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Abstract

The balanced loss is a widely adopted objective for multi-class classification un-
der class imbalance. By assigning equal importance to all classes, regardless of
their frequency, it promotes fairness and ensures that minority classes are not
overlooked. However, directly minimizing the balanced classification loss is typ-
ically intractable, which makes the design of effective surrogate losses a central
question. This paper introduces and studies two advanced surrogate loss families:
Generalized Logit-Adjusted (GLA) loss functions and Generalized Class-Aware
weighted (GCA) losses. GLA losses generalize Logit-Adjusted losses, which
shift logits based on class priors, to the broader general cross-entropy loss fam-
ily. GCA loss functions extend the standard class-weighted losses, which scale
losses inversely by class frequency, by incorporating class-dependent confidence
margins and extending them to the general cross-entropy family. We present a
comprehensive theoretical analysis of consistency for both loss families. We show
that GLA losses are Bayes-consistent, but only H-consistent for complete (i.e.,
unbounded) hypothesis sets. Moreover, their H-consistency bounds depend in-
versely on the minimum class probability, scaling at least as 1/pmin. In contrast,
GCA losses are H-consistent for any hypothesis set that is bounded or complete,
with H-consistency bounds that scale more favorably as 1/√pmin, offering sig-
nificantly stronger theoretical guarantees in imbalanced settings. We report the
results of experiments demonstrating that, empirically, both the GCA losses with
calibrated class-dependent confidence margins and GLA losses can greatly out-
perform straightforward class-weighted losses as well as the LA losses. GLA
generally performs slightly better in common benchmarks, whereas GCA exhibits
a slight edge in highly imbalanced settings. Thus, we advocate for both GLA and
GCA losses as principled, theoretically sound, and state-of-the-art surrogates for
balanced classification under class imbalance.

1 Introduction

Class imbalance is a prevalent challenge in real-world multi-class classification problems. Appli-
cations such as medical diagnosis, fraud detection, and rare event prediction often involve highly
skewed label distributions, where a small subset of classes dominate the data, while others, sometimes
the most critical, are heavily underrepresented. Standard training objectives, such as minimizing the
unweighted cross-entropy loss, tend to be biased toward majority classes, leading to poor performance
on minority classes and undermining the fairness, soundness and reliability of learned models.

To address this issue, a widely studied approach is to minimize the balanced loss, which assigns
equal importance to all classes regardless of their frequency in the training data [Chan and Stolfo,
1998, Brodersen et al., 2010, Kotlowski et al., 2011, Menon et al., 2013, Cao et al., 2019, Menon
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et al., 2021, Cui et al., 2019]. This promotes fairness by equalizing performance across demographic
groups [Khalili et al., 2023, Hardt et al., 2016] and ensures that minority classes are not overlooked
in long-tailed datasets [Feldman, 2020, Zhang et al., 2023] (see Appendix A). It is also crucial in
federated learning, where data imbalances across clients can lead to biased models that favor heavy
users [Li et al., 2021, McMahan et al., 2017, Mohri et al., 2019]. By reweighting the loss contributions
from different classes, the balanced loss promotes equitable treatment of all labels and has been
shown to better align with metrics such as balanced accuracy and macro-F1. However, directly
optimizing the balanced classification loss is typically intractable in practice. Thus, the design of
effective surrogate losses that are tractable to optimize is a central challenge in imbalanced learning.

This paper introduces and studies two families of surrogate losses: Generalized Logit-Adjusted
(GLA) loss functions and Generalized Class-Aware weighted (GCA) losses. GLA losses generalize
Logit-Adjusted losses [Menon et al., 2021], which shift logits based on class priors, to the broader
general cross-entropy loss family [Mao et al., 2023f]. GCA loss functions extend the standard class-
weighted losses, which scale losses inversely by class frequency, by incorporating class-dependent
confidence margins and extending them to the general cross-entropy family.

We present a comprehensive theoretical analysis of their consistency. We show that GLA losses
are Bayes-consistent [Zhang, 2004a, Bartlett et al., 2006, Zhang, 2004b, Tewari and Bartlett, 2007,
Steinwart, 2007], but only H-consistent [Awasthi et al., 2022a,b, Mao et al., 2023f,b] for complete (i.e.,
unbounded) hypotheses. Moreover, their H-consistency bounds depend inversely on the minimum
class probability, pmin, scaling at least as 1/pmin. In contrast, GCA losses are H-consistent for any
hypothesis set that is bounded or complete, with H-consistency bounds that scale more favorably as
1/√pmin, offering significantly stronger theoretical guarantees in imbalanced settings.

We also report the results of experiments demonstrating that, empirically, both the GCA losses with
calibrated class-dependent confidence margins and GLA losses comfortably outperform straight-
forward class-weighted losses as well as the LA losses. GLA generally performs slightly better in
common benchmarks, whereas GCA exhibits a slight edge in highly imbalanced settings.

Taken together, our results establish GLA and GCA losses as theoretically grounded and practically
effective classification algorithms for tackling class imbalance in multi-class learning. Their comple-
mentary strengths make them well-suited for a wide range of real-world applications where fairness
across classes is paramount.

The rest of this paper is structured as follows. Section 3 reviews fundamental concepts related to class
imbalance in multi-class classification, introduces the balanced loss (Section 3.1), discusses existing
surrogate losses (Section 3.2), and highlights the limitations of current approaches (Section 3.3). Sec-
tion 4 introduces two novel surrogate loss families: Generalized Logit-Adjusted (GLA) (Section 4.1)
and Generalized Class-Aware weighted (GCA) losses (Section 4.2). A comprehensive theoretical
analysis of their consistency and margin bounds is provided in Section 5 and Appendix B. Finally,
Section 6 reports empirical results on CIFAR-10, CIFAR-100, and Tiny ImageNet, demonstrating the
effectiveness of our algorithms, which are based on the minimization of these loss functions.

2 Preliminaries

Let X denote the input space and Y = [n] ∶= {1, . . . , n} represent the set of n possible labels. We
consider a data distribution D over the combined input-label space X×Y. Our hypothesis set, denoted
by H, consists of functions that map an input-label pair (x, y) to a real-valued score, h∶X×Y→ R. We
denote by p(x) the marginal probability density of an input x, and by p(y) the marginal probability
of a class label y. The minimum class marginal is defined as pmin =miny∈Y p(y). The conditional
distributions p(x ∣ y) and p(y ∣ x) represent the probability of input x given label y, and label y given
input x, respectively.

Let Hall denote the set of all measurable functions, and a ℓ∶Hall×X×Y→ R the loss function adopted
to penalize inaccurate predictions. Then, the generalization error of a hypothesis h ∈H is defined as
its expected loss: Rℓ(h) = E(x,y)∼D[ℓ(h,x, y)]. The lowest possible generalization error achievable
within the hypothesis set H is the best-in-class generalization error, R∗ℓ (H) = infh∈HRℓ(h).
For any input x ∈ X, a hypothesis h ∈ H assigns a predicted label h(x) by selecting the class with
the highest score: h(x) = argmaxy∈Y h(x, y) (ties are broken by choosing the highest index). The
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standard zero-one loss function for multi-class classification is defined as ℓ0−1(h,x, y) ∶= 1h(x)≠y,
which is 1 if the prediction is incorrect and 0 otherwise.

The margin ρh(x, y) for a predictor h ∈H on a labeled example (x, y) measures the confidence of
the correct prediction: ρh(x, y) = h(x, y) −maxy′≠y h(x, y′). This is the difference between the
score of the true label y and the highest score among all other labels y′.

The generalization error of a hypothesis h can also be expressed as the expectation of the conditional
error over the input x: Rℓ(h) = Ex[Cℓ(h,x)], where Cℓ(h,x) = ∑y∈Y p(y ∣ x)ℓ(h,x, y). The
best-in-class conditional error is C∗ℓ (H, x) = infh∈H Cℓ(h,x). The difference, ∆Cℓ,H(h,x) =
Cℓ(h,x) − C∗ℓ (H, x), is termed the conditional regret for the loss function ℓ. These concepts and
definitions are useful in our analysis of the consistency of loss functions.

3 Background and Related Work

We first review fundamental concepts related to class imbalance in multi-class classification, introduce
the balanced loss, discuss existing surrogate losses, and highlight the limitations of current approaches.

3.1 Class Imbalance and Balanced Loss

Class imbalance in multi-class settings arises when the label distribution p(y) is highly skewed,
with some classes (often referred to as "tail" labels) having much lower probabilities of occurrence
compared to others (the "head" or majority classes). In such cases, many recent studies [Chan and
Stolfo, 1998, Brodersen et al., 2010, Kotlowski et al., 2011, Menon et al., 2013, Cao et al., 2019,
Menon et al., 2021, Cui et al., 2019] suggest that the balanced loss (ℓBAL) is a more appropriate loss
function than the standard zero-one loss. The balanced loss assigns equal importance to all classes,
irrespective of their frequency, and is thus viewed as promoting fairness by equalizing performance
across demographic groups [Khalili et al., 2023, Hardt et al., 2016, Conitzer et al., 2019] and ensuring
minority classes are not overlooked in long-tailed datasets [Feldman, 2020, Zhang et al., 2023] (see
Appendix A). It is also crucial in federated learning, where data imbalances across clients can lead to
biased models that favor majority users [Li et al., 2021, McMahan et al., 2017, Mohri et al., 2019].

