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Abstract
Cross-entropy is a widely used loss function in
applications. It coincides with the logistic loss
applied to the outputs of a neural network, when
the softmax is used. But, what guarantees can
we rely on when using cross-entropy as a surro-
gate loss? We present a theoretical analysis of a
broad family of loss functions, comp-sum losses,
that includes cross-entropy (or logistic loss), gen-
eralized cross-entropy, the mean absolute error
and other cross-entropy-like loss functions. We
give the first H-consistency bounds for these loss
functions. These are non-asymptotic guarantees
that upper bound the zero-one loss estimation er-
ror in terms of the estimation error of a surrogate
loss, for the specific hypothesis set H used. We
further show that our bounds are tight. These
bounds depend on quantities called minimizabil-
ity gaps. To make them more explicit, we give
a specific analysis of these gaps for comp-sum
losses. We also introduce a new family of loss
functions, smooth adversarial comp-sum losses,
that are derived from their comp-sum counter-
parts by adding in a related smooth term. We
show that these loss functions are beneficial in the
adversarial setting by proving that they admit H-
consistency bounds. This leads to new adversarial
robustness algorithms that consist of minimizing
a regularized smooth adversarial comp-sum loss.
While our main purpose is a theoretical analysis,
we also present an extensive empirical analysis
comparing comp-sum losses. We further report
the results of a series of experiments demonstrat-
ing that our adversarial robustness algorithms out-
perform the current state-of-the-art, while also
achieving a superior non-adversarial accuracy.
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1. Introduction
Most current learning algorithms rely on minimizing the
cross-entropy loss to achieve a good performance in a clas-
sification task. This is because directly minimizing the zero-
one classification loss is computationally hard. But, what
guarantees can we benefit from when using cross-entropy
as a surrogate loss?

Cross-entropy coincides with the (multinomial) logistic loss
applied to the outputs of a neural network, when the soft-
max is used. It is known that the logistic loss is Bayes
consistent (Zhang, 2004a). Thus, asymptotically, a nearly
optimal minimizer of the logistic loss over the family of
all measurable functions is also a nearly optimal optimizer
of the zero-one classification loss. However, this does not
supply any information about learning with a typically re-
stricted hypothesis set, which of course would not contain
all measurable functions. It also provides no guarantee for
approximate minimizers (non-asymptotic guarantee) since
convergence could be arbitrarily slow. What non-asymptotic
guarantees can we rely on when minimizing the logistic loss
with a restricted hypothesis set, such as a family of neural
networks?

Recent work by Awasthi, Mao, Mohri, and Zhong (2022b;a)
introduced the notion of H-consistency bounds. These are
upper bounds on the zero-one estimation error of any predic-
tor in a hypothesis set H in terms of its surrogate loss estima-
tion error. Such guarantees are thus both non-asymptotic and
hypothesis set-specific and therefore more informative than
Bayes consistency guarantees (Zhang, 2004a; Bartlett et al.,
2006; Steinwart, 2007; Tewari & Bartlett, 2007). For multi-
class classification, the authors derived such guarantees
for the so-called sum-losses, such as the sum-exponential
loss function of Weston & Watkins (1998), and constrained
losses, such as the loss function of Lee et al. (2004), where
the scores (logits) must sum to zero. To the best of our
knowledge, no such guarantee has been given for the more
widely used logistic loss (or cross-entropy).

This paper presents the first H-consistency bounds for the
logistic loss, which can be used to derive directly guaran-
tees for current algorithms used in the machine learning
community. More generally, we will consider a broader
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family of loss functions that we refer to as comp-sum losses,
that is loss functions obtained by composition of a concave
function, such as logarithm in the case of the logistic loss,
with a sum of functions of differences of score, such as the
negative exponential. We prove H-consistency bounds for
a wide family of comp-sum losses, which includes as spe-
cial cases the logistic loss (Verhulst, 1838; 1845; Berkson,
1944; 1951), the generalized cross-entropy loss (Zhang &
Sabuncu, 2018), and the mean absolute error loss (Ghosh
et al., 2017). We further show that our bounds are tight and
thus cannot be improved.

H-consistency bounds are expressed in terms of a quantity
called minimizability gap, which only depends on the loss
function and the hypothesis set H used. It is the difference
of the best-in class expected loss and the expected pointwise
infimum of the loss. For the loss functions we consider, the
minimizability gap vanishes when H is the full family of
measurable functions. However, in general, the gap is non-
zero and plays an important role, depending on the property
of the loss function and the hypothesis set. Thus, to better
understand H-consistency bounds for comp-sum losses, we
specifically analyze their minimizability gaps, which we use
to compare their guarantees.

A recent challenge in the application of neural networks
is their robustness to imperceptible perturbations (Szegedy
et al., 2013). While neural networks trained on large datasets
often achieve a remarkable performance (Sutskever et al.,
2014; Krizhevsky et al., 2012), their accuracy remains sub-
stantially lower in the presence of such perturbations. One
key issue in this scenario is the definition of a useful surro-
gate loss for the adversarial loss. To tackle this problem, we
introduce a family of loss functions designed for adversarial
robustness that we call smooth adversarial comp-sum loss
functions. These are loss functions derived from their comp-
sum counterparts by augmenting them with a natural smooth
term. We show that these loss functions are beneficial in the
adversarial setting by proving that they admit H-consistency
bounds. This leads to a family of algorithms for adversarial
robustness that consist of minimizing a regularized smooth
adversarial comp-sum loss.

While our main purpose is a theoretical analysis, we also
present an extensive empirical analysis. We compare the
empirical performance of comp-sum losses for different
tasks and relate that to their theoretical properties. We
further report the results of experiments with the CIFAR-10,
CIFAR-100 and SVHN datasets comparing the performance
of our algorithms based on smooth adversarial comp-sum
losses with that of the state-of-the-art algorithm for this task
TRADES (Zhang et al., 2019b). The results show that our
adversarial algorithms outperform TRADES and also achieve
a substantially better non-adversarial (clean) accuracy.

The rest of this paper is organized as follows. In Section 2,

we introduce some basic concepts and definitions related
to comp-sum loss functions. In Section 3, we present our
H-consistency bounds for comp-sum losses. We further
carefully compare their minimizability gaps in Section 4.
In Section 5, we define and motivate our smooth adversar-
ial comp-sum losses, for which we prove H-consistency
bounds, and briefly discuss corresponding adversarial algo-
rithms. In Section 6, we report the results of our experi-
ments both to compare comp-sum losses in several tasks,
and to compare the performance of our algorithms based
on smooth adversarial comp-sum losses. In Section 7, we
discuss avenues for future research. In Appendix A, we give
a comprehensive discussion of related work.

2. Preliminaries
We consider the familiar multi-class classification setting
and denote by X the input space, by Y = [n] = {1, . . . , n}
the set of classes or categories (n ≥ 2) and by D a distribu-
tion over X × Y.

We study general loss functions `∶Hall ×X × Y→ R where
Hall is the family of all measurable functions h∶X × Y→ R.
In particular, the zero-one classification loss is defined, for
all h ∈ Hall, x ∈ X and y ∈ Y, by `0−1(h,x, y) = 1h(x)≠y,
where h(x) = argmaxy∈Y h(x, y) with an arbitrary but fixed
deterministic strategy used for breaking the ties. For sim-
plicity, we fix that strategy to be the one selecting the label
with the highest index under the natural ordering of labels.

We denote by R`(h) the generalization error or ex-
pected loss of a hypothesis h∶X × Y → R: R`(h) =
E(x,y)∼D[`(h,x, y)]. For a hypothesis set H ⊆ Hall of
functions mapping from X × Y to R, R∗

` (H) denotes the
best-in class expected loss: R∗

` (H) = infh∈HR`(h).

We will prove H-consistency bounds, which are inequalities
relating the zero-one classification estimation loss `0−1 of
any hypothesis h ∈H to that of its surrogate loss ` (Awasthi,
Mao, Mohri, and Zhong, 2022b;a). They take the following
form: ∀h ∈H,R`0−1(h)−R∗

`0−1(H) ≤ f(R`(h)−R∗
` (H)),

where f is a non-decreasing real-valued function. Thus,
they show that the estimation zero-one loss of h, R`0−1(h)−
R∗
`0−1(H), is bounded by f(ε) when its surrogate estimation

loss, R`(h) − R∗
` (H), is bounded by ε. These guarantees

are thus non-asymptotic and depend on the hypothesis set
H considered.

H-consistency bounds are expressed in terms of a quan-
tity depending on the hypothesis set H and the loss
function ` called minimizability gap, and defined by
M`(H) = R∗

` (H) − Ex[infh∈H Ey[`(h,X, y) ∣X = x]].
By the super-additivity of the infimum, since R∗

` (H) =
infh∈H Ex[Ey[`(h,X, y) ∣X = x]], the minimizability gap
is always non-negative. It measures the difference between
the best-in-class expected loss and the expected infimum of
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Figure 1. Function Φτ with different values of τ .

the pointwise expected loss. When the loss function ` only
depends on h(x, ⋅) for all h, x, and y, that is `(h,x, y) =
Ψ(h(x,1), . . . , h(x,n), y), for some function Ψ, then it
is not hard to show that the minimizability gap vanishes
for the family of all measurable functions: M(Hall) = 0
(Steinwart, 2007)[lemma 2.5]. In general, however, the min-
imizabiliy gap is non-zero for a restricted hypothesis set H
and is therefore important to analyze. Note that the minimiz-
abiliy gap can be upper bounded by the approximation error
A(H) = R∗

` (H)−Ex[infh∈Hall
Ey[`(h,X, y) ∣X = x]]. It

is however a finer quantity than the approximation error and
can thus lead to more favorable guarantees.

Comp-sum losses. In this paper, we derive guarantees for
comp-sum losses, a family of functions including the logistic
loss that is defined via a composition of two functions Φ1

and Φ2:

`comp
Φ1[Φ2](h,x, y) = Φ1(∑

y′≠y
Φ2(h(x, y) − h(x, y′))), (1)

where Φ2 is a non-increasing function upper bounding 1u≤0

over u ∈ R and Φ1 a non-decreasing auxiliary function. We
will specifically consider Φ2(u) = exp(−u) as with the loss
function related to AdaBoost (Freund & Schapire, 1997)
and Φ1 chosen out of the following family of functions Φτ ,
τ ≥ 0, defined for all u ≥ 0 by

Φτ(u) =
⎧⎪⎪⎨⎪⎪⎩

1
1−τ ((1 + u)

1−τ − 1) τ ≥ 0, τ ≠ 1

log(1 + u) τ = 1.
(2)

Figure 1 shows the plot of function Φτ for different values
of τ . Functions Φτ verify the following identities:

∂Φτ

∂u
(u) = 1

(1 + u)τ , Φτ(0) = 0. (3)

In view of that, by l’Hôpital’s rule, Φτ is continuous as
a function of τ at τ = 1. To simplify the notation, we
will use `comp

τ as a short-hand for `comp
Φ1[Φ2] when Φ1 = Φτ

and Φ2(u) = exp(−u). `comp
τ (h,x, y) can be expressed as

follows for any h, x, y and τ ≥ 0:

`comp
τ (h,x, y) = Φτ

⎛
⎝∑y′∈Y

eh(x,y
′)−h(x,y) − 1

⎞
⎠

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
1−τ ([∑y′∈Y e

h(x,y′)−h(x,y)]
1−τ

− 1) τ ≠ 1

log(∑y′∈Y eh(x,y
′)−h(x,y)) τ = 1.

