimization over a non-empty convex set H ′′ for
one of the arguments, h 7→ minh′′∈H′′ LP̂ (h, h′′), also defines
a convex function [Boyd and Vandenberghe, 2004]. Thus, G is a
convex function as a sum of convex functions.

4. LEARNING GUARANTEES
Our description of the algorithm leaves the choice of the hypoth-

esis set H ′′ unspecified. Our choice will be guided by the the-
oretical analysis of this section. This will be carried out in two
stages. First, we prove a pointwise loss guarantee and a gener-
alization bound for an arbitrary choice of H ′′. Next, we seek to
minimize that bound by choosing H ′′ out of a family of hypoth-
esis sets H parametrized by a single parameter r. Our choice of
H is motivated by the proof of existence of parameter values r for
which the bound we present is more favorable than that of the DM
algorithm.

As in previous work, we assume that the loss function L is µ-
admissible: there exists µ > 0 such that

|L(h(x), y)− L(h′(x), y)| ≤ µ|h(x)− h′(x)| (8)

holds for all (x, y) ∈ X × Y and h′, h ∈ H , a condition that
is somewhat weaker than µ-Lipschitzness with respect to the first
argument. The Lp losses commonly used in regression, p ≥ 1,
verify this condition [Cortes and Mohri, 2013].

4.1 Generalization bounds
The existing pointwise guarantees for the DM algorithm are di-

rectly derived from a bound on the norm of the difference of the
ideal function h∗ and the hypothesis obtained after reweighting the
sample losses using a distribution q. The bound is expressed in
terms of the discrepancy and a term ηH(fP , fQ) measuring the
difference of the source and target labeling functions defined by

ηH(fP , fQ) = min
h0∈H

(
max

x∈supp(P̂ )
|fP (x)− h0(x)|

+ max
x∈supp(Q̂)

|fQ(x)− h0(x)|
)
,

and is given by the following proposition.

Theorem 1 ([Cortes and Mohri, 2013]). Let q be an arbitrary dis-
tribution over SX and let h∗ and hq be the hypotheses minimizing
λ‖h‖2K +LP̂ (h, fP ) and λ‖h‖2K +Lq(h, fQ) respectively. Then,
the following inequality holds:

λ‖h∗ − hq‖2K ≤ µ ηH(fP , fQ) + disc(P̂ , q). (9)

The DM algorithm is defined by selecting the distribution q min-
imizing the right-hand side of the bound (9), that is disc(P̂ , q).

We will show a result of the same nature for our hypothesis-
dependent reweighting Qh by showing that its choice also coin-
cides with that of minimizing an upper bound on λ‖h∗ − h′‖2K .
Let A(H) be the set of all functions U : h 7→ Uh mapping H to
F(SX ,R) such that for all h ∈ H , h 7→ LUh(h, fQ) is a convex
function. A(H) contains all constant functions U such that Uh = q

for all h ∈ H , where q is a distribution over SX . By Proposition 1,
A(H) also includes the function Q : h → Qh used by our algo-
rithm.

Definition 1 (generalized discrepancy). For any U ∈ A(H), we
define the generalized discrepancy between P̂ and U as the quantity
DISC(P̂ ,U) given by

DISC(P̂ ,U) = max
h∈H,h′′∈H′′

|LP̂ (h, h′′)− LUh(h, fQ)|. (10)

We also denote by dP̂∞(fP , H
′′) the following distance of fP to

H ′′ over the support of P̂ :

dP̂∞(fP , H
′′) = min

h0∈H′′
max

x∈supp(P̂ )
|h0(x)− fP (x)|. (11)

The following theorem gives an upper bound on the norm of the
difference of the minimizing hypotheses in terms of the generalized
discrepancy and dP̂∞(fP , H

′′).