The balanced loss reduces the influence of class imbalances by averaging the per-class loss by
weighting the error for each example (h,x, y) by the inverse of the probability of the true class p(y):

ℓBAL(h,x, y) =
1h(x)≠y

p(y)
. (1)

The following lemma characterizes the best-in-class conditional error and the corresponding con-
ditional regret for the balanced loss. For any input x ∈ X, we denote by H(x) the set of labels that
can be predicted by hypotheses in H for that input: H(x) = {h(x)∶h ∈H}. The proof of Lemma 1 is
provided in Appendix D.
Lemma 1. For any x ∈ X, the best-in-class conditional error and the conditional regret for ℓBAL

can be expressed as follows:

C∗ℓBAL
(H, x) = ∑

y∈Y

p(y ∣ x)
p(y)

− max
y∈H(x)

p(y ∣ x)
p(y)

∆CℓBAL,H(h,x) = max
y∈H(x)

p(y ∣ x)
p(y)

− p(h(x)) ∣ x)
p(h(x))

.

3.2 Existing Surrogate Losses for Balanced Learning

Several surrogate losses have been proposed for optimizing the balanced loss. Here, we review two
prominent Bayes-consistent examples:

Class-Weighted Cross-Entropy: A common strategy is to use the class-weighted cross-entropy
loss [Xie and Manski, 1989, Morik et al., 1999], which adjusts the standard cross-entropy loss by
weighting each example inversely proportional to its class frequency p(y):

ℓWCE(h,x, y) = −
1

p(y)
log( eh(x,y)

∑y′∈Y e
h(x,y′)

). (2)

As pointed by [Byrd and Lipton, 2019], the limitation of ℓWCE is that in separable cases, class-
weighted cross-entropy may still yield solutions with zero training loss that do not adjust decision
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boundaries meaningfully toward minority or majority classes. This is because class weighting does
not influence the classifier once perfect separation is achieved. As a result, the method fails to address
imbalance in such regimes.

Logit-Adjusted (LA) Losses: More recently, Menon et al. [2021] introduced Logit-Adjusted (LA)
losses. These losses modify the logits (outputs before softmax) based on class priors, typically by
adding a term τ log(p(y)) with τ > 0:

ℓLA(h,x, y) = − log(
eh(x,y)+τ log(p(y))

∑y′∈Y e
h(x,y′)+τ log(p(y′))

). (3)

As we will show in Section 5, ℓLA is not Bayes-consistent for the balanced loss when τ ≠ 1.

A detailed discussion of other approaches for handling class imbalance, including alternative loss
weighting schemes [Cui et al., 2019, Fan et al., 2017, Jamal et al., 2020, Wang et al., 2023, 2025, Li
et al., 2025], margin modifications [Masnadi-Shirazi and Vasconcelos, 2010, Iranmehr et al., 2019,
Zhang et al., 2017, Cao et al., 2019, Tan et al., 2020, Jiawei et al., 2020], data augmentation and
sampling techniques [Kubat and Matwin, 1997, Wallace et al., 2011, Chawla et al., 2002, Yin et al.,
2018], threshold adjustments [Fawcett and Provost, 1996, Provost, 2000, Maloof, 2003, King and
Zeng, 2001, Collell et al., 2016, Menon et al., 2021, Zhu et al., 2023], and weight normalization
methods [Zhang et al., 2019a, Kim and Kim, 2019, Kang et al., 2020] is included in Appendix A.

3.3 Limitations of Existing Approaches

Despite their usefulness, existing surrogate losses and related methods admit some limitations. Class-
weighted cross-entropy often has a minimal effect in settings where data is easily separable. In such
cases, solutions that achieve zero training loss (perfect separation) remain optimal even with class
weighting, failing to shift decision boundaries effectively towards dominant classes as might be
desired [Byrd and Lipton, 2019]. Logit-Adjusted (LA) losses, as we will demonstrate in Section 5,
are not Bayes-consistent for the balanced loss when the temperature parameter τ ≠ 1. Consequently,
optimal tuning of τ often lacks a theoretical guarantee, and the method itself offers limited flexibility.
Other margin modification techniques [e.g., Cao et al., 2019, Tan et al., 2020] may not be Bayes-
consistent for the balanced loss, even in simpler binary classification problems [Menon et al., 2021].
The drawbacks of other strategies beyond direct loss modification, such as weight normalization,
have also been previously noted [Menon et al., 2021].

4 Surrogate Loss Families

This section generalizes two surrogate loss families designed for learning with class imbalance:
Generalized Logit-Adjusted (GLA) loss functions and Generalized Class-Aware weighted (GCA)
losses. Both families are derived from the general cross-entropy (GCE) framework [Mao et al.,
2023f]. For any (h,x, y) ∈H ×X × Y, the GCE loss is defined as:

ℓGCE(h,x, y) = Ψq( eh(x,y)

∑y′∈Y e
h(x,y′)

), with Ψq(t) = {
− log(t) if q = 0
1
q
(1 − tq) if q ∈ (0,∞).

Specific choices of q recover well-known loss functions: q = 0 yields the logistic loss (or standard
cross-entropy) [Verhulst, 1838, 1845, Berkson, 1944, 1951]; q ∈ (0,1) gives the generalized cross-
entropy loss notable for its robustness to label noise [Zhang and Sabuncu, 2018]; and q = 1 corresponds
to the mean absolute error loss [Ghosh et al., 2017].

4.1 Generalized Logit-Adjusted (GLA) Losses

A Generalized Logit-Adjusted (GLA) Loss modifies the logits within the GCE family by incorporating
a class-prior-based bias term, log(p(y))/(1 − q):

ℓGLA(h,x, y) = Ψq
⎛
⎜
⎝

eh(x,y)+
log(p(y))

1−q

∑y′∈Y e
h(x,y′)+

log(p(y′))
1−q

⎞
⎟
⎠
, (4)

The GLA loss family generalizes the Logit-Adjusted (LA) loss with τ = 1. Specifically, when q = 0,
Eq. (4) recovers the LA loss with τ = 1 previously defined in Eq. (3). Thus, GLA extends the concept
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of logit adjustment to the broader GCE family. As will be detailed in Section 5.2, GLA losses are
Bayes-consistent for any q ∈ [0,1), offering greater flexibility compared to the original LA loss
(whose limitations were discussed in Section 3.3).

The term inside the Ψq function in Eq. (4) can be rewritten to highlight its behavior:

eh(x,y)+
log(p(y))

1−q

∑y′∈Y e
h(x,y′)+

log(p(y′))
1−q

= eh(x,y) ⋅ p(y)
1

1−q

∑y′∈Y e
h(x,y′) ⋅ p(y′)

1
1−q

= 1

∑y′∈Y e
h(x,y′)−h(x,y) ⋅ ( p(y

′)

p(y)
)

1
1−q

.

In this formulation, the term (p(y′)/p(y))
1

1−q acts as a weighting factor in the denominator, effec-
tively creating a pairwise label margin adjustment that depends on the relative frequencies of class y
(the true class) and other classes y′. This mechanism encourages a larger separation (margin) when y
is a rare class (low p(y)) and y′ is a dominant class (high p(y′)) and reduces the risk that scores for
dominant classes overshadow those for rare classes.

4.2 Generalized Class-Aware (GCA) Losses

A Generalized Class-Aware (GCA) loss introduces class sensitivity by inversely weighting the GCE
loss by class frequency p(y) and incorporating class-dependent confidence margins ρy:

ℓGCA(h,x, y) =
1

p(y)
Ψq( eh(x,y)/ρy

∑y′∈Y e
h(x,y′)/ρy

), (5)

where ρ = (ρ1, . . . , ρn) is a vector of positive confidence margin parameters for each class. The GCA
formulation encompasses standard class-weighting as a special case. For instance, the class-weighted
cross-entropy loss (Eq. (2)) is recovered when q = 0 and all confidence margins ρy are set to 1. If

all ρy = 1, Eq. (5) simplifies to: ℓGCA(h,x, y) = 1
p(y)

Ψq( eh(x,y)

∑y′∈Y eh(x,y′) ), thereby extending the class-

weighted cross-entropy concept to the entire GCE family. The motivation for using the inverse of the
prior in GCA remains the same for q ≠ 1 as for q = 1. The parameter q simply specifies a particular
loss within the generalized cross-entropy family, applicable in both standard and imbalanced settings.
The inverse of the prior is used to align with the definition of the balanced loss, which reduces the
influence of class imbalance by reweighting each example’s error accordingly. This ensures that GCA
losses benefit from consistency guarantees with respect to the balanced loss.