(4)

When τ = 0, `comp
τ coincides with the sum-exponential loss

(Weston & Watkins, 1998; Awasthi et al., 2022a)

`comp
τ=0 (h,x, y) = ∑

y′≠y
eh(x,y

′)−h(x,y).

When τ = 1, it coincides with the (multinomial) logistic loss
(Verhulst, 1838; 1845; Berkson, 1944; 1951):

`comp
τ=1 (h,x, y) = − log[ eh(x,y)

∑y′∈Y eh(x,y′)
].

For 1 < τ < 2, it matches the generalized cross entropy loss
(Zhang & Sabuncu, 2018):

`comp
1<τ<2(h,x, y) =

1

τ − 1

⎡⎢⎢⎢⎢⎣
1 − [ eh(x,y)

∑y′∈Y eh(x,y′)
]
τ−1⎤⎥⎥⎥⎥⎦

,

for τ = 2, the mean absolute error loss (Ghosh et al., 2017):

`comp
τ=2 (h,x, y) = 1 − eh(x,y)

∑y′∈Y eh(x,y′)
.

Since for any τ ≥ 0, ∂Φτ

∂u
is non-increasing and satisfies

∂Φτ

∂u
(0) = 1, Φτ(0) = 0, for any τ ≥ 0, Φτ is concave, non-

decreasing, differentiable, 1-Lipschitz, and satisfies that

∀u ≥ 0, Φτ(u) ≤ u. (5)

3. H-Consistency Bounds for Comp-Sum
Losses

In this section, we present and discuss H-consistency
bounds for comp-sum losses in the standard multi-class clas-
sification scenario. We say that a hypothesis set is symmetric
when it does not depend on a specific ordering of the classes,
that is, when there exists a family F of functions f mapping
from X to R such that {[h(x,1), . . . , h(x, c)]∶h ∈H} =
{[f1(x), . . . , fc(x)]∶ f1, . . . , fc ∈ F}, for any x ∈ X. We
say that a hypothesis set H is complete if the set of scores
it generates spans R, that is, {h(x, y)∶h ∈H} = R, for any
(x, y) ∈ X × Y. The hypothesis sets widely used in practice
are all symmetric and complete.

3.1. H-Consistency Guarantees

The following holds for all comp-sum loss functions and
all symmetric and complete hypothesis sets, which includes
those typically considered in applications.
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Figure 2. Function Γτ with different values of τ for n = 10.

Theorem 3.1 (H-consistency bounds for comp-sum
losses). Assume that H is symmetric and complete. Then,
for any τ ∈ [0,∞) and any h ∈H, the following inequality
holds:

R`0−1(h) −R∗
`0−1(H)

≤ Γτ(R`comp
τ

(h) −R∗
`comp
τ

(H) +M`comp
τ

(H))−M`0−1(H),

where Γτ(t) = T−1
τ (t) is the inverse of H-consistency comp-

sum transformation, defined for all β ∈ [0,1] by Tτ(β) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

21−τ
1−τ [1 − [ (1+β)

1
2−τ +(1−β)

1
2−τ

2
]
2−τ

] τ ∈ [0,1)
1+β

2
log[1 + β] + 1−β

2
log[1 − β] τ = 1

1
(τ−1)nτ−1 [[

(1+β)
1

2−τ +(1−β)
1

2−τ
2

]
2−τ
− 1] τ ∈ (1,2)

1
(τ−1)nτ−1 β τ ∈ [2,+∞).

By l’Hôpital’s rule, Tτ is continuous as a function of τ at
τ = 1. Using the fact that limx→0+(a

1
x + b 1

x )
x
= max{a, b},

Tτ is continuous as a function of τ at τ = 2. Furthermore, for
any τ ∈ [0,+∞), Tτ is a convex and increasing function, and
satisfies that Tτ(0) = 0. Note that for the sum-exponential
loss (τ = 0) and logistic loss (τ = 1), the expression Tτ
matches that of their binary H-consistency estimation error
transformation 1−

√
1 − t2 and 1+t

2
log(1+t)+ 1−t

2
log(1−t)

in the binary classification setting (Awasthi et al., 2022b),
which were proven to be tight. We will show that, for these
loss functions and in this multi-class classification setting,
Tτ s admit a tight functional forms as well. We illustrate the
function Γτ with different values of τ in Figure 2.

By using Taylor expansion, Tτ(β) can be lower bounded
by its polynomial approximation with the tightest order as

Tτ(β) ≥ T̃τ(β) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β2

2τ (2−τ) τ ∈ [0,1)
β2

2nτ−1 τ ∈ [1,2)
β

(τ−1)nτ−1 τ ∈ [2,+∞).
(6)

Accordingly, Γτ(t) can be upper bounded by the inverse of
T̃τ , which is denoted by Γ̃τ(t) = T̃−1

τ (t), as shown below

Γτ(t) ≤ Γ̃τ(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2τ(2 − τ)t τ ∈ [0,1)√
2nτ−1t τ ∈ [1,2)

(τ − 1)nτ−1t τ ∈ [2,+∞).
(7)

A detailed derivation is given in Appendix C. The plots
of function Γτ and their corresponding upper bound Γ̃τ
(n = 10) are shown in Figure 3, for different values of τ ;
they illustrate the quality of the approximations via Γ̃τ .

Recall that the minimizability gaps vanish when H is the
family of all measurable functions or when H contains the
Bayes predictor. In their absence, the theorem shows that
if the estimation loss (R`comp

τ
(h) −R∗

`comp
τ

(H)) is reduced
to ε, then, for τ ∈ [0,2), in particular for the logistic loss
(τ = 1) and the generalized cross-entropy loss (τ ∈ (1,2)),
modulo a multiplicative constant, the zero-one estimation
loss (R`0−1(h) − R∗

`0−1(H)) is bounded by
√
ε. For the

logistic loss, the following guarantee holds for all h ∈H:

R`0−1(h) −R∗
`0−1(H) ≤

√
2(R`comp

1
(h) −R∗

`comp
1

(H)).

The bound is even more favorable for the mean absolute
error loss (τ = 2) or for comp-sum losses `comp

τ with
τ ∈ (2,+∞) since in that case, modulo a multiplicative con-
stant, the zero-one estimation loss (R`0−1(h) −R∗

`0−1(H))
is bounded by ε. In general, the minimizability gaps are
not null however and, in addition to the functional form of
Γτ , two other key features help compare comp-sum losses:
(i) the magnitude of the minimizability gap M`comp

τ
(H);

and (ii) the dependency of the multiplicative constant on
the number of classes, which makes it less favorable for
τ ∈ (1,+∞). Thus, we will specifically further analyze the
minimizability gaps in the next section (Section 4).

The proof of the theorem is given in Appendix B. It consists
of using the general H-consistency bound tools given by
Awasthi et al. (2022b;a) and of analyzing the calibration gap
of the loss function `comp

τ for different values of τ in order
to lower bound it in terms of the zero-one loss calibration
gap. As pointed out by Awasthi et al. (2022a), deriving such
bounds is non-trivial in the multi-class classification setting.
In the proof, we specifically choose auxiliary functions hµ
target to the comp-sum losses, which satisfies the property
∑y∈Y eh(x,y) = ∑y∈Y ehµ(x,y). Using this property, we then
establish several general lemmas that are applicable to any
τ ∈ [0,∞) and are helpful to lower bound the calibration
gap of `comp

τ . This is significantly different from the proofs
of Awasthi et al. (2022a) whose analysis depends on con-
crete loss functions case by case. Furthermore, our proof
technique actually leads to the tightest bounds as shown be-
low. Our proofs are novel and cover the full comp-sum loss
family, which includes the logistic loss. Next, we further
prove that the functional form of our bounds H-consistency
bounds cannot be improved.
Theorem 3.2 (Tightness). Assume that H is symmetric
and complete. Then, for any τ ∈ [0,1] and β ∈ [0,1],
there exist a distribution D and a hypothesis h ∈ H such
that R`0−1(h) − R∗

`0−1,H +M`0−1,H = β and R`comp
τ

(h) −
R∗
`comp
τ

(H) +M`comp
τ

(H) = Tτ(β).
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Figure 3. Function Γτ and its upper bound Γ̃τ with different values of τ and n = 10.

The proof is given in Appendix B. The theorem shows that
the bounds given by the H-consistency comp-sum transfor-
mation Tτ , or, equivalently, by its inverse Γτ in Theorem 3.1
is tight for any τ ∈ [0,1], which includes as special cases
the logistic loss (τ = 1).

3.2. Learning Bounds

Our H-consistency bounds can be used to derive zero-one
learning bounds for a hypothesis set H. For a sample size
m, let Rτ

m(H) denote the Rademacher complexity of the
family of functions {(x, y)↦ `comp

τ (h,x, y)∶h ∈H} and
Bτ an upper bound on the loss `comp

τ .
Theorem 3.3. With probability at least 1−δ over the draw of
a sample S from Dm, the following zero-one loss estimation
bound holds for an empirical minimizer ĥS ∈ H of the
comp-sum loss `comp

τ over S:

R`0−1(ĥS) −R∗
`0−1(H)

≤ Γτ(M`comp
τ

(H) + 4Rτ
m(H) + 2Bτ

√
log 2

δ

2m
)−M`0−1(H).

The proof is given in Appendix G. To our knowledge, these
are the first zero-one estimation loss guarantees for empiri-
cal minimizers of a comp-sum loss such as the logistic loss.
Our previous comments about the properties of Γτ , in par-
ticular its functional form or its dependency on the number
of classes n, similarly apply here. These are precise bounds
that take into account the minimizability gaps.

4. Comparison of Minimizability Gaps
We now further analyze these quantities and make our
guarantees even more explicit. Consider a composed loss
function defined by (Φ1 ○ `2)(h,x, y), for all h ∈ H and
(x, y) ∈ X × Y, with Φ1 concave and non-decreasing. Then,
by Jensen’s inequality, we can write:

R∗
Φ1○`2(H) = inf

h∈H
{ E
(x,y)∼D

[(Φ1 ○ `2)(h,x, y)]}

≤ inf
h∈H

{Φ1( E
(x,y)∼D

[`2(h,x, y)])}

= Φ1( inf
h∈H

{ E
(x,y)∼D

[`2(h,x, y)]})

= Φ1(R∗
`2(H)).