Theorem 2. Let U be an arbitrary element of A(H) and let h∗

and hU be the hypotheses minimizing λ‖h‖2K + LP̂ (h, fP ) and
λ‖h‖2K + LUh(h, fQ) respectively. Then, the following inequality
holds for any convex set H ′′ ⊆ H:

λ‖h∗ − hU‖2K ≤ µdP̂∞(fP , H
′′) + DISC(P̂ ,U). (12)

Proof. Fix U ∈ A(H) and let GP̂ denote h 7→ LP̂ (h, fP ) and
GU the function h 7→ LUh(h, fQ). Since h 7→ λ‖h‖2K + GP̂ (h)
is convex and differentiable and since h∗ is its minimizer, the gra-
dient is zero at h∗, that is 2λh∗ = −∇GP̂ (h∗). Similarly, since
h 7→ λ‖h‖2K +GU(h) is convex, it admits a sub-differential at any
h ∈ H. Since hU is a minimizer, its sub-differential at hU must
contain 0. Thus, there exists a sub-gradient g0 ∈ ∂GU(hU) such
that 2λhU = −g0, where ∂GU(hU) denotes the sub-differential of
GU at hU. Using these two equalities we can write

2λ‖h∗ − hU‖2K = 〈h∗ − hU, g0 −∇GP̂ (h∗)〉
= 〈g0, h

∗ − hU〉 − 〈∇GP̂ (h∗), h∗ − hU〉
≤ GU(h∗)−GU(hU) +GP̂ (hU)−GP̂ (h∗)

= LP̂ (hU, fP )− LUh(hU, fQ)

+ LUh(h∗, fQ)− LP̂ (h∗, fP )

≤ 2 max
h∈H
|LP̂ (h, fP )− LUh(h, fQ)|,

where we used for the first inequality the convexity of GU com-
bined with the sub-gradient property of g0 ∈ ∂GU(hU), and the
convexity of GP̂ . For any h ∈ H , using the µ-admissibility of
the loss, we can upper bound the operand of the max operator as
follows:

|LP̂ (h, fP )− LUh(h, fQ)|
≤ |LP̂ (h, fP )− LP̂ (h, h0)|+ |LP̂ (h, h0)− LUh(h, fQ)|
≤ µ E

x∼P̂
|fP (x)− h0(x)|+ max

h′′∈H′′
|LP̂ (h, h′′)− LUh(h, fQ)|

≤ µ max
x∈supp(P̂ )

|fP (x)− h0(x)|+max
h′′∈H′′

|LP̂ (h, h′′)− LUh(h, fQ)|,

where h0 is an arbitrary element of H ′′. Since this bound holds for
all h0 ∈ H ′′, it follows immediately that

λ‖h∗ − hU‖2K ≤ µ min
h0∈H′′

max
x∈supp(P̂ )

|fP (x)− h0(x)|

+ max
h∈H

max
h′′∈H′′

|LP̂ (h, h′′)− LUh(h, fQ)|,

which concludes the proof.



The following pointwise guarantee for the solution hQ returned
by our algorithm is a direct corollary.

Corollary 1. Let h∗ be a minimizer of λ‖h‖2K + LP̂ (h, fP ) and
hQ a minimizer of λ‖h‖2K+LQh(h, fQ). Then, the following holds
for any convex set H ′′ ⊆ H and for all (x, y) ∈ X × Y:

|L(hQ(x), y)− L(h∗(x), y)|

≤ µR

√
µdP̂∞(fP , H ′′) + DISC(P̂ ,Q)

λ
,

where R2 = supx∈X K(x, x).

Proof. By the µ-admissibility of the loss, the reproducing property
of H, and the Cauchy-Schwarz inequality, the following holds for
all x ∈ X and y ∈ Y:

|L(hQ(x), y)− L(h∗(x), y)| ≤ µ|h′(x)− h∗(x)|

= |〈h′ − h∗,K(x, ·)〉K | ≤ ‖h′ − h∗‖K
√
K(x, x)

≤ R‖h′ − h∗‖K .

Upper bounding ‖h′ − h∗‖K using Theorem 2 and using the fact
that Q : h → Qh is a minimizer of the bound over all choices of
U ∈ A(H) yields the desired result.

The pointwise loss guarantee just presented can be directly used
to bound the difference of the expected loss of h∗ and hQ in terms
of the same upper bounds, e.g.,

LP (hQ, fP )

≤ LP (h∗, fP )|+ µR

√
µdP̂∞(fP , H ′′) + DISC(P̂ ,Q)

λ
. (13)

4.2 Choice of H ′′
In this section, we assume that L is the Lp loss for some p ≥ 1.

The results of the previous section suggest choosing H ′′ to mini-
mize the generalization bound (13). We will seek to do precisely
that by selecting H ′′ out of the family H defined by

H = {B(r) : r ≥ 0},

where B(r) = {h′′ ∈ H|Lq(h
′′, fQ) ≤ rp}. Thus, H is the

set of all balls in H centered in fQ defined in terms of Lq, which
is parametrized only by the radius r ≥ 0. We provide a strong
justification for this choice of H by proving that it contains balls
H ′′ that lead to a generalization bound more favorable than that
of the DM algorithm. Our algorithm is defined by selecting the
radius r minimizing the generalization bound (13). This can be
done by using as validation set a small amount of labeled data from
the target domain, which is typically available in practice.