The introduction of distinct confidence margin parameters ρ is a key aspect of GCA losses. These
parameters allow for fine-tuned adjustments to the decision boundaries. By applying class-specific
scaling with factors related to ρy to the logit differences [h(x, y) − h(x, y′)]-terms that inherently
represent margins, the GCA loss (through an effective transformation to (h(x, y) − h(x, y′))/ρy)
can more effectively separate dominant and rare classes, as such transformation modulates how
confidently each class needs to be separated. Such margin adjustments, as highlighted by recent work
of Cortes et al. [2025], play a crucial role in effectively shifting decision boundaries across classes
and mitigating imbalance. This, in turn, addresses the limitations of simpler class-weighting schemes
mentioned in Section 3.3.

Note that while the ρk values can be treated as tunable hyperparameters and freely tuned via cross-
validation, the search can be effectively guided by focusing on vectors [ρk]k near [m1/3

k ]k, where
mk denotes the number of samples in class k, as suggested by Cortes et al. [2025] and followed
in our experiments. A similar derivation to theirs, adaptable to our setting, shows these values are
theoretically optimal in a separable case, providing justification and guidance for selecting ρk for
GCA losses. Empirically, we also found GCA losses to be robust to variations in ρk around these
values. Consequently, while ρk can be tuned, the default choice of m1/3

k performs well. When the
number of classes n is large, the search space can be further reduced by assigning identical ρk values
to underrepresented classes and reserving distinct values for the most frequent ones.

For fixed hyperparameters, the computational cost of GLA and GCA losses is comparable to that of
standard neural networks trained with cross-entropy loss (that is, logistic loss with softmax) and to that
of the baselines. Our loss functions are adapted from the general cross-entropy family and both share
similar convergence behavior and remain practical when optimized with commonly used optimizers
such as SGD, Adam, and AdaGrad. While our methods introduce additional hyperparameters, namely
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ρk and q in GCA losses and q in GLA losses, the value of ρk has a default choice (as discussed
above), and q serves a similar role to hyperparameters in the baseline methods listed in Table 1 in
Section 6, many of which also involve at least one extra tunable parameter.

5 Theoretical Analysis

In this section, we leverage Lemma 1 to present a comprehensive theoretical analysis of the consis-
tency for the two proposed surrogate loss families: Generalized Logit-Adjusted (GLA) losses and
Generalized Class-Aware (GCA) losses.

5.1 Consistency Notions

A critical characteristic of a surrogate loss function ℓA, used in place of a target loss function ℓB , is its
Bayes-consistency [Steinwart, 2007]. This property ensures that if a sequence of predictor {hn}n∈N
within Hall (the set of all measurable functions) asymptotically minimizes the surrogate loss ℓA, it
will also asymptotically minimize the target loss ℓB . Formally: limn→+∞RℓA(hn) = R∗ℓA(Hall) ⇒
limn→+∞RℓB(hn) = R∗ℓB(Hall). However, Bayes-consistency is an asymptotic concept and is
defined only for the comprehensive class of all measurable functions Hall. A more practically
relevant and informative concept is that of H-consistency bounds. These bounds are non-asymptotic
and tailored to a specific hypothesis class H [Awasthi et al., 2022a,b, 2021a,b, 2023a,b, Mao et al.,
2023a,b,c,d,e,f, 2024a,b,c,d,e,f,g, Mohri et al., 2024, Cortes et al., 2024, Mao et al., 2025a,b, Mao,
2025, Zhong, 2025]). In the realizable setting, these bounds take the form:

∀h ∈H, RℓB(h) −R
∗
ℓB
(H) ≤ Γ(RℓA(h) −R

∗
ℓA
(H)).

Here, Γ is a non-increasing concave function such that Γ(0) = 0. In the more general non-realizable
setting, the bound is augmented by a minimizability gap, Mℓ(H) = R∗ℓ (H) − Ex[C∗ℓ (H, x)]. This
gap quantifies the difference between the best-in-class error and the expected best-in-class conditional
error. The augmented bound is:

RℓB(h) −R
∗
ℓB
(H) +MℓB(H) ≤ Γ(RℓA(h) −R

∗
ℓA
(H) +MℓA(H)).

As demonstrated by Mao et al. [2024h], the minimizability gap is always non-negative and is bounded
above by the approximation error Aℓ(H) = R∗ℓ (H) − R∗ℓ (Hall), i.e., 0 ≤ Mℓ(H) ≤ Aℓ(H). The
minimizability gap becomes zero when H =Hall or, more generally, when the approximation error
Aℓ(H) = 0. In other cases, it is typically non-zero and offers a more refined measure than the
approximation error. In particular, H-consistency bounds imply Bayes-consistency when H =Hall

and generally provide stronger and more applicable guarantees.

5.2 GLA Losses

We now analyze the consistency properties of the GLA loss family. We establish that the LA loss is
only Bayes-consistent for τ = 1.

Bayes-Consistency. It is known that the Logit-Adjusted (LA) loss is Bayes-consistent with respect to
the balanced loss when its temperature parameter is set to one, τ = 1 [Menon et al., 2021]. We begin
by establishing a negative result: this consistency does not extend to other values of τ .
Theorem 2. When τ ≠ 1, the LA loss ℓLA is not Bayes-consistent with respect to the balanced loss
ℓBAL.

The proof, which involves characterizing the Bayes classifiers for both the LA loss and the balanced
loss, is detailed in Appendix F. In contrast, the following result establishes the Bayes-consistency of
the GLA loss with respect to the balanced loss for any q ∈ [0,1).
Theorem 3. For any q ∈ [0,1), the GLA Loss ℓGLA is Bayes-consistent with respect to the balanced
loss ℓBAL.

The proof, provided in Appendix G, characterizes the Bayes classifiers for the GLA loss. Note that
Theorem 3 recovers the Bayes-consistency of the LA loss (when q = 0) as a special case, consistent
with [Menon et al., 2021].

H-Consistency Bounds. We first present a counter-example (Figure 1) demonstrating that even when
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Figure 1: Counterexample to
the H-consistency of ℓLA for
bounded hypothesis sets.

τ = 1 (that is, for the standard LA loss, which is GLA with
q = 0), ℓLA is not H-consistent with respect to the balanced loss
ℓBAL for certain bounded hypothesis sets. In this example, con-
sidering a two-dimensional distribution where x1 ∼ U[0,1] and
x2 ∣ x1 ∼ N(yx1, x

2
1), with y following a Bernoulli distribution

(P(+1) = 1
8

), if the hypothesis set consists of linear models with
bounded weights, specifically {(x, y) ↦ wy ⋅ x ∶ ∥wy∥ = 100}, the
best-in-class classifier for both the balanced loss and a GCA loss is
x2 = 0. However, the best-in-class classifier for the LA loss (with
τ = 1) differs and is not parallel to x2 = 0. This implies that the LA
loss with τ = 1 is not H-consistent for this bounded hypothesis set.

This counterexample shows that GLA losses do not guarantee H-consistency for bounded hypothesis
sets. The following theorem establishes that the GLA loss ℓGLA is H-consistent with respect to
the balanced loss ℓBAL if the hypothesis set H is complete that is, for every instance x ∈ X, the
scoring vectors spanned by H cover the entire space Rn: {h(x, ⋅)∶h ∈H} = Rn. Naturally, bounded
hypothesis sets cannot satisfy this condition. Note that a complete set can be a strict subset of Hall.
For example, linear models with unbounded weights are complete, yet they do not equal Hall. Note,
the same positive result does not hold for LA losses with general τs. Being not Bayes-consistent, LA
losses are not H-consistent for complete hypothesis sets.
Theorem 4. Assume that H is complete. Then, for any q ∈ [0,1), the following H-consistency bound
holds for the GLA loss ℓGLA:

RℓBAL
(h) −R∗ℓBAL

(H) +MℓBAL
(H) ≤ Γ(RℓGLA

(h) −R∗ℓGLA
(H) +MℓGLA

(H)),

where Γ(t) =
√
2t

pmin
for q = 0, and Γ(t) =

√
2t

(pmin)
1

1−q (1−q)
1
2

for q ∈ (0,1). In the special case where the

approximation error AℓGLA
(H) = 0, the bound simplifies to:

RℓBAL
(h) −R∗ℓBAL

(H) ≤ Γ(RℓGLA
(h) −R∗ℓGLA

(H)),

The proof, presented in Appendix H, consists of first defining a Gibbs distribution induced by h
and next of applying a Pinsker-type inequality. Our technique is novel: it constructively upper-
bounds the conditional regret of the balanced loss by that of the GLA loss, leveraging Lemma 1.
Remarkably, when q = 0, Theorem 4 yields H-consistency guarantees for the LA loss with τ = 1
under the completeness assumption, a significantly stronger guarantee that the previously established
Bayes-consistency result of Menon et al. [2021]. The H-consistency bounds for GLA losses depend
inversely on the minimum class probability, scaling as 1/pmin when q = 0 and, more generally, as
(1/pmin)

1
1−q when q ∈ (0,1),

5.3 GCA Losses

This section presents consistency guarantees for GCA losses. We define a hypothesis set H as
regular if, for any x ∈ X, the predictions made by the hypotheses in H cover the complete set of
n possible classification labels: H(x) = {h(x)∶h ∈H} = [n]. Widely used hypothesis sets, such as
linear models, neural network families, as well as the family of all measurable functions, are all
regular. In particular, every complete hypothesis set is regular, while regularity alone is a much
weaker yet natural assumption in practice.