(8)

Recall that the comp-sum losses `comp
τ can be writ-

ten as `comp
τ = Φτ ○ `comp

τ=0 , where `comp
τ=0 (h,x, y) =

∑y′≠y exp(h(x, y′) − h(x, y)). Φτ is concave since we
have ∂2Φτ

∂2u
(u) = −τ

(1+u)τ+1 ≤ 0 for all τ ≥ 0 and u ≥ 0. Using
these observations, the following results can be shown.

Theorem 4.1 (Characterization of minimizability gaps -
stochastic case). Assume that H is symmetric and complete.
Then, for the comp-sum losses `comp

τ , the minimizability
gaps can be upper bounded as follows:

M`comp
τ

(H) ≤ Φτ(R∗
`comp
τ=0

(H)) −E
x
[C∗`comp

τ
(H, x)], (9)

where C∗`comp
τ

(H, x) is given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
1−τ ([∑y∈Y p(x, y)

1
2−τ ]

2−τ
− 1) τ ≥ 0, τ ≠ 1, τ ≠ 2

−∑y∈Y p(x, y) log[p(x, y)] τ = 1

1 −maxy∈Y p(x, y) τ = 2.

(10)

Note that the expressions for C∗`comp
τ

(H, x) in (10) can be
formulated in terms of the (2 − τ)-Rényi entropy.

Theorem 4.2 (Characterization of minimizability gaps -
deterministic case). Assume that for any x ∈ X, we have
{(h(x,1), . . . , h(x,n))∶h ∈H} = [−Λ,+Λ]n. Then, for
comp-sum losses `comp

τ and any deterministic distribution,
the minimizability gaps can be upper bounded as follows:

M`comp
τ

(H) ≤ Φτ(R∗
`comp
τ=0

(H)) − C∗`comp
τ

(H, x), (11)

where C∗`comp
τ

(H, x) is given by

⎧⎪⎪⎨⎪⎪⎩

1
1−τ ([1 + e

−2Λ(n − 1)]1−τ − 1) τ ≥ 0, τ ≠ 1

log[1 + e−2Λ(n − 1)] τ = 1.
(12)

The proofs of these theorems are given in Appendix D. Note
that, when τ = 0, Φτ(u) = u gives the sum exponential loss
Φτ ○ `comp

τ=0 = `comp
τ=0 . For deterministic distributions, by (12),

we obtain C∗`comp
τ=0

(H, x) = e−2Λ(n− 1). Therefore, (12) can

be rewritten as C∗`comp
τ

(H, x) = Φτ(C∗`comp
τ=0

(H, x)). Thus,
inequality (11) can be rewritten as follows:

M`comp
τ

(H) ≤ Φτ(R∗
`comp
τ=0

(H)) −Φτ(C∗`comp
τ=0

(H, x)). (13)
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We will denote the right-hand side by M̃`comp
τ

(H),

M̃`comp
τ

(H) = Φτ(R∗
`comp
τ=0

(H))−Φτ(C∗`comp
τ=0

(H, x)). Note

that we always have R∗
`comp
τ=0

(H) ≥ Ex[C∗`comp
τ=0

(H, x)]. Here,
Ex[C∗`comp

τ=0
(H, x)] = C∗`comp

τ=0
(H, x) since C∗`comp

τ=0
(H, x) is

independent of x as shown in (12). Then, (13) can be used
to compare the minimizability gaps for different τ .

Lemma 4.3. For any u1 ≥ u2 ≥ 0, Φτ(u1) − Φτ(u2) is
non-increasing with respect to τ .

The proof is given in Appendix E. Lemma 4.3 implies that
M̃`comp

τ
(H) is a non-increasing function of τ . Thus, given

a hypothesis set H, we have:

M̃`τ=0(H) ≥ M̃`τ=1(H) ≥ M̃`1<τ<2(H) ≥ M̃`τ=2(H). (14)

By Section 2, these minimizability gaps specifically corre-
spond to that of sum-exponential loss (τ = 0), logistic loss
(τ = 1), generalized cross-entropy loss (1 < τ < 2) and mean
absolute error loss (τ = 2) respectively. Note that for those
loss functions, by Theorem 3.1, when the estimation error
R`comp

τ
(h) − R∗

`comp
τ

(H) is minimized to zero, the estima-
tion error of zero-one classification loss is upper bounded
by Γ̃τ(M`τ ). Therefore, (14) combined with the form of
Γ̃τ helps compare the sum-exponential loss (τ = 0), logistic
loss (τ = 0), generalized cross-entropy loss (1 < τ < 2) and
mean absolute error loss (τ = 2) in practice. See Section 6.1
for a discussion of the empirical results in light of these
theoretical findings.

5. Smooth Adversarial Comp-Sum Losses
A recent challenge in the application of neural networks
is their robustness to imperceptible perturbations (Szegedy
et al., 2013). While neural networks trained on large datasets
have achieved breakthroughs in speech and visual recogni-
tion tasks in recent years (Sutskever et al., 2014; Krizhevsky
et al., 2012), their accuracy remains substantially lower in
the presence of such perturbations even for state-of-the-art
robust algorithms. One key factor in the design of robust
algorithms is the choice of the surrogate loss function used
for training since directly optimizing the target adversarial
zero-one loss with most hypothesis sets is NP-hard. To
tackle this problem, we introduce a family of loss functions
designed for adversarial robustness that we call smooth ad-
versarial comp-sum loss functions. These are loss functions
obtained by augmenting comp-sum losses with a natural cor-
responding smooth term. We show that these loss functions
are beneficial in the adversarial setting by proving that they
admit H-consistency bounds. This leads to a family of algo-
rithms for adversarial robustness that consist of minimizing
a regularized smooth adversarial comp-sum loss.

5.1. Definition

In adversarial robustness, the target adversarial zero-one
classification loss is defined as the worst loss incurred over
an `p perturbation ball of x with perturbation size γ, p ∈
[1,+∞], Bp(x, γ) = {x′∶ ∥x − x′∥p ≤ γ}:

`γ(h,x, y) = sup
x′∈Bp(x,γ)

`0−1(h,x′, y).

We first introduce the adversarial comp-sum ρ-margin losses,
which is defined as the supremum based counterpart of
comp-sum losses (1) with Φ1 = Φτ and Φ2(u) = Φρ(u) =
min{max{0,1 − u

ρ
},1}, the ρ-margin loss function (see for

example (Mohri et al., 2018)):

̃̀comp
τ,ρ (h,x, y)= sup

x′∶∥x−x′∥p≤γ
Φτ

⎛
⎝∑y′≠y

Φρ(h(x′, y′) − h(x′, y))
⎞
⎠
.

In the next section, we will show that ̃̀comp
τ,ρ admits an H-

consistency bound with respect to the adversarial zero-one
loss `γ . Since Φρ is not-convex, we will further derive the
smooth adversarial comp-sum loss based on ̃̀comp

τ,ρ , that has
similar H-consistency guarantees and is better to optimize.
By the expression of the derivative of Φτ in (3), for all
τ ≥ 0 and u ≥ 0, we have ∣∂Φτ

∂u
(u)∣ = 1

(1+u)τ ≤ 1, thus Φτ

is 1-Lipschitz over R+. Define ∆h(x, y, y′) = h(x, y) −
h(x, y′) and let ∆h(x, y) denote the (n − 1)-dimensional
vector (∆h(x, y,1), . . . ,∆h(x, y, y − 1),∆h(x, y, y +
1), . . . ,∆h(x, y, n)). For any τ ≥ 0, since Φτ is 1-Lipschitz
and non-decreasing, we have:

̃̀comp
τ,ρ (h,x, y) − `comp

τ,ρ (h,x, y)
sup

x′∈B(x,γ)
∑
y′≠y

Φρ(−∆h(x′, y, y′)) −Φρ(−∆h(x, y, y′)).

Since Φρ(u) is 1
ρ

-Lipschitz, by the Cauchy-Schwarz in-

equality, for any ν ≥
√
n−1
ρ

≥ 1
ρ

, we have

̃̀comp
τ,ρ (h,x, y)
≤ `comp

τ,ρ (h,x, y) + ν sup
x′∈B(x,γ)

∥∆h(x′, y) −∆h(x, y)∥2

≤ `comp
τ (h

ρ
, x, y) + ν sup

x′∈B(x,γ)
∥∆h(x′, y) −∆h(x, y)∥2

,

where we used the inequality exp(−u/ρ) ≥ Φρ(u). We will
refer to a loss function defined by the last expression as a
smooth adversarial comp-sum loss and denote it by `comp

smooth.
In the next section, we will provide strong H-consistency
guarantees for `comp

smooth.

5.2. Adversarial H-Consistency Guarantees

To derive guarantees for our smooth adversarial comp-sum
loss, we first prove an adversarial H-consistency bound

6
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for adversarial comp-sum ρ-margin losses ̃̀comp
τ,ρ for any

symmetric and locally ρ-consistent hypothesis set.
Definition 5.1. We say that a hypothesis set H is locally
ρ-consistent if for any x ∈ X, there exists a hypothesis
h ∈ H such that infx′∶∥x−x′∥≤γ ∣h(x′, i) − h(x′, j)∣ ≥ ρ >
0 for any i ≠ j ∈ Y and for any x′ ∈ {x′∶ ∥x − x′∥ ≤ γ},
{h(x′, y) ∶ y ∈ Y} has the same ordering.

Common hypothesis sets used in practice, such as the family
of linear models, that of neural networks and of course that
of all measurable functions are all locally ρ-consistent for
some ρ > 0. The guarantees given in the following result
are thus general and widely applicable.
Theorem 5.2 (H-consistency bound of ̃̀comp

τ,ρ ). Assume
that H is symmetric and locally ρ-consistent. Then, for
any choice of the hyperparameters τ, ρ > 0, any hypothesis
h ∈H, the following inequality holds:

R`γ (h) −R∗
`γ (H) ≤ (15)

Φτ(1)[R̃̀comp
τ,ρ

(h) −R∗
̃̀comp
τ,ρ

(H) +M̃̀comp
τ,ρ

(H)]−M`γ (H).

The proof is given in Appendix F. Using the inequality
`comp
smooth ≥ ̃̀comp

τ,ρ yields the following similar guarantees for
smooth adversarial comp-sum loss under the same condition
of hypothesis sets.
Corollary 5.3 (Guarantees for smooth adversarial com-
p-sum losses). Assume that H is symmetric and locally
ρ-consistent. Then, for any choice of the hyperparameters
τ, ρ > 0, any hypothesis h ∈ H, the following inequality
holds:

R`γ (h) −R∗
`γ (H) ≤ (16)

Φτ(1)[R`comp
smooth

(h) −R∗
̃̀comp
τ,ρ

(H) +M̃̀comp
τ,ρ

(H)]−M`γ (H).