The following theorem proves the existence of a ball H ′′ ∈ H

for which (12) is a uniformly tighter upper bound than (9). The
result is expressed in terms of the local discrepancy defined by:

discH′′(P̂ , q) = max
h∈H,h′′∈H′′

|LP̂ (h, h′′)− Lq(h, h
′′)|,

which is a finer measure than the standard discrepancy for which
the max is defined over a pair of hypothesis both in H ⊇ H ′′.

Theorem 3. There exists H ′′ ∈ H such that the following holds:

µdP̂∞(fP , H
′′) + max

h∈H,h′′∈H′′
|LP̂ (h, h′′)− Lq(h, fQ)|

≤ µ ηH(fP , fQ) + discH′′(P̂ , q).

Proof. Let h∗0 be the minimizer in the definition of ηH(fP , fQ):

h∗0 = argmin
h0∈H

(
max

x∈supp(P̂ )
|fP (x)− h0(x)|

+ max
x∈supp(Q̂)

|fQ(x)− h0(x)|
)
,

and let r = max
x∈supp(Q̂)

|fQ(x)−h∗0(x)|. Let q be a distribution over

SX and choose H ′′ ∈ H as H ′′ = {h′′ ∈ H|Lq(h
′′, fQ) ≤ rp}.

Then, h∗0 is in H ′′ since

Lq(h
∗
0, fQ) = E

x∼q

[
|h∗0(x)− fQ(x)|p

]
≤ max
x∈supp(Q̂)

|h∗0(x)− fQ(x)|p = rp.

For theLp loss, it is not hard to show [Cortes et al., 2014][Lemma 14]
that for all h, h′′ ∈ H , |Lq(h, h

′′)−Lq(h, fQ)| ≤ µ[Lq(h
′′, fQ)]

1
p .

In view of this inequality, we can write:

max
h∈H,h′′∈H′′

|LP̂ (h, h′′)− Lq(h, fQ)|

≤ max
h∈H,h′′∈H′′

|LP̂ (h, h′′)− Lq(h, h
′′)|

+ max
h∈H,h′′∈H′′

|Lq(h, h
′′)− Lq(h, fQ)|

≤ discH′′(P̂ , q) + max
h′′∈H′′

µ[Lq(h
′′, fQ)]

1
p

≤ discH′′(P̂ , q) + µr

= discH′′(P̂ , q) + µ max
x∈supp(Q̂)

|fQ(x)− h∗0(x)|.

Using this inequality and the fact that h∗0 ∈ H ′′, we can write

µdP̂∞(fP , H
′′) + max

h∈H,h′′∈H′′
|LP̂ (h, h′′)− Lq(h, fQ)|

≤ µ min
h0∈H′′

max
x∈supp(P̂ )

|fP (x)− h0(x)|+ discH′′(P̂ , q)

+ µ max
x∈supp(Q̂)

|fQ(x)− h∗0(x)|

≤ µ
(

max
x∈supp(P̂ )

|fP (x)− h∗0(x)|+ max
x∈supp(Q̂)

|fQ(x)− h∗0(x)|
)

+ discH′′(P̂ , q)

= µ min
h0∈H

(
max

x∈supp(P̂ )
|fP (x)− h0(x)|

+ max
x∈supp(Q̂)

|fQ(x)− h0(x)|
)

+ discH′′(P̂ , q)

= µ ηH(fP , fQ) + discH′′(P̂ , q).

which concludes the proof.

The theorem shows that for that particular choice of H ′′, for any
constant function Uh ∈ A(H) with Uh = q for some fixed distri-
bution q over SX , the right-hand side of the bound of Theorem 1 is
lower bounded by the right-hand side of the bound of Theorem 2,
since the local discrepancy is a finer quantity than the discrepancy:
discH′′(P̂ , q) ≤ disc(P̂ , q). Thus, our algorithm benefits from a
more favorable guarantee than the DM algorithm for that particu-
lar choice of H ′′, especially since, our choice of Q is based on the
minimization over all elements in A(H) and not just the subset of
constant functions mapping to a distribution. The following result
readily follows from Theorem 3.