The following theorem shows that for a regular hypothesis set, if a GCE loss ℓGCE is H-consistent
with respect to ℓ0−1 then its corresponding GCA loss ℓGCA (Eq. (5)) is also H-consistent with respect
to the balanced loss ℓBAL (Eq. (1)). For simplicity, we assume ρy = 1 for all y throughout this section.
Theorem 5. Let H be a regular hypothesis set and ℓGCE a GCE loss. Assume that there exists a
function Γ(t) = β tα for some α ∈ (0,1] and β > 0, such that the following H-consistency bound
holds for all h ∈H and any distribution,

Rℓ0−1(h) −R∗ℓ0−1(H) +Mℓ0−1(H) ≤ Γ(RℓGCE
(h) −R∗ℓGCE

(H) +MℓGCE
(H)).

Then, the following H-consistency bound holds for ℓGCA with respect to ℓBAL for all h ∈H and any
distribution:

RℓBAL
(h) −R∗ℓBAL

(H) +MℓBAL
(H) ≤ Γ(RℓGCA

(h) −R∗ℓGCA
(H) +MℓGCA

(H)),

7



where Γ(t) = β ( 1
pmin
)
1−α

tα. In the special case where the approximation error AℓGCA
(H) = 0, this

bound simplifies to:

RℓBAL
(h) −R∗ℓBAL

(H) ≤ Γ(RℓGCA
(h) −R∗ℓGCA

(H)).

The proof is provided in Appendix E, where we constructively define new conditional probabilities
q(y ∣ x) along with a normalization factor Z(x) = ∑y∈Y

p(y∣x)
p(y)

≤ 1
pmin

. These probabilities transform
the conditional regret of the balanced loss and the GCA loss into the conditional regrets of the
zero-one loss and the GCE loss, respectively, under the newly defined distribution.

When AℓGCA
(H) = 0, the H-consistency bound guarantees that if the surrogate estimation error

RℓGCA
(h) −R∗ℓGCA

(H) is optimized up to ϵ, the estimation error for the balanced loss, RℓBAL
(h) −

R∗ℓBAL
(H), is upper-bounded by Γ(ϵ). For common choices of Ψ in ℓGCA, Mao et al. [2023f,b]

show that Γ takes specific forms: for Ψ(t) = − log(t), Γ(t) =
√
2t (so α = 1/2 and β =

√
2); for

Ψ(t) = 1
q
(1 − tq) with q ∈ (0,1), Γ(t) =

√
2nqt (so α = 1/2 and β =

√
2nq). This leads to the

following corollary for GCA losses:

Corollary 6. Under the assumptions of Theorem 5, for all h ∈H and any distribution, the following
H-consistency bound holds for ℓGCA with respect to ℓBAL:

RℓBAL
(h) −R∗ℓBAL

(H) +MℓBAL
(H) ≤ Γ(RℓGCA

(h) −R∗ℓGCA
(H) +MℓGCA

(H)),

where Γ(t) =
√
2t

√
pmin

for Ψ(t) = − log(t) and Γ(t) =
√
2nqt
√
pmin

for Ψ(t) = 1
q
(1 − tq) with q ∈ (0,1). In

the special case where the approximation error AℓGCA
(H) = 0, this bound simplifies to:

RℓBAL
(h) −R∗ℓBAL

(H) ≤ Γ(RℓGCA
(h) −R∗ℓGCA

(H)),

If H =Hall, taking the limit on both sides implies the Bayes-consistency of these GCA losses ℓGCA

with respect to the balanced loss ℓBAL. More generally, Corollary 6 demonstrates that ℓGCA admits
an excess error bound relative to ℓBAL if ℓGCE has such a bound relative to ℓ0−1.

Mao et al. [2023f] and Mao et al. [2023b] showed that loss functions belonging to the widely used
general cross-entropy (GCE) family (including logistic loss) admit H-consistency bounds with
respect to the multi-class zero-one loss ℓ0−1 when the hypothesis set is complete and bounded,
respectively. We say a hypothesis set H is bounded if H = {h∶X × Y→ R ∣ h(⋅, y) ∈ F, ∀y ∈ Y},
where F is a family of real-valued functions f satisfying ∣f(x)∣ ≤ Λ(x) for all x ∈ X, and all values in
[−Λ(x),+Λ(x)] are attainable. Here, Λ(x) > 0 is a fixed function on X. Boundedness also implies
regularity. Thus, a key advantage of GCA losses is their general H-consistency: they are H-consistent
for any hypothesis set that is bounded or complete. Furthermore, their consistency bounds exhibit an
improved scaling with the minimum class probability, 1/√pmin. This contrasts favorably with GLA
losses, offering potentially stronger theoretical support in highly imbalanced settings.

Comparison and Discussion. Our theoretical analysis reveals distinct characteristics for the two loss
families: GLA losses are Bayes-consistent (for q ∈ [0,1)). However, their H-consistency requires
the hypothesis set H to be complete (and thus unbounded). The corresponding bounds depend on
the minimum class probability pmin, scaling as 1/pmin (for q = 0) or less favorably as (1/pmin)

1
1−q

( for q ∈ (0,1)). In contrast, GCA losses demonstrate H-consistency for any hypothesis set that is
bounded or complete. Their H-consistency bounds scale more favorably with the minimum class
probability, as 1/√pmin. This suggests GCA losses offer stronger theoretical guarantees, particularly
in settings with significant class imbalance or when using more restricted hypothesis sets.

The trade-offs between these theoretical properties and empirical performance are important. As
we will show in the next experimental section (Section 6), GLA losses often achieve slightly better
empirical results on common benchmarks. Conversely, GCA losses tend to have an edge in highly
imbalanced scenarios. This empirical behavior aligns with our theoretical findings: GLA losses may
be preferred for moderately imbalanced scenarios when using expressive, potentially unbounded
hypothesis sets where their specific form of logit adjustment is beneficial; GCA losses are theoretically
better-suited for highly imbalanced settings due to their favorable consistency scaling and applicability
to a wider range of hypothesis sets. For bounded hypothesis sets where GLA’s H-consistency is not
guaranteed, GCA is the theoretically preferred option.
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The assumptions in this section primarily concern properties of the hypothesis set. These are standard
and typically satisfied in practice. Most natural hypothesis sets, such as linear models, neural
networks, and the set of all measurable functions, are regular, meaning they produce predictions
across all n classes. Whether a hypothesis set is bounded or complete depends on the modeling
choice (e.g., bounded weights in linear models). Importantly, our results do not assume any specific
data distribution and hold for arbitrary distributions, including those arising in real-world settings.

Compared to the previous work [Cortes et al., 2025], the key difference is that IMMAX [Cortes et al.,
2025] is designed for optimizing the standard multi-class 0-1 loss under imbalanced data, whereas the
proposed GCE and GCA losses are designed to optimize the balanced loss. As a result, IMMAX enjoys
consistency with respect to the standard 0-1 loss, while GCE and GCA are consistent with respect to
the balanced loss, a property most existing surrogate losses lack, as discussed in Section 3.3.

Appendix B further provides margin bounds for both the GCA and GLA losses in the more general
cost-sensitive multi-class classification setting. We show that both losses benefit from margin
guarantees, with more favorable bounds for GCA losses, as the GLA bounds depend on 1/pmin.