This is the first H-consistency bound for the comp-sum loss
in the adversarial robustness. As with the non-adversarial
scenario in Section 3, the minimizability gaps appearing
in those bounds in Theorem 5.2 and Corollary 5.3 actually
equal to zero in most common cases. More precisely, The-
orem 5.2 guarantees H-consistency for distributions such
that the minimizability gaps vanish:

R`γ (h) −R∗
`γ (H) ≤ Φτ(1)[R̃̀comp

τ,ρ
(h) −R∗

̃̀comp
τ,ρ

(H)].

For τ ∈ [0,∞) and ρ > 0, if the estimation loss (R̃̀comp
τ,ρ

(h)−
R∗

̃̀comp
τ,ρ

(H)) is reduced to ε, then, the adversarial zero-one

estimation loss (R`γ (h) −R∗
`γ
(H)) is bounded by ε mod-

ulo a multiplicative constant. A similar guarantee applies
to smooth adversarial comp-sum loss as well. These guar-
antees suggest an adversarial robustness algorithm that con-
sists of minimizing a regularized empirical smooth adver-
sarial comp-sum loss, `comp

smooth. We call this algorithm ADV-
COMP-SUM. In the next section, we report empirical results

for ADV-COMP-SUM, demonstrating that it significantly out-
perform the current state-of-the-art loss/algorithm TRADES.

6. Experiments
We first report empirical results comparing the performance
of comp-sum losses for different values of τ . Next, we
report a series of empirical results comparing our adversarial
robust algorithm ADV-COMP-SUM with several baselines.

6.1. Standard Multi-Class Classification

We compared comp-sum losses with different values of τ
on CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009).
All models were trained via Stochastic Gradient Descent
(SGD) with Nesterov momentum (Nesterov, 1983), batch
size 1,024 and weight decay 1 × 10−4. We used ResNet-34
and trained for 200 epochs using the cosine decay learning
rate schedule (Loshchilov & Hutter, 2016) without restarts.
The initial learning rate was selected from {0.01,0.1,1.0};
the best model is reported for each surrogate loss. We report
the zero-one classification accuracy of the models and the
standard deviation for three trials.

Table 1. Zero-one classification accuracy for comp-sum surrogates;
mean ± standard deviation over three runs for different τ .

τ 0 0.5 1.0 1.5 2.0

CIFAR-10 87.37 90.28 92.59 92.03 90.35
± 0.57 0.10 0.10 0.08 0.24

CIFAR-100 57.87 65.52 70.93 69.87 8.99
± 0.60 0.34 0.34 0.39 0.98

Table 1 shows that on CIFAR-10 and CIFAR-100, the lo-
gistic loss (τ = 1) outperforms the comp-sum loss (τ = 0.5)
and, by an even larger margin, the sum-exponential loss
(τ = 0). This is consistent with our theoretical analysis
based on H-consistency bounds in Theorem 3.1 since all
three losses have the same square-root functional form and
since, by Lemma 4.3 and (7), the magnitude of the minimiz-
ability gap decreases with τ .

Table 1 also shows that on CIFAR-10 and CIFAR-100, the
logistic loss (τ = 1) and the generalized cross-entropy loss
(τ = 1.5) achieve relatively close results that are clearly
superior to that of mean absolute error loss (τ = 2). This
empirical observation agrees with our theoretically analysis
based on their H-consistency bounds (Theorem 3.1): by
Lemma 4.3, the minimizability gap of τ = 1.5 and τ = 2
is smaller than that of τ = 1; however, by (7), the depen-
dency of the multiplicative constant on the number of classes
appears for τ = 1.5 in the form of

√
n, which makes the

generalized cross-entropy loss less favorable, and for τ = 2
in the form of n, which makes the mean absolute error loss
least favorable. Another reason for the inferior performance
of the mean absolute error loss (τ = 2) is that, as observed
in our experiments, it is difficult to optimize in practice,
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using deep neural networks on complex datasets. This has
also been previously reported by Zhang & Sabuncu (2018).
In fact, the mean absolute error loss can be formulated as
an `1-distance and is therefore not smooth; but it has the
advantage of robustness, as shown in (Ghosh et al., 2017).

6.2. Adversarial Multi-Class Classification

Here, we report empirical results for our adversarial robust-
ness algorithm ADV-COMP-SUM on CIFAR-10, CIFAR-100
(Krizhevsky, 2009) and SVHN (Netzer et al., 2011) datasets.
No generated data or extra data was used.

Experimental settings. We followed exactly the experi-
mental settings of Gowal et al. (2020) and adopted precisely
the same training procedure and neural network architec-
tures, which are WideResNet (WRN) (Zagoruyko & Ko-
modakis, 2016) with SiLU activations (Hendrycks & Gim-
pel, 2016). Here, WRN-n-k denotes a residual network
with n convolutional layers and a widening factor k. For
CIFAR-10 and CIFAR-100, the simple data augmentations,
4-pixel padding with 32 × 32 random crops and random
horizontal flips, were applied. We used 10-step Projected
Gradient-Descent (PGD) with random starts to generate
training attacks. All models were trained via Stochastic
Gradient Descent (SGD) with Nesterov momentum (Nes-
terov, 1983), batch size 1,024 and weight decay 5 × 10−4.
We trained for 400 epochs using the cosine decay learning
rate schedule (Loshchilov & Hutter, 2016) without restarts.
The initial learning rate is set to 0.4. We used model weight
averaging (Izmailov et al., 2018) with decay rate 0.9975.
For TRADES, we adopted exactly the same setup as Gowal
et al. (2020). For our smooth adversarial comp-sum losses,
we set both ρ and ν to 1 by default. In practice, they can be
selected by cross-validation and that could potentially lead
to better performance. The per-epoch computational cost of
our method is similar to that of TRADES.

Evaluation. We used early stopping on a held-out val-
idation set of 1,024 samples by evaluating its robust ac-
curacy throughout training with 40-step PGD on the mar-
gin loss, denoted by PGD40

margin, and selecting the best
check-point (Rice et al., 2020). We report the clean ac-
curacy, that is the standard classification accuracy on the
test set, and the robust accuracy with `∞-norm perturba-
tions bounded by γ = 8/255 under PGD attack, measured
by PGD40

margin on the full test set, as well as under Au-
toAttack (Croce & Hein, 2020) (https://github.com/
fra31/auto-attack), the state-of-the-art attack for mea-
suring empirically adversarial robustness. We averaged
accuracies over three runs and report the standard deviation
for both ADV-COMP-SUM and TRADES, reproducing the
results reported for TRADES in (Gowal et al., 2020).

Results. Table 2 shows that ADV-COMP-SUM outperforms
TRADES on CIFAR-10 for all the neural network archi-

tectures adopted (WRN-70-16, WRN-34-20 and WRN-28-
10). Here, ADV-COMP-SUM was implemented with τ = 0.4.
Other common choices of τ yield similar results, including
τ = 1 (logistic loss). In all the settings, robust accuracy
under AutoAttack is higher by at least 0.6% for ADV-COMP-
SUM, by at least 1.36% under the PGD40

margin attack.

It is worth pointing out that the improvement in robust-
ness accuracy for our models does not come at the expense
of a worse clean accuracy than TRADES. In fact, ADV-
COMP-SUM consistently outperforms TRADES for the clean
accuracy as well. For the largest model WRN-70-16, the im-
provement is over 0.8%. For completeness, we also include
in Table 2 the results for some other well-known adversarial
defense models. ADV-COMP-SUM with the smallest model
WRN-28-10 surpasses (Pang et al., 2020a; Rice et al., 2020;
Qin et al., 2019). (Wu et al., 2020) is significantly outper-
formed by ADV-COMP-SUM with a slightly larger model
WRN-34-20, by more than 1.2% in the robust accuracy and
also in the clean accuracy.

To show the generality of our approach, we carried out
experiments with other datasets, including CIFAR-100 and
SVHN. For WRN-70-16 on CIFAR-100, ADV-COMP-SUM
outperforms TRADES by 1.12% in the robust accuracy and
2.54% in the clean accuracy. For WRN-34-20 on SVHN,
ADV-COMP-SUM also outperforms TRADES by 0.29% in the
robust accuracy and 0.95% in the clean accuracy.

Let us underscore that outperforming the state-of-the-art
results of Gowal et al. (2020) in the same scenario and with-
out resorting to additional unlabeled data has turned out to
be very challenging: despite the large research emphasis on
this topic in the last several years and the many publications,
none was reported to surpass that performance, using an
alternative surrogate loss.

7. Discussion
Applications of H-consistency bounds. Given a hypothe-
sis set H, our quantitative H-consistency bounds can help
select the most favorable surrogate loss, which depends on
(i) the functional form of the H-consistency bound: for
instance, the bound for the mean absolute error loss ex-
hibits a linear dependency, while that of the logistic loss and
generalized cross-entropy losses exhibit a square-root de-
pendency, resulting in a less favorable convergence rate; (ii)
the smoothness of the loss and, more generally, its optimiza-
tion properties; for example, the mean absolute error loss
is less smooth than the logistic loss, and surrogate losses
with more favorable bounds may lead to more challenging
optimizations; in fact, the zero-one loss serves as its own sur-
rogate with the tightest bound for any hypothesis set, but is
known to result in NP-complete optimization problems for
many common choices of H; (iii) approximation properties
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Table 2. Clean accuracy and robust accuracy under PGD40
margin and AutoAttack; mean ± standard deviation over three runs for both

ADV-COMP-SUM and the state-of-the-art TRADES in (Gowal et al., 2020). Accuracies of some well-known adversarial defense models are
included for completeness. ADV-COMP-SUM significantly outperforms TRADES for both robust and clean accuracy in all the settings.

Method Dataset Clean PGD40
margin AutoAttack

Gowal et al. (2020) (WRN-70-16)

CIFAR-10

85.34 ± 0.04 57.90 ± 0.13 57.05 ± 0.17
ADV-COMP-SUM (WRN-70-16) 86.16 ± 0.16 59.35 ± 0.07 57.77 ± 0.08
Gowal et al. (2020) (WRN-34-20) 85.21 ± 0.16 57.54 ± 0.18 56.70 ± 0.14
ADV-COMP-SUM (WRN-34-20) 85.59 ± 0.17 58.92 ± 0.06 57.41 ± 0.06
Gowal et al. (2020) (WRN-28-10) 84.33 ± 0.18 55.92 ± 0.20 55.19 ± 0.23
ADV-COMP-SUM (WRN-28-10) 84.50 ± 0.33 57.28 ± 0.05 55.79 ± 0.06

Pang et al. (2020a) (WRN-34-20) 86.43 — 54.39
Rice et al. (2020) (WRN-34-20) 85.34 — 53.42
Wu et al. (2020) (WRN-34-10) 85.36 — 56.17
Qin et al. (2019) (WRN-40-8) 86.28 — 52.84

Gowal et al. (2020) (WRN-70-16) CIFAR-100 60.56 ± 0.31 31.39 ± 0.19 29.93 ± 0.14
ADV-COMP-SUM (WRN-70-16) 63.10 ± 0.24 33.76 ± 0.18 31.05 ± 0.15

Gowal et al. (2020) (WRN-34-20) SVHN 93.03 ± 0.13 61.01 ± 0.16 57.84 ± 0.19
ADV-COMP-SUM (WRN-34-20) 93.98 ± 0.12 62.97 ± 0.05 58.13 ± 0.12

of the surrogate loss function: for instance, given a choice of
H, the minimizability gap for a surrogate loss may be more
or less favorable; (iv) the dependency of the multiplicative
constant on the number of classes: for example, the linear
dependency of n in the bound for the mean absolute error
loss makes it less favorable than the logistic loss.