Corollary 2. Let h∗ be a minimizer of λ‖h‖2K+LP̂ (h, fP ) and hQ

a minimizer of λ‖h‖2K +LQh(h, fQ). Let supx∈X K(x, x) = R2.
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Figure 1: Illustration of the sampling process on the set H ′′.

Then, there exists a choice of H ′′ ∈ H for which the following
inequality holds uniformly over over (x, y) ∈ X × Y:

|L(hQ(x), y)− L(h∗(x), y)|

≤ µR

√
µηH(fP , fQ)+discH′′(P̂ , qmin)

λ
.

We conclude this section by briefly discussing the effect of the
sample sizes on our guarantees. Clearly, a larger source sample,
that is a larger supp(Q̂), results in a smaller minimal discrepancy
discH′′(P̂ , q) = minq∈supp(Q̂) discH′′(P̂ , q), thereby leading to
a more beneficial pointwise guarantee, in view of Corollary 2. A
larger target sample, improves the guarantee on the expected loss
E[L(h∗(x), y)] via standard supervised learning bounds, which, by
Corollary 2 further improves the guarantee on the expected loss
E[L(hQ(x), y)].

5. OPTIMIZATION SOLUTION
As shown in Section 3.3, the function G defining our algorithm

is convex and the problem of minimizing the expression (7) is a
convex optimization problem. Nevertheless, the problem is not
straightforward to solve, in particular because evaluating the term
maxh′′∈H′′ LP̂ (h, h′′) that it contains requires solving a non-con-
vex optimization problem. Here, we present an approximation to
this problem based on a QP that can be efficiently solved. We have
also derived an exact but less efficient solution by giving a semi-
definite programming (SDP) formulation for the problem. Due to
space limitations, we do not include that solution here, but it can be
found in the full version of this paper [Cortes et al., 2014].

5.1 QP formulation
The analysis presented in this section holds for an arbitrary con-

vex setH ′′. First, notice that the problem of minimizingG (expres-
sion (7)) is related to the minimum enclosing ball (MEB) problem.
For a set D ⊆ Rd, the MEB problem is defined as follows:

min
u∈Rd

max
v∈D
‖u− v‖2.

Omitting the regularization and the min term from (7) leads to a
problem similar to the MEB. Thus, we could benefit from the ex-
tensive literature and algorithmic study available for this problem
[Welzl, 1991, Kumar et al., 2003, Schőnherr, 2002, Fischer et al.,
2003, Yildirim, 2008]. However, to the best of our knowledge,
there is currently no solution available to this problem in the case of
an infinite set D, as in the case of our problem. Instead, we present
a solution for solving an approximation of (7) based on sampling.

Let {h1, . . . , hk} be a set of hypotheses in ∂H ′′ and let C =
C(h1, . . . , hk) denote their convex hull. The following is the sam-
pling-based approximation of (7) that we consider:

min
h∈H

λ‖h‖2K +
1

2
max

i=1,...,k
LP̂ (h, hi) +

1

2
min
h′∈C
LP̂ (h, h′). (14)

Proposition 2. Let Y = (Yij) ∈ Rn×k be the matrix defined by
Yij = n−1/2hj(x

′
i) and y′ = (y′1, . . . , y

′
k)> ∈ Rk the vector

defined by y′i = n−1∑n
j=1 hi(x

′
j)

2. Then, the dual problem of
(14) is given by

max
α,γ,β

−
(
Yα+

γ

2

)>
Kt

(
λI +

1

2
Kt

)−1(
Yα+

γ

2

)
(15)

− 1

2
γ>KtK

†
tγ +α>y′ − β

s.t. 1>α =
1

2
, 1β ≥ −Y>γ, α ≥ 0,

where 1 is the vector in Rk with all components equal to 1. Fur-
thermore, the solution h of (14) can be recovered from a solu-
tion (α,γ, β) of (15) by ∀x, h(x) =

∑n
i=1 aiK(xi, x), where

a =
(
λI + 1

2
Kt)

−1(Yα+ 1
2
γ).

The proof of the proposition is given in Appendix A. The result
shows that, given a finite sample h1, . . . , hk on the boundary of
H ′′, (14) is in fact equivalent to a standard QP and therefore can be
efficiently with one of the many off-the-shelf QP algorithms.