Theoretical novelty. Classical margin bounds have been extensively studied (see, for example
[Koltchinskii and Panchenko, 2000, 2002, Schapire et al., 1997, Cortes et al., 2021, Mohri et al.,
2018]). In particular, Mohri et al. [2018] derived margin bounds for standard multi-class classification.
In contrast, we derive new margin bounds for cost-sensitive classification, a setting that introduces
additional complexity due to the presence of instance-dependent cost functions. This requires
the development of new proof techniques, including the derivation of an upper bound on the loss
function expressed in terms of a margin loss and a maximum operator, along with an analysis of
the Rademacher complexity of this maximum term via the vector contraction lemma. Moreover, in
addition to the resulting margin bounds for GCA loss functions, our margin bounds for GLA loss
functions are non-trivial and require a specific and entirely new analysis (Appendix B.2). Mao et al.
[2023f,b] studied H-consistency bounds for loss functions in the general cross-entropy (GCE) family
with respect to the standard zero-one loss. In contrast, our work establishes H-consistency bounds
for the proposed GCA and GLA losses with respect to the balanced loss, where both the surrogate
and target losses are more complex. This required several novel technical contributions, including
a characterization of the conditional regret of the balanced loss, the use of Gibbs distributions and
Pinsker-type inequalities for analyzing GLA losses, and a reduction of the conditional regrets of the
balanced and GCA losses to those of the zero-one and GCE losses under a newly defined distribution.

6 Experiments

This section details the empirical evaluation of our proposed Generalized Logit-Adjusted (GLA) and
Generalized Class-Aware (GCA) loss functions. We compare their effectiveness in minimizing the
balanced loss against several baseline methods on the CIFAR-10, CIFAR-100 [Krizhevsky, 2009],
and Tiny ImageNet [Le and Yang, 2015] datasets with respectively 10, 100 and 200 classes. To
simulate class imbalance, we reduced the percentage of examples per class identically in both training
and test sets, following exactly the protocol in [Menon et al., 2021]. Two types of imbalance were
considered: Long-tailed imbalance where class sample sizes decrease exponentially across sorted
classes [Cui et al., 2019], and Step imbalance where minority classes share one sample size, and
majority classes share another, creating a distinct two-group split [Buda et al., 2018]. The severity of
imbalance is quantified by the imbalance ratio, ρ = maxn

k=1 mk

minn
k=1

mk
, where mk is the number of samples

in class k. We evaluated performance at ρ = 100 (C), following Menon et al. [2021], and at a more
extreme setting of ρ = 1000 (M).

Our experimental setup, including training procedures and neural network architectures, strictly
followed Menon et al. [2021]. We used a ResNet-32 architecture with ReLU activations [He et al.,
2016]. Standard data augmentation techniques were applied: for CIFAR-10 and CIFAR-100, this
involved 4-pixel padding followed by 32 × 32 random crops and random horizontal flips; for Tiny
ImageNet, 8-pixel padding was used, followed by 64 × 64 random crops. All models were trained for
200 epochs using Stochastic Gradient Descent (SGD) with Nesterov momentum [Nesterov, 1983].
We used a a batch size of 1,024, a weight decay of 1×10−3, and a cosine decay learning rate schedule
[Loshchilov and Hutter, 2016] without restarts, with an initial learning rate of 0.2.
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Table 1: Balanced error of ResNet-32 on long-tailed (left) and step-imbalanced (right) imbalanced
CIFAR-10, CIFAR-100 and Tiny ImageNet; means±standard deviations over 5 runs. Note, we are
reporting total error and not dividing by number of classes. Imbalance ratios ρ = 1000 (M), 100 (C).

Method ρ CIFAR-10 CIFAR-100 Tiny I.Net

CE

M

2.46 ± 0.09 38.45 ± 0.37 70.23 ± 0.38
WCE 2.52 ± 0.17 39.89 ± 0.76 75.89 ± 0.67
LA (τ = 1) 2.18 ± 0.18 35.92 ± 0.47 67.17 ± 0.49
EQUAL 2.38 ± 0.07 37.33 ± 0.36 68.44 ± 0.72
CB 2.58 ± 0.03 41.46 ± 0.41 80.22 ± 0.59
FOCAL 2.43 ± 0.10 38.02 ± 0.54 69.13 ± 0.83
LDAM 2.39 ± 0.08 37.39 ± 0.36 68.27 ± 0.81
GCA 2.02 ± 0.15 33.17 ± 0.57 64.88 ± 0.66
GLA 2.04 ± 0.15 33.99 ± 0.52 65.57 ± 0.27

CE

C

2.72 ± 0.02 61.53 ± 0.29 106.93 ± 0.89
WCE 2.80 ± 0.08 62.20 ± 0.57 112.50 ± 0.97
LA (τ = 1) 2.23 ± 0.08 56.23 ± 0.21 102.81 ± 0.89
EQUAL 2.60 ± 0.08 57.25 ± 0.40 104.91 ± 0.84
CB 2.76 ± 0.04 61.55 ± 0.28 115.22 ± 0.71
FOCAL 2.70 ± 0.06 61.21 ± 0.24 105.47 ± 0.59
LDAM 2.66 ± 0.08 60.37 ± 0.60 103.99 ± 0.58
GCA 2.19 ± 0.08 54.02 ± 0.38 101.34 ± 0.81
GLA 2.07 ± 0.06 53.68 ± 0.76 100.70 ± 0.83

Method ρ CIFAR-10 CIFAR-100 Tiny I.Net

CE

M

6.33 ± 0.01 12.47 ± 0.12 39.41 ± 0.40
WCE 6.44 ± 0.02 13.66 ± 0.45 39.28 ± 0.31
LA (τ = 1) 5.54 ± 0.48 11.42 ± 0.33 37.44 ± 0.25
EQUAL 5.89 ± 0.24 12.24 ± 0.20 38.43 ± 0.44
CB 6.38 ± 0.01 14.96 ± 0.32 47.35 ± 0.73
FOCAL 6.35 ± 0.01 12.25 ± 0.17 39.21 ± 0.31
LDAM 6.34 ± 0.01 12.30 ± 0.11 38.21 ± 0.27
GCA 5.35 ± 0.02 10.43 ± 0.15 36.32 ± 0.32
GLA 5.39 ± 0.02 10.58 ± 0.19 36.57 ± 0.35

CE

C

3.66 ± 0.15 60.16 ± 0.09 39.68 ± 0.25
WCE 3.68 ± 0.11 61.40 ± 0.51 43.68 ± 0.42
LA (τ = 1) 2.70 ± 0.12 55.43 ± 0.63 38.42 ± 0.14
EQUAL 3.18 ± 0.12 57.73 ± 0.54 38.91 ± 0.20
CB 3.81 ± 0.02 66.41 ± 0.11 50.51 ± 0.45
FOCAL 3.60 ± 0.11 60.06 ± 0.13 39.63 ± 0.27
LDAM 3.41 ± 0.10 58.95 ± 0.11 38.67 ± 0.19
GCA 2.57 ± 0.04 53.85 ± 0.47 37.59 ± 0.43
GLA 2.48 ± 0.11 52.70 ± 0.15 36.71 ± 0.33

We compared our GLA and GCA losses against a suite of widely used baseline methods: standard
cross-entropy (CE) loss, class-weighted cross-entropy (WCE) loss [Xie and Manski, 1989, Morik et al.,
1999], Logit Adjusted (LA) loss [Menon et al., 2021], Equalization (EQUAL) loss [Tan et al., 2020],
Class-Balanced (CB) loss [Cui et al., 2019], FOCAL loss [Ross and Dollár, 2017] and the LDAM loss
[Cao et al., 2019]. For all methods, including our GLA and GCA losses, we tune the hyperparameters
using a validation set held out separately from the training set. For the parameter q in both GLA
and GCA, we selected values from {0.0,0.1, . . . ,0.9}, which are standard choices within the general
cross-entropy family. Its performance depends on dataset imbalance (e.g., long-tailed vs. step
imbalance). Further details about the experiments including baselines are provided in Appendix C.
Performance was primarily evaluated using the balanced error on the imbalanced test sets (i.e., the
average of the balanced loss over the test data). Results were averaged over five independent runs,
and we report means and standard deviations. Table 1 presents the balanced error for ResNet-32 on
long-tailed and step-imbalanced versions of CIFAR-10, CIFAR-100, and Tiny ImageNet.

The results in Table 1 highlight that both our proposed GCA losses and GLA losses generally
outperform key baselines such as class-weighted cross-entropy (WCE) and Logit-Adjusted (LA)
losses across the tested datasets and imbalance types. This demonstrates the efficacy of our novel
loss formulations in achieving better balanced error, indicating improved fairness and accuracy on
minority classes. Comparing our two proposed families, GLA losses often achieve the best overall
results on several benchmarks, particularly under moderate imbalance (ρ = 100). However, GCA
losses in accordance with its better 1/√pmin bound tend to exhibit an advantage in settings with high
class imbalance (ρ = 1000).

The strong performance of GCA losses, especially their edge in highly imbalanced scenarios (ρ =
1000), underscores the impact of using class-dependent confidence margins. These margins allow
GCA to adapt more effectively to severe skews in data distribution compared to simpler weighting or
logit adjustment techniques. The performance difference observed between ρ = 100 and ρ = 1000
across all methods, and particularly the relative strengths of GLA and GCA, highlights the sensitivity
of these approaches to the severity of class imbalance.