Another application is the derivation of generalization
bounds for surrogate loss minimizers (see Theorem 3.3),
expressed in terms of the quantities discussed above.

Concurrent work. The concurrent and independent study
of Zheng et al. (2023) also provides an H-consistency bound
for the logistic loss. Their bound holds for the special case
of H being a constrained linear hypothesis set, subject to
an additional assumption on the distribution. In contrast,
our bounds do not require any distributional assumption.
However, it should be noted that our results are only appli-
cable to complete hypothesis sets. In upcoming work, we
present H-consistency bounds for non-complete hypothesis
sets and arbitrary distributions.

Future work. In addition to the extension to non-complete
hypothesis sets just mentioned, it would be valuable to in-
vestigate the application or generalization of H-consistency
bounds in scenarios involving noisy labels (Ghosh et al.,
2017; Zhang & Sabuncu, 2018). For comp-sum losses, this
paper focuses on the case where Φ2 is the exponential loss
and Φ1 is based on (2). This includes the cross-entropy
loss (or logistic loss), generalized cross-entropy, the mean
absolute error and other cross-entropy-like functions, which
are the most widely used ones in the family of comp-sum
losses. The study of other such loss functions and the com-
parison with other families of multi-class loss functions
(Awasthi et al., 2022a) is left to the future work. Although
our algorithm demonstrates improvements over the current
state-of-the-art technique, adversarial robustness remains
a challenging problem. A key issue seems to be that of

generalization for complex families of neural networks (see
for example (Awasthi, Frank, and Mohri, 2020)). A more
detailed study of that problem might help enhance the per-
formance of our algorithm. Finally, in addition to their
immediate implications, our results and techniques have
broader applications in analyzing surrogate losses and algo-
rithms across different learning scenarios. For instance, they
can be used in the context of ranking, as demonstrated in re-
cent work by Mao, Mohri, and Zhong (2023). Furthermore,
they can be extended to address the challenges of learning
with abstention (Cortes, DeSalvo, and Mohri, 2016b;a). Ad-
ditionally, our findings can be valuable in non-i.i.d. learning
settings, such as drifting (Mohri & Medina, 2012) or time
series prediction (Kuznetsov & Mohri, 2018; 2020).

8. Conclusion
We presented a detailed analysis of the theoretical proper-
ties of a family of surrogate losses that includes the logistic
loss (or cross-entropy with the softmax). These are more
precise and more informative guarantees than Bayes con-
sistency since they are non-asymptotic and specific to the
hypothesis set used. Our bounds are tight and can be made
more explicit, when combined with our analysis of minimiz-
ability gaps. These inequalities can help compare different
surrogate losses and evaluate their advantages in different
scenarios. We showcased one application of this analysis
by extending comp-sum losses to the adversarial robustness
setting, which yields principled surrogate losses and algo-
rithms for that scenario. We believe that our analysis can be
helpful to the design of algorithms in many other scenarios.
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A. Related work
Consistency guarantees. The concept of Bayes consistency, or the related one of classification calibration (Zhang, 2004a;
Bartlett et al., 2006; Steinwart, 2007; Mohri et al., 2018), have been extensively explored in a wide range of contexts,
including multi-class classification (Zhang, 2004b; Chen & Sun, 2006; Chen & Xiang, 2006; Tewari & Bartlett, 2007; Liu,
2007; Dogan et al., 2016; Wang & Scott, 2020; Ramaswamy & Agarwal, 2012; Narasimhan et al., 2015; Agarwal & Agarwal,
2015; Williamson et al., 2016; Ramaswamy & Agarwal, 2016; Finocchiaro et al., 2019; Frongillo & Waggoner, 2021;
Finocchiaro et al., 2022; Wang & Scott, 2023), multi-label classification (Gao & Zhou, 2011; Dembczynski et al., 2012;
Zhang et al., 2020b), learning with rejection (Cortes et al., 2016b;a; Ramaswamy et al., 2015; Cao et al., 2022), ranking
(Duchi et al., 2010; Ravikumar et al., 2011; Ramaswamy et al., 2013; Gao & Zhou, 2015; Uematsu & Lee, 2017; Mao et al.,
2023), cost-sensitive classification (Pires et al., 2013; Pires & Szepesvári, 2016), structured prediction (Ciliberto et al., 2016;
Osokin et al., 2017; Blondel, 2019), top-k classification (Thilagar et al., 2022), structured abstain problem (Nueve et al.,
2022) and ordinal regression (Pedregosa et al., 2017). Bayes-consistency does not supply any information about learning
with a typically restricted hypothesis set. Another line of research focuses on realizable H-consistency guarantees (Long
& Servedio, 2013; Zhang & Agarwal, 2020; Kuznetsov et al., 2014), which provides hypothesis set-specific consistency
guarantees under the assumption that the underlying distribution is H-realizable. However, none of these guarantees is
informative for approximate minimizers (non-asymptotic guarantee) since convergence could be arbitrarily slow.

The concept of H-consistency bounds was first introduced by Awasthi et al. (2022b) in binary classification and subsequently
extended by Awasthi et al. (2022a) to the scenario of multi-class classification. Such guarantees are both non-asymptotic
and hypothesis set-specific. This paper presents the first tight H-consistency bounds for the comp-sum losses, that includes
cross-entropy (or logistic loss), generalized cross-entropy, the mean absolute error and other loss cross-entropy-like functions.

The concurrent and independent study of Zheng et al. (2023) also provides an H-consistency bound for the logistic loss.
Their bound holds for the special case of H being a constrained linear hypothesis set, subject to an additional assumption
on the distribution. In contrast, our bounds do not require any distributional assumption. However, it should be noted
that our results are only applicable to complete hypothesis sets. In upcoming work, we present H-consistency bounds for
non-complete hypothesis sets and arbitrary distributions.

Adversarial robustness. From a theoretical perspective, there has been significant dedication towards providing guarantees
for adversarial robustness (Szegedy et al., 2013; Biggio et al., 2013; Goodfellow et al., 2014; Madry et al., 2017; Carlini
& Wagner, 2017), including PAC Learnability (Feige et al., 2015; 2018; Montasser et al., 2019; Attias & Hanneke, 2022;
Ashtiani et al., 2020; Bhattacharjee et al., 2021; Cullina et al., 2018; Dan et al., 2020; Montasser et al., 2020a;b; Attias
et al., 2022a; Diakonikolas et al., 2020; Montasser et al., 2021; Kontorovich & Attias, 2021; Montasser et al., 2022), robust
generalization (Khim & Loh, 2018; Attias et al., 2019; Xing et al., 2021; Yin et al., 2019; Schmidt et al., 2018; Awasthi
et al., 2020; Attias et al., 2022b; Xiao et al., 2022; Viallard et al., 2021; Bubeck & Sellke, 2021; Li & Telgarsky, 2023),
adversarial examples (Bubeck et al., 2018; 2019; Bartlett et al., 2021; Bubeck et al., 2021), consistency guarantees and
optimal adversarial classifiers (Bao et al., 2020; Awasthi et al., 2021a;c;b; 2022b;a; Meunier et al., 2022; Li & Telgarsky,
2023; Frank & Niles-Weed, 2023) and optimization (Awasthi et al., 2019; Robey et al., 2021; Awasthi et al., 2023a).

From an algorithmic standpoint, numerous defense strategies have been proposed historically, including adversarial surrogate
loss functions (Kurakin et al., 2016; Madry et al., 2017; Tsipras et al., 2018; Kannan et al., 2018; Zhang et al., 2019b; Wang
et al., 2020; Levi et al., 2022; Jin et al., 2022; Awasthi et al., 2023b), curriculum and adaptive attack methods (Cai et al.,
2018; Wang et al., 2019; Zhang et al., 2020a; Ding et al., 2022; Cheng et al., 2022), efficient adversarial training (Shafahi
et al., 2019; Zhang et al., 2019a; Wong et al., 2020; Andriushchenko & Flammarion, 2020), ensemble techniques (Tramèr
et al., 2018; Pang et al., 2019; Yang et al., 2020; Guo et al., 2022), unlabeled data (Carmon et al., 2019; Alayrac et al., 2019;
Zhai et al., 2019), data augmentation (Rebuffi et al., 2021a;b), neural network architectures (Xie & Yuille, 2020; Xie et al.,
2019; Liu et al., 2020; Guo et al., 2020), weight averaging/perturbation (Gowal et al., 2020; Wu et al., 2020; Tsai et al.,
2021; Yu et al., 2018; Prabhu et al., 2019) and other techniques (Zhang & Wang, 2019; Qin et al., 2019; Goldblum et al.,
2020; Song et al., 2019; Pang et al., 2020b; Lee et al., 2020; Qian et al., 2021).

This paper introduces a new family of loss functions, smooth adversarial comp-sum losses, derived from their comp-sum
counterparts by adding in a related smooth term. We show that these loss functions are beneficial in the adversarial setting
by proving that they admit H-consistency bounds. This leads to new adversarial robustness algorithms that consist of
minimizing a regularized smooth adversarial comp-sum loss. We report the results of a series of experiments demonstrating
that our algorithms outperform the current state-of-the-art, while also achieving a superior non-adversarial accuracy.
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B. Proofs of H-consistency bounds for comp-sum losses (Theorem 3.1) and tightness
(Theorem 3.2)

To begin with the proof, we first introduce some notation. We denote by p(x, y) = D(Y = y ∣X = x) the conditional
probability of Y = y given X = x. The generalization error for a surrogate loss can be rewritten as R`(h) = EX[C`(h,x)],
where C`(h,x) is the conditional `-risk, defined by

C`(h,x) = ∑
y∈Y

p(x, y)`(h,x, y).

We denote by C∗` (H, x) = infh∈H C`(h,x) the minimal conditional `-risk. Then, the minimizability gap can be rewritten as
follows:

M`(H) = R∗
` (H) −EX[C∗` (H, x)].