We now describe the process of sampling from the boundary of
H ′′, a necessary step for defining problem (14). Let H ′′ := {h′′ ∈
H | gi(h′′) ≤ 0} be a compact set, where the functions gi are
continuous and convex. For instance, we can consider a family of
sets H ′′p = {h′′ ∈ H| |

∑m
i=1 qmin(xi)|h(xi)− yi|p ≤ rp}.

Assume h0 is given, where gi(h0) < 0. Our sampling process is
illustrated by Figure 1 and works as follows: pick a random direc-
tion ĥ and define λi to be the minimal solution to the system

(λ ≥ 0) ∧ (gi(h0 + λĥ) = 0).

Set λi = ∞ if no solution is found and define λ∗ = mini λi. The
compactness ofH ′′ guarantees λ∗ <∞. Moreover, the hypothesis
h = h0 + λ∗ĥ satisfies h ∈ H ′′ and gj(h) = 0 for j such that
λj = λ∗. The latter is straightforward, to verify the former, assume
gi(h0 +λ∗ĥ) > 0 for some i. The continuity of gi would imply the
existence of λ′i with 0 < λ′i < λ∗ ≤ λi such that gi(h0+λ′iĥ) = 0

contradicting the choice of λi. Thus, gi(h0 + λ∗ĥ) ≤ 0 must hold
for all i.

Since a point h0 with gi(h0) < 0 can be obtained by solving a
convex program and solving the equations defining λi is, in gen-
eral, simple, the process described provides an efficient way of
sampling points from the convex set H ′′.

In the next section, we report the results of experiments with our
algorithm in several tasks in which it outperforms the DM algo-
rithm.

5.2 Implementation for the L2 loss
We now describe how to fully implement our algorithm for the

case where L is equal to the L2 loss. In view of the results of
Section 4, we let H ′′ = {h′′|‖h′′‖K ≤ Λ ∧ Lq(h

′′, fQ) ≤ r2}.
We begin by describing the necessary steps to find a point h0 ∈
H ′′. Let hΛ be such that ‖hΛ‖K = Λ and λr ∈ R+ be such that
the solution hr to the optimization problem

min
h∈H

λr‖h‖2 + Lq(h, fQ),

satisfies Lq(hr, fQ) = r2. It is easy to verify that the existence of
λr is guaranteed for minh∈H Lq(h, fQ) ≤ r2 ≤

∑m
i=1 q(xi)y

2
i .

It is now immediate that the point h0 = 1
2
(hr + hΛ) is in the in-

terior of H ′′. Of course, finding the value of λr with the desired
properties may not be easy. However, since r is chosen through
cross-validation, we do not need to find λr as a function of r. In-
stead, we can simply select λr through cross-validation too.
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Figure 2: Linear hypotheses obtained by training on the source
(green circles), target (red triangles) and by using the DM (solid
blue) and GDM algorithms (dashed blue).

In order to complete the sampling process, we must have an ef-
ficient way of selecting a random direction ĥ. If H ⊂ Rd is a set
of linear hypotheses, a direction ĥ can be sampled uniformly by
letting ĥ = ξ

‖ξ‖ , where ξ is a standard Gaussian random variable
in Rd. If H is a subset of a RKHS, by the representer theorem,
we may only consider hypotheses h =

∑m
i=1 αiK(xi, ·). There-

fore, we can sample a direction ĥ by letting ĥ =
∑m
i=1 α

′
iK(xi, ·)

where the vector α′ = (α′1, . . . , α
′
m) is sampled uniformly from

the unit sphere in Rm. A full implementation of our algorithm then
consists of the following steps:
• compute the distribution qmin = argminq∈Q disc(q, P̂ ). This

can be done by using the smooth approximation algorithm of
Cortes and Mohri [2013];

• sample points from the set H ′′ using the sampling process
described above;

• solve the QP introduced in Section 5.1

6. EXPERIMENTS
In this section, we report the results of extensive comparisons be-

tween GDM and several other adaptation algorithms, which show
favorable results for our algorithm.

6.1 Synthetic data set
To give an empirical comparison of the GDM and DM algo-

rithms, we adopted the following setup inspired by Huang et al.
[2006]: we sampled source distribution examples from the uniform
distribution over the interval [.2, 1] and target samples from the uni-
form distribution over [0, .25]. The labels were given by the map
x 7→ −x+x3+ξ where ξ is a Gaussian random variable with mean
0 and standard deviation 0.1 and our hypothesis set was chosen to
be that of linear functions.