7 Conclusion

We introduced two novel families of surrogate losses, GLA and GCA losses, for balanced multi-class
classification under class imbalance. Both are principled extensions of widely used loss designs, and
our theoretical analysis establishes their consistency properties, highlighting the more favorable H-
consistency bounds of GCA losses in imbalanced regimes. Empirically, both loss families outperform
existing baselines, with GLA performing better in common benchmarks and GCA offering an edge
in highly imbalanced settings. These results position GLA and GCA losses as state-of-the-art
surrogates for balanced classification, bridging the gap between fairness, consistency, and practical
performance. The extension of these surrogate loss families to structured prediction or multi-label
classification could significantly broaden their impact. Finally, refining consistency bounds under
realistic hypothesis classes and leveraging recent enhanced H-consistency bounds could provide
deeper insights into the behavior of these and related loss functions in balanced learning settings.
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Answer: [Yes]
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used reliably to provide closed captions for online lectures because it fails to handle
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and how they scale with dataset size.
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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proof lists conditions. See Section 4, Section 5, Appendix B, Appendix D, Appendix E,
Appendix F, Appendix G, Appendix H, and Appendix I.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We build on other people’s approaches, explain our methodology and provide
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: See Section 6 and Appendix C.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 6 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Model training was performed using hardware accelerators providing the
equivalent computational power of 64 GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Balanced loss promotes fairness by equalizing performance across demo-
graphic groups and ensures that minority classes are not overlooked in long-tailed datasets.
It is also crucial in federated learning, where data imbalances across clients can lead to bi-
ased models that favor heavy users. This represents a broader impact of balanced multi-class
classification under class imbalance.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

22

https://neurips.cc/public/EthicsGuidelines


Justification: The paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Section 6. Each dataset is licensed under CC-BY 4.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Related work

Class imbalance is a prevalent challenge in real-world multi-class classification problems [Cui et al.,
2019, Fawcett and Provost, 1996, Kang et al., 2021, Kubat and Matwin, 1997, Lewis and Gale, 1994,
Liu et al., 2019, Menon et al., 2021]. Applications such as medical diagnosis, fraud detection, and
rare event prediction often involve highly skewed label distributions, where a small subset of classes
dominate the data, while others, sometimes the most critical, are heavily underrepresented. Standard
training objectives, such as minimizing the unweighted cross-entropy loss, tend to be biased toward
majority classes, leading to poor performance on minority classes and undermining the fairness,
soundness and reliability of learned models.

The extensive literature on class imbalance has yielded a diverse array of techniques [Cardie and
Nowe, 1997, Chawla et al., 2002, He and Garcia, 2009, Kubat and Matwin, 1997, Wallace et al.,
2011]. Due to space constraints, a comprehensive review of every method is infeasible. Instead, we
will categorize and discuss several major strategic directions, referring the reader to recent surveys,
such as Zhang et al. [2023], for a more exhaustive treatment. These strategies can be broadly grouped
as follows:

1. Data-Level Approaches These methods aim to directly modify the training dataset’s class
distribution to create a more balanced representation.

• Re-sampling Techniques: This is the most traditional approach, involving either oversam-
pling the minority classes (e.g., by duplicating instances or more advanced interpolation)
or undersampling the majority classes (by removing instances) [Kubat and Matwin, 1997,
Wallace et al., 2011].

• Synthetic Data Generation: More sophisticated methods generate new synthetic samples
for minority classes. SMOTE (Synthetic Minority Over-sampling Technique) and its variants
are prominent examples [Chawla et al., 2002, Han et al., 2005, Qiao and Liu, 2008].

• Advanced Data Augmentation: Recent works explore targeted data augmentation strategies
to enhance minority class representation, sometimes using generative models or optimal
transport principles (e.g., [Gao et al., 2023, Liu et al., 2024, Wang et al., 2021a, Zhu et al.,
2024]). While these methods can improve minority class recognition, oversampling may lead
to overfitting, undersampling can discard valuable data, and the effectiveness of synthetic
data depends heavily on the generation quality [Estabrooks et al., 2004, Liu et al., 2008, Shi
et al., 2023, Zhang and Pfister, 2021].

2. Algorithm-Level Cost-Sensitive Learning This category focuses on modifying the learning
algorithm to treat classes differently, typically by assigning higher misclassification costs to errors on
minority classes.

• Class Re-Weighting: A common implementation involves incorporating class weights
directly into the loss function, where weights are often inversely proportional to class
frequencies or based on concepts like the "effective number of samples" [Cui et al., 2019].
Examples include weighted versions of Softmax or the 0/1 loss [Gabidolla et al., 2024,
Morik et al., 1999, Xie and Manski, 1989].

• Cost-Sensitive Classifiers: Some learning algorithms, like SVMs, have explicit cost-
sensitive formulations [Iranmehr et al., 2019, Masnadi-Shirazi and Vasconcelos, 2010].
Many other methods adapt standard learners to be cost-aware [Elkan, 2001, Fan et al.,
2017, Jamal et al., 2020, Sun et al., 2007, Wang et al., 2022, Suh and Seo, 2023, Wang
et al., 2023, 2025, Li et al., 2025, Xiao et al., 2023, Zhang et al., 2018, 2019b, 2022,
Zhao et al., 2018, Zhou and Liu, 2005]. Cost-sensitive methods offer a principled way to
emphasize underrepresented classes. While they can be viewed as algorithmically achieving
effects similar to re-sampling, they avoid explicit data duplication or removal. However,
their success often hinges on the appropriate selection of costs/weights, and they may not
fundamentally alter the decision boundaries if the classes are inherently hard to separate or
if the chosen weights are not optimal [Van Hulse et al., 2007].

3. Loss Function and Logit Adjustment This broad category involves designing or modifying loss
functions to be more robust to class imbalance or to directly optimize for balanced performance
metrics.
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• Modulating Sample Contributions: Some losses dynamically adjust the contribution of
each sample to the total loss based on its difficulty or class. The Focal loss [Lin et al., 2017],
for instance, down-weights well-classified (often majority class) examples, allowing the
model to focus on hard, minority examples.

• Margin-Based Modifications: Several approaches aim to enforce larger decision margins
for minority classes or between specific class pairs. Examples include LDAM [Cao et al.,
2019], Equalization loss (ESQL) [Tan et al., 2020], and Balanced Softmax [Jiawei et al.,
2020]. LADE [Hong et al., 2021] also explores disentangling label distributions.

• Direct Logit Adjustments: This sub-group directly modifies the logits (pre-softmax outputs)
of the model, often by adding class-specific biases. The Logit Adjustment (LA) method by
Menon et al. [2021], Khan et al. [2019] and related techniques like UNO-IC [Tian et al.,
2020, Wei et al., 2024] and LSC [Wei et al., 2024] fall here. Menon et al. [2021] showed
that a specific form of logit adjustment can achieve Bayes-consistency for the balanced error.
Other works explore multiplicative logit modifications [Ye et al., 2020] or combinations of
additive and multiplicative changes, like the Vector-Scaling loss [Kini et al., 2021], though
multiplicative changes can sometimes be seen as equivalent to input feature re-normalization.
To capture how these modified loss functions handle different classes, Wang et al. [2023]
proposed a novel technique named data-dependent contraction. Wang et al. [2025] showed
that the additive and multiplicative logit modifications essentially correspond to different
local calibration assumptions. These methods directly influence the optimization landscape
and decision boundaries but may introduce new hyperparameters requiring careful tuning.

4. Representation Learning for Imbalanced Data Instead of (or in addition to) modifying data or
loss functions, these techniques focus on learning feature representations that are inherently more
robust to class imbalance or that better highlight minority class characteristics.

• Examples include OLTR [Liu et al., 2019], PaCo [Cui et al., 2021], DisA [Gao et al., 2024],
and other recent methods focused on semantic richness or distribution alignment (e.g.,
RichSem [Meng et al., 2023], RBL [Meng et al., 2023], WCDAS [Han, 2023]). Learning
discriminative and balanced representations is a fundamental goal, and these methods often
aim to decouple feature learning from classifier training to some extent.

5. Decoupled Training and Post-Hoc Adjustments This strategy involves separating the learning
process into stages or applying corrections after an initial model has been trained.

• Decoupled Training: Representation learning and classifier training are often performed
separately. For example, a model might first be trained with instance-balanced sampling or a
standard loss, and then the classifier head is fine-tuned using a class-balanced approach (e.g.,
Decouple-IB-CRT [Kang et al., 2020], CB-CRT [Kang et al., 2020], SR-CRT [Kang et al.,
2020], PB-CRT [Kang et al., 2020], MiSLAS [Zhong et al., 2021]). Weight normalization
techniques [Kim and Kim, 2019, Kang et al., 2020, Zhang et al., 2019a] also often fall under
this paradigm.