We further refer to C`(h,x) − C∗` (H, x) as the calibration gap and denote it by ∆C`,H(h,x).

For any h ∈H and x ∈ X, by the symmetry and completeness of H, we can always find a family of hypotheses {hµ∶µ ∈ R} ⊂
H such that hµ(x, ⋅) take the following values:

hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
log(exp[h(x, ymax)] + µ) if y = h(x)
log(exp[h(x,h(x))] − µ) if y = ymax.

(17)

Note that the hypotheses hµ has the following property:

∑
y∈Y

eh(x,y) = ∑
y∈Y

ehµ(x,y), ∀µ ∈ R. (18)

Lemma B.1. Assume that H is symmetric and complete. Then, for any h ∈ X and x ∈ X, the following equality holds:

C`comp
τ

(h,x) − inf
µ∈R

C`comp
τ

(hµ, x)

= sup
µ∈R

{p(x, ymax)
⎛
⎝

Φτ
⎛
⎝
∑y′∈Y eh(x,y

′
)

eh(x,ymax)
− 1

⎞
⎠
−Φτ

⎛
⎝
∑y′∈Y eh(x,y

′
)

eh(x,h(x))−µ
− 1

⎞
⎠
⎞
⎠

+ p(x,h(x))
⎛
⎝

Φτ
⎛
⎝
∑y′∈Y eh(x,y

′
)

eh(x,h(x))
− 1

⎞
⎠
−Φτ

⎛
⎝
∑y′∈Y eh(x,y

′
)

eh(x,ymax)+µ
− 1

⎞
⎠
⎞
⎠
}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
τ−1

[∑y′∈Y eh(x,y
′
)]

1−τ
⎡⎢⎢⎢⎢⎣

(p(x,ymax)
1

2−τ +p(x,h(x))
1

2−τ )
2−τ

(eh(x,ymax)+eh(x,h(x)))1−τ
− p(x,ymax)

(eh(x,ymax))1−τ
− p(x,h(x))

(eh(x,h(x)))1−τ

⎤⎥⎥⎥⎥⎦
τ ∈ [0,2)/{1}

p(x, ymax) log[ (e
h(x,ymax)+eh(x,h(x)))p(x,ymax)

eh(x,ymax)(p(x,ymax)+p(x,h(x)))
] + p(x,h(x)) log[ (e

h(x,ymax)+eh(x,h(x)))p(x,h(x))
eh(x,h(x))(p(x,ymax)+p(x,h(x)))

] τ = 1

1
τ−1

[∑y′∈Y eh(x,y
′
)]

1−τ
[ p(x,ymax)

(eh(x,ymax)+eh(x,h(x)))1−τ
− p(x,ymax)

(eh(x,ymax))1−τ
− p(x,h(x))

(eh(x,h(x)))1−τ
] τ ∈ [2,+∞).

Proof. For the comp-sum loss `comp
τ , the conditional `comp

τ -risk can be expressed as follows:

C`comp
τ

(h,x) = ∑
y∈Y

p(x, y)`comp
τ (h,x, y)

= ∑
y∈Y

p(x, y)Φτ
⎛
⎝∑y′∈Y

eh(x,y
′)−h(x,y) − 1

⎞
⎠

= p(x, ymax)Φτ
⎛
⎝∑y′∈Y

eh(x,y
′)−h(x,ymax) − 1

⎞
⎠
+ p(x,h(x))Φτ

⎛
⎝∑y′∈Y

eh(x,y
′)−h(x,h(x)) − 1

⎞
⎠

+ ∑
y∉{ymax,h(x)}

p(x, y)Φτ
⎛
⎝∑y′∈Y

eh(x,y
′)−h(x,y) − 1

⎞
⎠
.
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Therefore, by (17) and (18), we obtain the first equality. The second equality can be obtained by taking the derivative with
respect to µ.

Lemma B.2. Assume that H is symmetric and complete. Then, for any h ∈ X and x ∈ X, the following equality holds

inf
h∈H

(C`comp
τ

(h,x) − inf
µ∈R

C`comp
τ

(hµ, x))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22−τ
1−τ [p(x,ymax)+p(x,h(x))

2
− [p(x,ymax)

1
2−τ +p(x,h(x))

1
2−τ

2
]
2−τ

] τ ∈ [0,1)

p(x, ymax) log[ 2p(x,ymax)
p(x,ymax)+p(x,h(x))] + p(x,h(x)) log[ 2p(x,h(x))

p(x,ymax)+p(x,h(x))] τ = 1

2
(τ−1)nτ−1 ([

p(x,ymax)
1

2−τ +p(x,h(x))
1

2−τ
2

]
2−τ

− p(x,ymax)+p(x,h(x))
2

) τ ∈ (1,2)
1

(τ−1)nτ−1 (p(x, ymax) − p(x,h(x))) τ ∈ [2,+∞).

Proof. By using Lemma B.1 and taking infimum with respect to eh(x,1), . . . , eh(x,n), the equality is proved directly.

Let α = p(x, ymax) + p(x,h(x)) ∈ [0,1] and β = p(x, ymax − p(x,h(x))) ∈ [0,1]. Then, using the fact that p(x, ymax) =
α+β

2
and p(x,h(x)) = α−β

2
, we can rewrite infh∈H(C`comp

τ
(h,x) − infµ∈R C`comp

τ
(hµ, x)) as

inf
h∈H

(C`comp
τ

(h,x) − inf
µ∈R

C`comp
τ

(hµ, x)) = Ψτ(α,β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

21−τ
1−τ [α − [ (α+β)

1
2−τ +(α−β)

1
2−τ

2
]
2−τ

] τ ∈ [0,1)
α+β

2
log[α+β

α
] + α−β

2
log[α−β

α
] τ = 1

1
(τ−1)nτ−1 ([

(α+β)
1

2−τ +(α−β)
1

2−τ
2

]
2−τ

− α) τ ∈ (1,2)
1

(τ−1)nτ−1 β τ ∈ [2,+∞).

(19)

By taking the partial derivative of Ψτ(α, ⋅) with respect to α and analyzing the minima, we obtain the following result.

Lemma B.3. For any τ ∈ [0,+∞) and α ∈ [0,1], the following inequality holds for any β ∈ [0,1],

Ψτ(α,β) ≥ Ψτ(1, β) = Tτ(β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

21−τ
1−τ [1 − [ (1+β)

1
2−τ +(1−β)

1
2−τ

2
]
2−τ

] τ ∈ [0,1)
1+β

2
log[1 + β] + 1−β

2
log[1 − β] τ = 1

1
(τ−1)nτ−1 [[

(1+β)
1

2−τ +(1−β)
1

2−τ
2

]
2−τ

− 1] τ ∈ (1,2)
1

(τ−1)nτ−1 β τ ∈ [2,+∞).

We denote by Tτ(β) = Ψτ(1, β) and call it the H-consistency comp-sum transformation, and denote by Γτ the inverse of
Tτ : Γτ(t) = T−1

τ (t). We then present the proofs of Theorem 3.1 and Theorem 3.2 in the below.

Theorem 3.1 (H-consistency bounds for comp-sum losses). Assume that H is symmetric and complete. Then, for any
τ ∈ [0,∞) and any h ∈H, the following inequality holds:

R`0−1(h) −R∗
`0−1(H) ≤ Γτ(R`comp

τ
(h) −R∗

`comp
τ

(H) +M`comp
τ

(H)) −M`0−1(H),

where Γτ(t) = T−1
τ (t) is the inverse of H-consistency comp-sum transformation, defined for all β ∈ [0,1] by Tτ(β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

21−τ
1−τ [1 − [ (1+β)

1
2−τ +(1−β)

1
2−τ

2
]
2−τ

] τ ∈ [0,1)
1+β

2
log[1 + β] + 1−β

2
log[1 − β] τ = 1

1
(τ−1)nτ−1 [[

(1+β)
1

2−τ +(1−β)
1

2−τ
2

]
2−τ
− 1] τ ∈ (1,2)

1
(τ−1)nτ−1 β τ ∈ [2,+∞).
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Proof. Using previous lemmas, we can lower bound the calibration gap of comp-sum losses as follows, for any h ∈H,

C`comp
τ

(h,x) − C∗`comp
τ

(H, x)
≥ C`comp

τ
(h,x) − inf

µ∈R
C`comp

τ
(hµ, x)

≥ inf
h∈H

(C`comp
τ

(h,x) − inf
µ∈R

C`comp
τ

(hµ, x))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22−τ
1−τ [p(x,ymax)+p(x,h(x))

2
− [p(x,ymax)

1
2−τ +p(x,h(x))

1
2−τ

2
]
2−τ

] τ ∈ [0,1)

p(x, ymax) log[ 2p(x,ymax)
p(x,ymax)+p(x,h(x))] + p(x,h(x)) log[ 2p(x,h(x))

p(x,ymax)+p(x,h(x))] τ = 1

2
(τ−1)nτ−1 ([

p(x,ymax)
1

2−τ +p(x,h(x))
1

2−τ
2

]
2−τ

− p(x,ymax)+p(x,h(x))
2

) τ ∈ (1,2)
1

(τ−1)nτ−1 (p(x, ymax) − p(x,h(x))) τ ∈ [2,+∞)

(By Lemma B.2)

≥ Tτ(p(x, ymax) − p(x,h(x))) (By (19) and Lemma B.3)

= Tτ(C`0−1(h,x) − C∗`0−1(H, x)) (by (Awasthi et al., 2022a, Lemma 3))

Therefore, taking P be the set of all distributions, H be the symmetric and complete hypothesis set, ε = 0 and Ψ(β) = Tτ(β)
in (Awasthi et al., 2022a, Theorem 4), or, equivalently, Γ(t) = Γτ(t) in (Awasthi et al., 2022a, Theorem 5), we obtain for
any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1(H) ≤ Γτ(R`comp

τ
(h) −R∗

`comp
τ

(H) +M`comp
τ

(H)) −M`0−1(H).

Theorem 3.2 (Tightness). Assume that H is symmetric and complete. Then, for any τ ∈ [0,1] and β ∈ [0,1], there exist
a distribution D and a hypothesis h ∈ H such that R`0−1(h) − R∗

`0−1,H +M`0−1,H = β and R`comp
τ

(h) − R∗
`comp
τ

(H) +
M`comp

τ
(H) = Tτ(β).