Figure 2(b) shows the regression hypotheses obtained by training
the DM and GDM algorithms as well as those obtained by training
on the source and the target distributions. Notice how the GDM so-
lution approaches the ideal solution better than DM. These results
can be better explained by Figure 3 which plots the objective func-
tion minimized by each algorithm as a function of the slopew of the
linear function, the only variable of the hypothesis. Vertical lines
show the value of the minimizing hypothesis for each loss. Keeping
in mind that the regularization parameter λ used in ridge regression
corresponds to a Lagrange multiplier for the constraint w2 ≤ Λ2

for some Λ [Cortes and Mohri, 2013][Lemma 1], the hypothesis
set H = {w : |w| ≤ Λ} is shown at the bottom of this plot. The
shaded region represents the set H ′′ = H ∩ {h′′|Lqmin (h

′′) ≤ r}.
It is clear from this plot that DM helps approximate the target loss
function. Nevertheless, only GDM seems to uniformly approach it.

w

M
S
E

Figure 3: Objective functions associated with training on the
source distribution, training on the target distribution, as well
as the GDM and DM algorithms. The hypothesis set H and
surrogate hypothesis set H ′′ are shown at the bottom of the
plot.

This should come as no surprise since our algorithm was designed
precisely for this purpose.

6.2 Adaptation Data Sets
We now present the results of evaluating the performance of our

algorithm and comparing with several others. GDM is compared
to DM and to training on the source distribution. The following
algorithms were also used:

1. The KMM algorithm [Huang et al., 2006] reweights data sam-
ples to match empirical target and source means on the feature
space induced by Gaussian kernels. The hyper-parameters of
this algorithm were set to the recommended values of B =

1000 and ε =
√
m√
m−1

.
2. KLIEP [Sugiyama et al., 2007] minimizes the KL-divergence

between the source and target empirical distributions. Distri-
butions are modeled as a mixture of Gaussians. The band-
width of the kernel for both KLIEP and KMM was selected
from the set

{
σd : σ = 2−5, . . . , 1

}
via validation on the

test set, where d is the mean distance between points sampled
from the source domain.

3. FE [Daumé III, 2007]. This algorithm maps source and target
data to a common high-dimensional feature space where the
difference of the distributions is hoped to be smaller

We refrained from comparing against the two-stage algorithm of
Bickel et al. [2007], as it was already shown to perform similarly
to KMM and KLIEP [Cortes and Mohri, 2013].

The hypothesis set H was given by linear functions. The learn-
ing algorithm used for all tasks was ridge regression and the perfor-
mance evaluated by the mean squared error. We follow the setup
of Cortes and Mohri [2011]. For all adaptation algorithms, we se-
lected the parameter λ via 10-fold cross validation over the training
data for λ ∈ Λ = {2−10, . . . , 210}. The results of training on the
target distribution are presented for a parameter λ tuned via 10-fold
cross validation over the target data. We used the QP implementa-
tion of our algorithm with the sampling set H ′′ and the sampling
mechanism defined in Section 5.1. The parameter λr ∈ Λ was cho-
sen via cross-validation on a small amount of data from the target
distribution. To be complete, we also report the results of training
only on the small amount of target data.

To make a fair comparison, we allowed the use of the small
amount of labeled data to all other baselines. To do so, we sim-
ply added this data to the training set and ran the algorithms on the
extended source data.

Our first task is given by the 4 kin-8xy Delve data sets [Ras-
mussen et al., 1996]. These data sets are variations of the same
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Figure 4: (a) Normalized MSE performance for different adap-
tation algorithms when adapting from kin-8fh to the three
other kin-8xy domains. Small denotes training on small la-
beled target sample. (b) Relative error of DM over GDM as a
function of the ratio r

Λ
.