• Post-Hoc Correction: These methods adjust the outputs or decision thresholds of a pre-
trained classifier to improve performance on imbalanced data, without retraining the model
[Collell et al., 2016, Fawcett and Provost, 1996, Zhu et al., 2023]. These approaches offer
flexibility and can be applied to existing models, but post-hoc methods may not achieve the
same level of performance as methods that incorporate imbalance considerations throughout
training.

6. Ensemble Learning Approaches Ensemble methods combine multiple classifiers to achieve better
predictive performance than any single constituent classifier. For imbalanced learning, ensembles are
often constructed by training base learners on different re-sampled versions of the data or by using
different cost-sensitive strategies for each member.

• Examples include BBN [Zhou et al., 2020], LFME [Xiang et al., 2020], RIDE [Wang et al.,
2021b], ResLT [Cui et al., 2022], SADE [Zhang et al., 2022], and DirMixE [Yang et al.,
2024]. Ensembles are often robust but can increase computational expense and reduce model
interpretability.

7. Other Notable Strategies The field also includes various other specialized techniques:
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• Transfer Learning: Leveraging knowledge from related tasks or datasets can help, espe-
cially for data-scarce minority classes (e.g., SSP [Yang and Xu, 2020]).

• Specialized Classifier Design: Some works focus on designing classifier architectures or
objective functions specifically robust to long tails or confounding factors (e.g., De-confound
[Tang et al., 2020], [Kasarla et al., 2022, Yang et al., 2022], LIFT [Shi et al., 2024], SimPro
[Du et al., 2024]).

• Metric-Focused Optimization: Recent studies also analyze the asymptotic performance of
classifiers under different metrics on imbalanced data [Loffredo et al., 2024] or develop size-
invariant metrics for specific tasks like salient object detection [Li et al., 2024a]. Information
and data augmentation via distillation have also been explored [Li et al., 2024b].

This categorization highlights the multifaceted nature of addressing class imbalance. Our work
contributes to the area of loss function and logit adjustment, aiming for theoretically grounded and
empirically effective solutions. For further details on the landscape of imbalanced learning, we again
refer the reader to comprehensive surveys like Zhang et al. [2023].

B Margin bounds

This section provides a margin-based theoretical analysis of cost-sensitive multi-class classification.
We derive margin bounds for both the GCA and GLA families. The analysis for the GLA family is
more complex, and the resulting bound is generally less favorable, with a dependence on 1/pmin.

The proof involves the derivation of an upper bound on the cost-sensitive zero-one loss function ex-
pressed in terms of a margin loss and a maximum operator, along with an analysis of the Rademacher
complexity of this maximum term via the vector contraction lemma. Moreover, our margin bounds for
GLA loss functions are non-trivial and require a specific and entirely new analysis (Appendix B.2).

B.1 Theoretical analysis

Let h∶X×[n] → R be scoring function belonging to the hypothesis set H. We define the cost-sensitive
zero-one loss function L as follows: for all (h,x, y) ∈H ×X × [n],

L(h,x, k) = c(x, y)1h(x)≠y,

where c(x, y) is a non-negative cost that is upper bounded by C. Note that ℓBAL is a special case of
L.

A. Cost-sensitive margin loss functions. We first introduce new cost-sensitive margin loss functions
which will play a central role in our derivation of margin-based guarantees for cost-sensitive learning.

Let Φρ∶u ↦ min(1,max(0,1 − u/ρ)) denote the ρ-margin loss function. We can upper-bound the
cost-sensitive zero-one loss function L as follows:

L(h,x, y) ≤ c(x, y)Φρ(ρh(x, y))

= c(x, y)Φρ(h(x, y) −max
y′≠y

h(x, y′))

≤ c(x, y)Φρ(h(x, y) − h(x,h(x)))
= c(x, y) max

y′∈[n]
{Φρ(h(x, y) − h(x, y′))}.

The second inequality follows from the fact that when y = h(x) we have h(x, y) = h(x,h(x)) ≥
maxy′≠y h(x, y′). Otherwise, for y ≠ h(x), the runner-up prediction satisfies argmaxy′≠y h(x, y′) =
h(x).
The analysis above motivates the definition of the cost-sensitive margin loss function as the function
Lρ∶Hall ×X × [n] → R, defined as follows, for any fixed ρ > 0:

Lρ(h,x, y) = c(x, y) max
y′∈[n]

{Φρ(h(x, y) − h(x, y′))}.

B. Margin bounds. We now establish a general margin-based generalization bound, which serves as
the foundation for deriving new algorithms for cost-sensitive classification.
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Given a sample S = (x1, . . . , xm) and a hypothesis h, the empirical cost-sensitive margin loss is
defined by R̂S,ρ(h) = 1

m ∑
m
i=1 Lρ(h,xi, yi) and the empirical GCA loss is defined by R̂S,ℓGCA

(h) =
1
m ∑

m
i=1 ℓGCA(h,xi, yi). The empirical Rademacher complexity of H for a sample S is defined as:

R̂S(H) =
1

m
E
ϵ

⎡⎢⎢⎢⎢⎣
sup
h∈H

⎧⎪⎪⎨⎪⎪⎩

m

∑
i=1

n

∑
y=1

ϵiyh(xi, y)
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
,

where ϵ = (ϵiy)i,y represents a matrix of independent Rademacher variables ϵiys, each uniformly
distributed over {−1,+1}. For any integer m ≥ 1, the Rademacher complexity of H is the expectation
of R̂S(H) over all samples S of size m: Rm(H) = ES∼Dm[R̂S(H)].
Using these notions of complexity, we prove the following cost-sensitive margin-based guarantees.
Theorem 7 (Margin bound for cost-sensitive classification). Let H be a family of functions mapping
from X×[n] to R. Then, for any δ > 0, with probability at least 1−δ, each of the following inequalities
holds for all h ∈H:

RL(h) ≤ R̂S,ρ(h) + 4C
√
2nRm(H) +

√
log 1

δ

2m

RL(h) ≤ R̂S,ρ(h) + 4C
√
2n R̂S(H) + 3

√
log 2

δ

2m
.

The proof is included in Appendix I. These bounds can be generalized to hold uniformly for all
ρ ∈ (0,1], at the cost of additional log log-terms, using standard proof techniques [Mohri et al.,
2018, Theorem 5.9]. As with standard margin bounds, these learning guarantees suggest a trade-off:
Increasing ρ reduces the complexity term (second term) but simultaneously increases the empirical
cost-sensitive margin loss, R̂S,ρ(h) (first term), by imposing stricter confidence margin requirements.
Thus, if h maintains a low empirical cost-sensitive margin loss even with a relatively large ρ value,
it admits a strong generalization error guarantee. Using the fact that Lρ(h) is upper bounded by
ℓGCA(h/ρ), where c(x, y) = 1

p(y)
≤ 1

pmin
= C, we derive the margin bounds for GCA losses below.

RℓBAL
(h) ≤ R̂S,ℓGCA

(h/ρ) + 4

pmin

√
2nRm(H) +

√
log 1

δ

2m

RℓBAL
(h) ≤ R̂S,ℓGCA

(h/ρ) + 4

pmin

√
2n R̂S(H) + 3

√
log 2

δ

2m
.

B.2 Margin bounds for GLA lossess

The previous section established margin bounds for GCA losses by leveraging their class-weighted
structure. In contrast, deriving analogous bounds for GLA losses is non-trivial due to their different
formulation, which involves shifting logits based on class priors. To address this, we will rely on a
non-trivial inequality presented in Lemma 8.

Given a sample S = (x1, . . . , xm) and a hypothesis h, the empirical GLA loss is defined by
R̂S,ℓGLA

(h) = 1
m ∑

m
i=1 ℓGLA(h,xi, yi). For simplicity, our analysis focuses on the GLA loss with

q = 0. A similar line of reasoning allows for the extension of this proof to the general case where
q ∈ (0,1). In our setting of the balanced loss, the costs only depend on y with c(y) = 1/p(y). Our
analysis holds for arbitrary such y-dependent costs. Let cmax denote an upper bound cmin a lower
bound on the costs. Define Cmax = cmax

log[1+
cmin
cmax

]
. Then, for any y, y′ ∈ Y, the following holds:

c(y)
log[1 + c(y)

c(y′)
]
≤ c(y)
log[1 + cmin

cmax
]
≤ Cmax.

Thus, for any ρ > 0 and y, y′ ∈ Y, we have (see illustration in Figure 2 and proof of Lemma 8)

c(y)Φρ(v) ≤ Cmax log[1 +
c(y)
c(y′)

exp(−v
ρ
)].
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Figure 2: Illustration of the bound in the proof of the margin loss for ℓLA.