Proof. For any β ∈ [0,1], we consider the distribution that concentrates on a singleton {x0} and satisfies p(x0,1) = 1+β
2

,
p(x0,2) = 1−β

2
, p(x0, y) = 0, 3 ≤ y ≤ n. We take hτ ∈H such that ehτ (x,1) = ehτ (x,2), ehτ (x,y) = 0, 3 ≤ y ≤ n. Then,

R`0−1(hτ) −R∗
`0−1,H +M`0−1,H = R`0−1(hτ) −EX[C∗`0−1(H, x)] = C`0−1(hτ , x0) − C∗`0−1(H, x0) = β

and for any τ ∈ [0,1],

R`comp
τ

(hτ) −R∗
`comp
τ

(H) +M`comp
τ

(H)
= R`comp

τ
(hτ) −EX[C∗`comp

τ
(H, x)]

= C`comp
τ

(hτ , x0) − C∗`comp
τ

(H, x0)
= p(x0,1)`comp

τ (hτ , x0,1) + p(x0,2)`comp
τ (hτ , x0,2) − inf

h∈H
[p(x0,1)`comp

τ (h,x0,1) + p(x0,2)`comp
τ (h,x0,2)]

= Tτ(β), (By (4) and (10))

which completes the proof.

C. Approximations of Tτ and Γτ

In this section, we show how Tτ can be lower bounded by its polynomial approximation T̃τ , and accordingly, Γτ can then
be upper bounded by Γ̃τ = T̃−1

τ . By analyzing the Taylor expansion, we obtain for any β ∈ [−1,1],

((1 + β)r + (1 − β)r
2

)
1
r

≥ 1 + β
2

2
(1 − 1

r
), for all r ≥ 1

((1 + β)r + (1 − β)r
2

)
1
r

≤ 1 − β
2

2
(1 − r), for all

1

2
≤ r ≤ 1.

(20)
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and

1 + β
2

log[1 + β] + 1 − β
2

log[1 − β] ≥ β
2

2
. (21)

For τ ∈ [0,1), we have

Tτ(β) =
21−τ

1 − τ

⎡⎢⎢⎢⎢⎢⎣
1 −

⎡⎢⎢⎢⎢⎣

(1 + β)
1

2−τ + (1 − β)
1

2−τ

2

⎤⎥⎥⎥⎥⎦

2−τ⎤⎥⎥⎥⎥⎥⎦

≥ 21−τ

1 − τ [1 − [1 − β
2

2

1 − τ
2 − τ ]] (using (20) with r = 1

2−τ ∈ [ 1
2
,1])

= β2

2τ(2 − τ)
= T̃τ(β).

For τ ∈ (1,2), we have

Tτ(β) =
1

(τ − 1)nτ−1

⎡⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣

(1 + β)
1

2−τ + (1 − β)
1

2−τ

2

⎤⎥⎥⎥⎥⎦

2−τ

− 1

⎤⎥⎥⎥⎥⎥⎦

≥ 1

(τ − 1)nτ−1
[[1 + β

2

2
(τ − 1)] − 1] (using (20) with r = 1

2−τ ≥ 1)

= β2

2nτ−1

= T̃τ(β).

For τ = 1, we have

Tτ(β) =
1 + β

2
log[1 + β] + 1 − β

2
log[1 − β]

≥ β
2

2
(using (21))

= T̃τ(β).

For τ ≥ 2, Tτ(β) = β
(τ−1)nτ−1 = T̃τ(β). Therefore, for any τ ∈ [0,+∞),

Tτ(β) ≥ T̃τ(β) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β2

2τ (2−τ) τ ∈ [0,1)
β2

2nτ−1 τ ∈ [1,2)
β

(τ−1)nτ−1 τ ∈ [2,+∞).

Furthermore, by using Taylor expansion, we have

lim
β→0+

T̃τ(β)
Tτ(β)

= c > 0 for some constant c > 0.

Thus, the order of polynomials T̃τ(β) is tightest. Since Γτ = T−1
τ and Γ̃τ = T̃−1

τ , we also obtain for any τ ∈ [0,+∞),

Γτ(t) ≤ Γ̃τ(t) = T̃−1
τ (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2τ(2 − τ)t τ ∈ [0,1)√
2nτ−1t τ ∈ [1,2)

(τ − 1)nτ−1t τ ∈ [2,+∞).
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D. Characterization of minimizability gaps (proofs of Theorem 4.1 and Theorem 4.2)
Theorem 4.1 (Characterization of minimizability gaps - stochastic case). Assume that H is symmetric and complete.
Then, for the comp-sum losses `comp

τ , the minimizability gaps can be upper bounded as follows:

M`comp
τ

(H) ≤ Φτ(R∗
`comp
τ=0

(H)) −E
x
[C∗`comp

τ
(H, x)], (9)

where C∗`comp
τ

(H, x) is given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
1−τ ([∑y∈Y p(x, y)

1
2−τ ]

2−τ
− 1) τ ≥ 0, τ ≠ 1, τ ≠ 2

−∑y∈Y p(x, y) log[p(x, y)] τ = 1

1 −maxy∈Y p(x, y) τ = 2.

(10)

Proof. Using the fact that Φτ is concave and non-decreasing, by (8), we can then upper bound the minimizability gaps for
different τ ≥ 0 as follows,

M`comp
τ

(H) ≤ Φτ(R∗
`comp
τ=0

(H)) −E
x
[C∗`comp

τ
(H, x)].

By definition, the conditional `comp
τ -risk can be expressed as follows:

C`comp
τ

(h,x) = ∑
y∈Y

p(x, y)Φτ
⎛
⎝∑y′≠y

exp(h(x, y′) − h(x, y))
⎞
⎠
. (22)

Note that C`comp
τ

(h,x) is convex and differentiable with respect to h(x, y)s, by taking the partial derivative and using the
derivative of Φτ given in (3), we obtain

∂C`comp
τ

(h,x)
∂h(x, y)

= p(x, y)∂Φτ
∂u

⎛
⎝∑y′≠y

exp(h(x, y′) − h(x, y))
⎞
⎠
⎛
⎝
− ∑
y′≠y

exp(h(x, y′) − h(x, y))
⎞
⎠

+ ∑
y′≠y

p(x, y′)∂Φτ
∂u

⎛
⎝ ∑y′′≠y′

exp(h(x, y′′) − h(x, y′))
⎞
⎠
(exp(h(x, y) − h(x, y′)))

= p(x, y)
−∑y′≠y exp(h(x, y′) − h(x, y))
[∑y′∈Y exp(h(x, y′) − h(x, y))]τ

+ ∑
y′≠y

p(x, y′) exp(h(x, y) − h(x, y′))
[∑y′′∈Y exp(h(x, y′′) − h(x, y′))]τ

(23)

Let S(x, y) = ∑y′∈Y exp(h(x, y′) − h(x, y)). Then, exp(h(x, y) − h(x, y′)) = S(x,y′)
S(x,y) and thus (23) can be written as

∂C`comp
τ

(h,x)
∂h(x, y) = p(x, y)−S(x, y) + 1

S(x, y)τ + ∑
y′≠y

p(x, y′) 1

S(x, y′)τ−1S(x, y) (24)

It is straightforward to verify that

S∗(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑y′∈Y p(x,y′)
1

2−τ

p(x,y)
1

2−τ
τ ≠ 2

1
1y=argmaxy′∈Y p(x,y′)

τ = 2
(25)

satisfy

∂C`comp
τ

(h,x)
∂h(x, y) = 0,∀y ∈ Y.
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When H is symmetric and complete, (25) can be attained by some h∗ ∈H. Since C`comp
τ

(h,x) is convex and differentiable
with respect to h(x, y)s, we know that h∗ achieves the minimum of C`comp

τ
(h,x) within H. Then,

C∗`comp
τ

(H, x) = C`comp
τ

(h∗, x)

= ∑
y∈Y

p(x, y)Φτ
⎛
⎝∑y′≠y

exp(h∗(x, y′) − h∗(x, y))
⎞
⎠

= ∑
y∈Y

p(x, y)Φτ(S∗(x, y) − 1) (by the def. of S(x, y).)

=
⎧⎪⎪⎨⎪⎪⎩

∑y∈Y p(x, y) 1
1−τ (S

∗(x, y)1−τ − 1) τ ≥ 0, τ ≠ 1

∑y∈Y p(x, y) log[S∗(x, y)] τ = 1
(by (4).)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
1−τ ([∑y∈Y p(x, y)

1
2−τ ]

2−τ
− 1) τ ≥ 0, τ ≠ 1, τ ≠ 2

−∑y∈Y p(x, y) log[p(x, y)] τ = 1

1 −maxy∈Y p(x, y) τ = 2.

(by (25))

Theorem 4.2 (Characterization of minimizability gaps - deterministic case). Assume that for any x ∈ X, we have
{(h(x,1), . . . , h(x,n))∶h ∈H} = [−Λ,+Λ]n. Then, for comp-sum losses `comp

τ and any deterministic distribution, the
minimizability gaps can be upper bounded as follows:

M`comp
τ

(H) ≤ Φτ(R∗
`comp
τ=0

(H)) − C∗`comp
τ

(H, x), (11)

where C∗`comp
τ

(H, x) is given by

⎧⎪⎪⎨⎪⎪⎩

1
1−τ ([1 + e

−2Λ(n − 1)]1−τ − 1) τ ≥ 0, τ ≠ 1

log[1 + e−2Λ(n − 1)] τ = 1.
(12)

Proof. Using the fact that Φτ is concave and non-decreasing, by (8), we can then upper bound the minimizability gaps for
different τ ≥ 0 as follows,

M`comp
τ

(H) ≤ Φτ(R∗
`comp
τ=0

(H)) −E
x
[C∗`comp

τ
(H, x)].

Let ymax = argmaxp(x, y). By definition, for any deterministic distribution, the conditional `comp
τ -risk can be expressed as

follows:

C`comp
τ

(h,x) =Φτ
⎛
⎝ ∑
y′≠ymax

exp(h(x, y′) − h(x, ymax))
⎞
⎠

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
1−τ ((1 + ∑y′≠ymax

exp(h(x,y′))
exp(h(x,ymax)) )

1−τ
− 1)

log(1 + ∑y′≠ymax
exp(h(x,y′))

exp(h(x,ymax)) ).

(26)

Since for any τ > 0, Φτ is increasing, under the assumption of H, h∗ that satisfies

h∗(x, y) =
⎧⎪⎪⎨⎪⎪⎩

Λ y = ymax

−Λ otherwise
(27)
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achieves the minimum of C`comp
τ

(h,x) within H. Then,

C∗`comp
τ

(H, x) = C`comp
τ

(h∗, x)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
1−τ ((1 + ∑y′≠ymax

exp(h∗(x,y′))
exp(h∗(x,ymax)) )

1−τ
− 1)

log(1 + ∑y′≠ymax
exp(h∗(x,y′))

exp(h∗(x,ymax)) ).

=
⎧⎪⎪⎨⎪⎪⎩

1
1−τ ([1 + e

−2Λ(n − 1)]1−τ − 1) τ ≥ 0, τ ≠ 1

log[1 + e−2Λ(n − 1)] τ = 1.
(by (27))

Since C∗`comp
τ

(H, x) is independent of x, we have Ex[C∗`comp
τ

(H, x)] = C∗`comp
τ

(H, x) and thus

M`comp
τ

(H) ≤ Φτ(R∗
`comp
τ=0

(H)) − C∗`comp
τ

(H, x),

which concludes the proof.