model: a realistic simulation of the forward dynamics of an 8-link
all-revolute robot arm. The task in all data sets consists of predict-
ing the distance of the end-effector from a target. Data sets dif-
fer by the degree of non-linearity (fairly linear, x=f, or non-linear,
x=n) and the amount of noise in the output (moderate, y=m, or high,
y=h). A sample of 200 points from each domain was used for train-
ing and 10 labeled points from the target distribution were used to
select H ′′. The experiment was carried out 10 times. The results
of testing on a sample of 400 points from the target domain are re-
ported in Figure 4(a). The bars represent the median performance
of each algorithm and error bars show the inter-quartile range. All
results were normalized in such a way that training on the source
had error constantly equal to 1. Notice that the performance of all
algorithms is comparable when adapting to kin8-fm since both
labeling functions are fairly linear, yet only GDM is able to signif-
icantly approach the performance on training on target for all three
tasks. In order to better understand the advantages of GDM over
DM we plot the relative error of DM against GDM as a function
of the ratio r/Λ in Figure 4(b). Notice that when the ratio r/Λ
is small, then both algorithms behave similarly which typically for
the adaptation task fh to fm. On the other hand, a better perfor-
mance of GDM can be obtained when the ratio is larger. This can
be interpreted as follows: a small ratio means that the size of H ′′ is
small and the hypothesis returned by GDM will be close to that of
DM, while for H ′′ large, GDM can find a better hypothesis.

For our next experiment, we considered the cross-domain sen-
timent analysis data set of Blitzer et al. [2007b]. This data set
consists of consumer reviews from 4 different domains: books,
kitchen, electronics and dvds. We used the top 1,000
unigrams and bigrams as features. For each pair of adaptation tasks
we sampled 700 points from the source distribution and 700 unla-
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Figure 5: (a) Normalized MSE for the sentiment adapta-
tion task from the electronics domain to all others. (b)
Normalized MSE of different algorithms adapting from the
caltech256 dataset to all other datasets.

beled points from the target. Only 50 labeled points from the target
distribution were used to tune r. The final evaluation was done
on a test set of 1,000 points. Figure 5(a) shows normalized MSE
of all algorithms when adapting from electronics to all other
domains.

Finally, we considered a key domain adaptation task in the com-
puter vision community [Tommasi et al., 2014] where the domains
correspond to 4 well known collections of images: bing, cal-
tech256, sun and imagenet. These data sets have been stan-
dardized so that they all share the same feature representation and
labeling function [Tommasi et al., 2014]. We used the data from
the first 5 shared classes and sampled 800 labeled points from the
source distribution and 800 unlabeled points from the target distri-
bution, as well as 50 labeled target points used as validation to de-
termine r. The results of testing on 1,000 points from the target do-
main are shown in Figure 5(b) where we trained on caltech256.
Due to space limitations, we were not able to present the results of
all possible adaptation tasks. They can be found in Cortes et al.
[2014]. The results of this section show that GDM was the only al-
gorithm that could consistently perform better than or on par with
the best algorithm.

7. CONCLUSION
We presented a new theoretically well-founded domain adap-

tation algorithm seeking to minimize a less conservative quantity
than the DM algorithm. We presented an SDP solution for the par-
ticular case of the L2 loss which can be solved in polynomial time.
Our empirical results show that our new algorithm is the only adap-
tation algorithm consistently achieving a performance close to that
of training on the target distribution.
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APPENDIX
A. QP FORMULATION
Proposition 2. Let Y = (Yij) ∈ Rn×k be the matrix defined by
Yij = n−1/2hj(x

′
i) and y′ = (y′1, . . . , y

′
k)> ∈ Rk the vector

defined by y′i = n−1∑n
j=1 hi(x

′
j)

2. Then, the dual problem of
(14) is given by

max
α,γ,β

−
(
Yα+

γ

2

)>
Kt

(
λI +

1

2
Kt

)−1(
Yα+

γ

2

)
− 1

2
γ>KtK

†
tγ +α>y′ − β (16)

s.t. 1>α =
1

2
, 1β ≥ −Y>γ, α ≥ 0,

where 1 is the vector in Rk with all components equal to 1. Fur-
thermore, the solution h of (14) can be recovered from a solu-
tion (α,γ, β) of (16) by ∀x, h(x) =

∑n
i=1 aiK(xi, x), where

a =
(
λI + 1

2
Kt)

−1(Yα+ 1
2
γ).

We will first prove a simplified version of the proposition for
the case of linear hypotheses, i.e. we can represent hypotheses in
H and elements of X as vectors w,x ∈ Rd respectively. Define
X′ = n−1/2(x′1, . . . ,x

′
n) to be the matrix whose columns are the

normalized sample points from the target distribution. Let also
{w1, . . . ,wk} be a sample taken from ∂H ′′ and define W :=
(w1, . . . ,wk) ∈ Rd×k. With this notation, problem (14) can be
rewritten as follows:

min
w∈Rd

λ‖w‖2 +
1

2
max

i=1,...,k
‖X′>(w −wi)‖2

+
1

2
min
w′∈C

‖X′>(w −w′)‖2. (17)

Lemma 1. The Lagrange dual of problem (17) is given by

max
α,γ,β

−
(
Yα+

γ

2

)>
X′>

(
λI +

X′X′>

2

)−1

X′
(
Y α+

γ

2

)
− 1

2
γ>X′>(X′X′>)†X′γ +α>y′ − β

s. t. 1>α =
1

2
1β ≥ −Y>γ α ≥ 0,

where Y = X′>W and y′i = ‖X′>wi‖2.

Proof. Using the change of variable u = w′ − w, we obtain the
following problem equivalent to (17):

min
w∈Rdu∈C−w

λ‖w‖2 +
1

2
‖X′>w‖2 +

1

2
‖X′>u‖2

+
1

2
max

i=1,...,k
‖X′>wi‖2 − 2w>i X′X′>w.

Making the constraints on u explicit and replacing the maximiza-
tion term with the variable r yield:

min
w,u,r,µ

λ‖w‖2 +
1

2
‖X′>w‖2 +

1

2
‖X′>u‖2 +

1

2
r

s. t. 1r ≥ y′ − 2Y>X′>w

1>µ = 1 µ ≥ 0 Wµ−w = u.

For α, δ ≥ 0, the Lagrangian of this problem is defined as

L(w,u,µ, r,α, β, δ,γ′)

= λ‖w‖2 +
1

2
‖X′>w‖2 +

1

2
‖X′>u‖2 +

1

2
r + β(1>µ− 1)

+α>(y′ − 2(X′Y)>w − 1r)− δ>µ+ γ′>(Wµ−w − u).

Minimizing with respect to the primal variables yields the follow-
ing KKT conditions:

1>α =
1

2
1β = δ −W>γ′. (18)

X′X′>u = γ′ 2

(
λI +

X′X′>

2

)
w = 2(X′Y )α+ γ′

(19)

Condition (18) implies that the terms involving r and µ will van-
ish from the Lagrangian. Furthermore, the first equation in (19)
implies that any feasible γ′ must satisfy γ′ = X′γ for some
γ ∈ Rn. Finally, it is immediate that γ′>u = u>X′X′>u and
2w>

(
λI + X′X′>

2

)
w = 2α>(X′Y)>w + γ′>w. Thus, at the

optimal point, the Lagrangian becomes

−w>
(
λI +

1

2
X′X′>

)
w − 1

2
u>X′X′>u +α>y′ − β

s. t. 1>α =
1

2
1β = δ −W>γ′ α ≥ 0 ∧ δ ≥ 0.

The positivity of δ implies that 1β ≥ −W>γ′. Solving for w and
u on (19) and applying the change of variable X′γ = γ′ we obtain
the final expression for the dual problem:

max
α,γ,β

−
(
Yα+

γ

2

)>
X′>

(
λI +

X′X′>

2

)−1

X′
(
Y α+

γ

2

)
− 1

2
γ>X′>(X′X′>)†X′γ +α>y′ − β

s. t. 1>α =
1

2
1β ≥ −Y>γ α ≥ 0,

where we have used the fact that Y>γ = WX′>γ to simplify
the constraints. Notice also that we can recover the solution w of
problem (17) as w = (λI + 1

2
X′>X′)−1X′(Yα+ 1

2
γ)

Using the matrix identities X′(λI+X′>X′)−1 = (λI+X′X′>)X′

and X′>X′(X′>X′)† = X′>(X′X′>)†X′, the proof of Proposi-
tion 2 is now immediate.

Proposition 2. We can rewrite the dual objective of the previous
lemma in terms of the Gram matrix X′>X′ alone as follows:

max
α,γ,β

−
(
Yα+

γ

2

)>
X′>X′

(
λI +

X′>X′

2

)−1(
Y α+

γ

2

)
− 1

2
γ>X′>X′(X′>X′)†γ +α>y′ − β

s. t. 1>α =
1

2
1β ≥ −Y>γ α ≥ 0.

By replacing X′>X′ by the more general kernel matrix Kt (which
corresponds to the Gram matrix in the feature space) we obtain
the desired expression for the dual. Additionally, the same matrix
identities applied to condition (19) imply that the optimal hypoth-
esis h is given by h(x) =

∑n
i=1 aiK(x′i, x) where a = (λI +

1
2
Kt)

−1(Yα+ γ
2

).