E. Proof of Lemma 4.3
Lemma E.1. For any u1 ≥ u2 ≥ 0, Φτ(u1) −Φτ(u2) is non-increasing with respect to τ .

Proof. For any u1 ≥ u2 ≥ 0 and τ ≠ 1, we have

∂(Φτ(u1) −Φτ(u2))
∂τ

=
((1 + u1)1−τ − (1 + u2)1−τ)

(1 − τ)2
+ 1

1 − τ ((1 + u2)1−τ
log(1 + u2) − (1 + u1)1−τ

log(1 + u1))

= g(u1, τ) − g(u2, τ)
(1 − τ)2

where g(t, τ) = (1+ t)1−τ − (1− τ)(1 + t)1−τ
log(1+ t). By taking the partial derivative, we obtain for any τ ≠ 1 and t ≥ 0,

∂g

∂t
= −(1 − τ)2(1 + t)τ log(1 + t) ≤ 0

Therefore, for any u1 ≥ u2 ≥ 0 and τ ≠ 1, g(u1, τ) ≤ g(u2, τ) and

∂(Φτ(u1) −Φτ(u2))
∂τ

≤ 0,

which implies that for any u1 ≥ u2 ≥ 0 and τ ≠ 1, Φτ(u1) −Φτ(u2) is a non-increasing function of τ . Moreover, since for
x ≥ 1, 1

τ−1
(xτ−1 − 1)→ log(x) as τ → 1, we know that for any u1 ≥ u2 ≥ 0, Φτ(u1) −Φτ(u2) is continuous with respect

to τ = 1. Therefore, we conclude that for any u1 ≥ u2 ≥ 0, Φτ(u1) −Φτ(u2) is non-increasing with respect to τ .

F. Proof of adversarial H-consistency bound for adversarial comp-sum losses (Theorem 5.2)
Theorem 5.2 (H-consistency bound of ̃̀comp

τ,ρ ). Assume that H is symmetric and locally ρ-consistent. Then, for any choice
of the hyperparameters τ, ρ > 0, any hypothesis h ∈H, the following inequality holds:

R`γ (h) −R∗
`γ (H) ≤ Φτ(1)(R̃̀comp

τ,ρ
(h) −R∗

̃̀comp
τ,ρ

(H) +M̃̀comp
τ,ρ

(H)) −M`γ (H).

Proof. Let Hγ(x) = {h ∈H ∶ infx′∶∥x−x′∥≤γ ρh(x′,h(x)) > 0} and p(x) = (p(x,1), . . . , p(x, c)). For any x ∈ X and

h ∈H, we define h(x,{1}hx), h(x,{2}hx), . . . , h(x,{c}
h
x) by sorting the scores {h(x, y) ∶ y ∈ Y} in increasing order, and
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p[1](x), p[2](x), . . . , p[c](x) by sorting the probabilities {p(x, y) ∶ y ∈ Y} in increasing order. Note {c}hx = h(x). Since H

is symmetric and locally ρ-consistent, for any x ∈ X, there exists a hypothesis h∗ ∈H such that

inf
x′∶∥x−x′∥≤γ

∣h∗(x′, i) − h∗(x′, j)∣ ≥ ρ,∀i ≠ j ∈ Y

p(x,{k}h
∗

x′ ) = p[k](x),∀x
′ ∈ {x′∶ ∥x − x′∥ ≤ γ},∀k ∈ Y.

Then, we have

C∗̃̀comp
τ,ρ

(H, x)

≤ C̃̀comp
τ,ρ

(h∗, x)

= ∑
y∈Y

sup
x′∶∥x−x′∥≤γ

p(x, y)Φτ
⎛
⎝∑y′≠y

Φρ(h∗(x′, y) − h∗(x′, y′))
⎞
⎠

=
c

∑
i=1

sup
x′∶∥x−x′∥≤γ

p(x,{i}h
∗

x′ )Φ
τ
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h∗(x′,{i}h
∗

x′ ) − h
∗(x′,{j}h

∗

x′ )) +
c

∑
j=i+1

Φρ(h∗(x′,{i}h
∗

x′ ) − h
∗(x′,{j}h

∗

x′ ))
⎤⎥⎥⎥⎦

=
c

∑
i=1

sup
x′∶∥x−x′∥≤γ

p(x,{i}h
∗

x′ )Φ
τ
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h∗(x′,{i}h
∗

x′ ) − h
∗(x′,{j}h

∗

x′ )) + c − i
⎤⎥⎥⎥⎦

(Φρ(t) = 1, ∀t ≤ 0)

=
c

∑
i=1

sup
x′∶∥x−x′∥≤γ

p(x,{i}h
∗

x′ )Φ
τ(c − i) (infx′∶∥x−x′∥≤γ ∣h∗(x′, i) − h∗(x′, j)∣ ≥ ρ for any i ≠ j and Φρ(t) = 0, ∀t ≥ ρ)

=
c

∑
i=1

p[i](x)Φτ(c − i). (p(x,{k}h
∗

x′ ) = p[k](x),∀x′ ∈ {x′∶ ∥x − x′∥ ≤ γ},∀k ∈ Y)

Note Hγ(x) ≠ ∅ under the assumption. Then, use the derivation above, we obtain

∆C̃̀comp
τ,ρ ,H(h,x)

=
c

∑
i=1

sup
x′∶∥x−x′∥≤γ

p(x,{i}hx′)Φ
τ
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x′,{i}hx′) − h(x
′,{j}hx′)) + c − i

⎤⎥⎥⎥⎦
−

c

∑
i=1

p[i](x)Φτ(c − i)

≥ Φτ(1)p(x,h(x))1h/∈Hγ(x) +
c

∑
i=1

sup
x′∶∥x−x′∥≤γ

p(x,{i}hx′)Φ
τ(c − i) −

c

∑
i=1

p[i](x)Φτ(c − i)

(Φρ is non-negative and Φτ is non-decreasing)

≥ Φτ(1)p(x,h(x))1h/∈Hγ(x) +
c

∑
i=1

p(x,{i}hx)Φ
τ(c − i) −

c

∑
i=1

p[i](x)Φτ(c − i) (supx′∶∥x−x′∥≤γ p(x,{i}
h
x′) ≥ p(x,{i}

h
x)

= Φτ(1)p(x,h(x))1h/∈Hγ(x) +Φτ(1)(max
y∈Y

p(x, y) − p(x,h(x)))

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φτ(1)
Φτ(1)
Φτ(2)
⋮

Φτ(c − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(x,{c}hx)
p(x,{c − 1}hx)
p(x,{c − 2}hx)

⋮
p(x,{1}hx)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φτ(1)
Φτ(1)
Φτ(2)
⋮

Φτ(c − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p[c](x)
p[c−1](x)
p[c−2](x)

⋮
p[1](x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(p[c](x) = maxy∈Y p(x, y), {c}hx = h(x) and Φτ(0) = 0)

≥ Φτ(1)p(x,h(x))1h/∈Hγ(x) +Φτ(1)(max
y∈Y

p(x, y) − p(x,h(x)))

(rearrangement inequality for Φτ(1) ≤ Φτ(1) ≤ Φτ(2) ≤ ⋯ ≤ Φτ(c − 1) and p[c](x) ≥ ⋯ ≥ p[1](x))

= Φτ(1)(max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x))
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for any h ∈H. Since H is symmetric and Hγ(x) ≠ ∅, we have

∆C`γ ,H(h,x) = C`γ (h,x) − C∗`γ (H, x)
= ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥≤γ

1ρh(x′,y)≤0 − inf
h∈H
∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥≤γ

1ρh(x′,y)≤0

= (1 − p(x,h(x)))1h∈Hγ(x) + 1h/∈Hγ(x) − inf
h∈H

[(1 − p(x,h(x)))1h∈Hγ(x) + 1h/∈Hγ(x)]

= (1 − p(x,h(x)))1h∈Hγ(x) + 1h/∈Hγ(x) − (1 −max
y∈Y

p(x, y)) (H is symmetric and Hγ(x) ≠ ∅)

= max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x).

Therefore, by the definition, we obtain

R`γ (h) −R∗
`γ (H) +M`γ (H) = EX[∆C`γ (h,x)]

= EX[max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x)]

≤ Φτ(1)EX[∆C̃̀comp
τ,ρ ,H(h,x)]

= Φτ(1)(R̃̀comp
τ,ρ

(h) −R∗
̃̀comp
τ,ρ

(H) +M̃̀comp
τ,ρ

(H)),

which implies that

R`γ (h) −R∗
`γ (H) ≤ Φτ(1)(R̃̀comp

τ,ρ
(h) −R∗

̃̀comp
τ,ρ

(H) +M̃̀comp
τ,ρ

(H)) −M`γ (H).

G. Learning bounds (proof of Theorem 3.3)
Theorem 3.3. With probability at least 1 − δ over the draw of a sample S from Dm, the following zero-one loss estimation
bound holds for an empirical minimizer ĥS ∈H of the comp-sum loss `comp

τ over S:

R`0−1(ĥS) −R∗
`0−1(H) ≤ Γτ(M`comp

τ
(H) + 4Rτ

m(H) + 2Bτ

√
log 2

δ

2m
) −M`0−1(H).

Proof. By the standard Rademacher complexity bounds (Mohri et al., 2018), the following holds with probability at least
1 − δ for all h ∈H:

∣R`comp
τ

(h) − R̂`comp
τ ,S(h)∣ ≤ 2Rτ

m(H) +Bτ
√

log(2/δ)
2m

.

Fix ε > 0. By the definition of the infimum, there exists h∗ ∈H such that R`comp
τ

(h∗) ≤ R∗
`comp
τ

(H) + ε. By definition of ĥS ,
we have

R`comp
τ

(ĥS) −R∗
`comp
τ

(H)
= R`comp

τ
(ĥS) − R̂`comp

τ ,S(ĥS) + R̂`comp
τ ,S(ĥS) −R∗

`comp
τ

(H)
≤ R`comp

τ
(ĥS) − R̂`comp

τ ,S(ĥS) + R̂`comp
τ ,S(h∗) −R∗

`comp
τ

(H)
≤ R`comp

τ
(ĥS) − R̂`comp

τ ,S(ĥS) + R̂`comp
τ ,S(h∗) −R∗

`comp
τ

(h∗) + ε

≤ 2[2Rτ
m(H) +Bτ

√
log(2/δ)

2m
] + ε.

Since the inequality holds for all ε > 0, it implies:

R`comp
τ

(ĥS) −R∗
`comp
τ

(H) ≤ 4Rτ
m(H) + 2Bτ

√
log(2/δ)

2m
.

Plugging in this inequality in the bound of Theorem 3.1 completes the proof.
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