Using the monotonicity of the logarithm and upper-bounding a maximum of non-negative terms by a
sum yields the following any ρ > 0 and any (x, y) ∈ X × Y:

c(y)max
y′≠y
{Φρ(h(x, y) − h(x, y′))} ≤ Cmaxmax

y′≠y
{log[1 + c(y)

c(y′)
exp(h(x, y

′) − h(x, y)
ρ

)]}

≤ Cmax{log[1 +max
y′≠y

c(y)
c(y′)

exp(h(x, y
′) − h(x, y)
ρ

)]}

≤ Cmax

⎧⎪⎪⎨⎪⎪⎩
log

⎡⎢⎢⎢⎢⎣
1 + ∑

y′≠y

c(y)
c(y′)

exp(h(x, y
′) − h(x, y)
ρ

)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

= Cmax

⎧⎪⎪⎨⎪⎪⎩
log

⎡⎢⎢⎢⎢⎣
∑
y′∈Y

c(y)
c(y′)

exp(h(x, y
′) − h(x, y)
ρ

)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
= Cmax ℓGLA(h/ρ, x, y).

Thus, this yields the margin-based bounds for the GLA loss below. In our setting, cmin = 1 ≤ 1
p(y)

and
cmax = 1

pmin
. Thus, as with the H-consistency guarantees, the margin bounds here depend on 1

pmin
.

RℓBAL
(h) ≤ 1

pmin log[1 + pmin]
R̂S,ℓGLA

(h/ρ) + 4

pmin

√
2nRm(H) +

√
log 1

δ

2m

RℓBAL
(h) ≤ 1

pmin log[1 + pmin]
R̂S,ℓGLA

(h/ρ) + 4

pmin

√
2n R̂S(H) + 3

√
log 2

δ

2m
.

Lemma 8. For any ρ > 0 and y, y′ ∈ Y, we have

c(y)Φρ(v) ≤ Cmax log[1 +
c(y)
c(y′)

exp(−v
ρ
)],

for every v ∈ R.

Proof. Fix labels y, y′ and a margin value v ∈ R. Write a = c(y)
c(y′)

, t = v

ρ
, and recall the bounds

cmin ≤ c(y), c(y′) ≤ cmax. By definition, Cmax = cmax

log[1+
cmin
cmax

]
. Then, for any y, y′ ∈ Y, the following

holds:
c(y)

log[1 + c(y)
c(y′)
]
≤ c(y)
log[1 + cmin

cmax
]
≤ Cmax. (6)

Next, we analyze case by case.

(i) v ≤ 0 (t ≤ 0). Then Φρ(t) = 1 and exp(−t) ≥ 1, using (6) gives

Cmax log(1 + ae−t) ≥ Cmax log(1 + a) ≥ c(y) = c(y)Φρ(t).
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(ii) 0 ≤ v ≤ ρ (0 ≤ t ≤ 1). Define h(t) = log(1 + ae−t) − (1 − t) log(1 + a). Since h′(t) =

− ae−t

1 + ae−t
+ log(1+ a) ≥ − a

1 + a
+ log(1+ a) ≥ 0 (because log(1+ u) ≥ u/(1+ u) for all u ≥ 0), we

have h(t) ≥ h(0) = 0; hence

(1 − t) log(1 + a) ≤ log(1 + ae−t).

Multiplying by Cmax and using (6) gives

Cmax log(1 + ae−t) ≥ Cmax log(1 + a)(1 − t) ≥ c(y)(1 − t) = c(y)Φρ(v).

(iii) v ≥ ρ (t ≥ 1). Then Φρ(v) = 0 and the desired inequality is trivial because the right–hand side is
non-negative.

In conclusion, all three cases yield

c(y)Φρ(v) ≤ Cmax log[1 +
c(y)
c(y′)

exp(−v
ρ
)],

for every v ∈ R. This completes the proof.

B.3 Algorithms

The margin guarantees established in the previous section provide a foundation for developing new
algorithms. We begin by deriving a more explicit learning guarantee within a broad framework,
which we then use to define a general cost-sensitive learning algorithm.

A. Explicit upper bounds. To make these guarantees more explicit, we introduce the following
setup. Given a feature mapping Φ∶X × [n] → Rd, we can identify X × [n] with a subset of Rd, with
∥Ψ(x, y)∥ ≤ Xy for all x ∈ X and X = maxy∈[n]Xy, for some norm ∥ ⋅ ∥. We assume H is given
by H = {h ∈H∶ ∥h∥∗ ≤ H}, for some appropriate norm ∥ ⋅ ∥∗ on some space H and H > 0. This
formulation covers a wide range of hypothesis sets, including linear, kernel-based, and neural network
models. In particular, it captures the settings of neural networks with weight matrices constrained by
a Frobenius norm bound [Cortes et al., 2017, Neyshabur et al., 2015] or a spectral norm complexity
constraint relative to reference weight matrices [Bartlett et al., 2017]. In all of these cases, the
empirical Rademacher complexity can be upper bounded as follows:

R̂S(H) ≤
√
nH

m

¿
ÁÁÀ

n

∑
j=1

mjX2
j ≤
√
nHX√
m

,

where the complexity term H depends on H. Combining this upper bound with Theorem 7 yields the
following more explicit guarantee.
Corollary 9. Fix ρ = [ρk]k∈[n], then, for any δ > 0, with probability at least 1 − δ over the choice of
a sample S of size m, the following holds for any f ∈H:

RL(h) ≤ R̂S,ρ(h) +
4C
√
2nH

m

¿
ÁÁÀ

n

∑
j=1

mjX2
j + 3

√
log 2

δ

2m
.

As with Theorem 7, this bound can be generalized to hold uniformly for all ρ ∈ (0,1], at the cost
of additional log log-terms. This generalized guarantee provides a basis for designing algorithms
choosing h ∈H and ρ to minimize the bound.

Let Ψ be a decreasing convex function such that Φρ(x) ≤ Ψ (xρ) for all x ∈ R and ρ > 0. Ψ may
be the hinge loss, Ψ(x) = max(0,1 − x), or any member of the broad family of composition-sum
(comp-sum) losses [Mao et al., 2023f] defined by Ψ(x) = Φτ(e−x), with Φτ for τ ≥ 0 given by

Φτ(u) = {
1

1−τ
((1 + u)1−τ − 1) τ ≥ 0, τ ≠ 1

log(1 + u) τ = 1,

for all u ≥ 0. This family includes the logistic loss (τ = 1) and the exponential loss (τ = 0). Using
the fact that Φρ(t) ≤ Ψ ( tρ), the guarantee of Corollary 9 and its generalization to a uniform bound
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can be expressed as: for any δ > 0, with probability at least 1 − δ, for all h ∈H, where the last term
accounts for the log-log terms and the δ-confidence term

RL(h) ≤
1

m
[
m

∑
i=1

c(xi, yi) max
y′∈[n]

{Ψ(h(xi,yi)−h(xi,y
′
)

ρ
)}] + 4C

√
2nH

m

¿
ÁÁÀ

n

∑
j=1

mjX2
j +O(

1√
m
).

B. General cost-sensitive algorithm. The bound leads to the following regularization-based algo-
rithm:

min
h∈H

λ∥h∥2 + 1

m
[
m

∑
i=1

c(xi, yi) max
y′∈[n]

{Ψ(h(xi,yi)−h(xi,y
′
)

ρ
)}],

where λ and ρs are selected via cross-validation. This is equivalent to minimizing the following
surrogate loss:

ℓ(h,x, y) = c(x, y) max
y′∈[n]

{Ψ(h(x,y)−h(x,y
′
)

ρ
)} (7)

The preceding derivation shows that this form can be further upper-bounded by both GCA and GLA
losses. Consequently, both loss families benefit from margin guarantees, though GCA losses achieve
more favorable bounds due to the GLA bounds’ dependence on 1/pmin.

C Experimental details

This appendix provides supplementary information regarding the experimental setup discussed in
Section 6. We first present the precise mathematical formulations for our algorithms and all baseline
loss functions used in the comparative analysis. Then, we detail the specific hyperparameter ranges
explored during the cross-validation process for each method.

Since our work focuses on principled surrogate losses for imbalanced data, our experiments aimed for
a direct comparison with existing losses in their basic forms. We excluded common enhancements
from data modification or optimization strategies to isolate the performance of the loss functions.

C.1 Loss function formulations

Let mk be the number of samples in class k, and m be the total number of samples. Below are the
definitions of the loss functions optimized by our algorithms and those optimized by the baseline
methods. For any triplet (h,x, y), where h is the hypothesis, x is the input, and y is the true label
from a set of n classes:

• Cross-Entropy (CE) Loss:

ℓCE(h,x, y) = − log(
eh(x,y)

∑n
j=1 e

h(x,j)
) .

• Class-Weighted Cross-Entropy (WCE) loss [Morik et al., 1999, Xie and Manski, 1989]:

ℓWCE(h,x, y) = −
m

my
log( eh(x,y)

∑n
j=1 e

h(x,j)
) .

• Logit Adjusted (LA) Loss (τ = 1) [Menon et al., 2021]:

ℓLA(h,x, y) = − log(
eh(x,y)+log(my)

∑n
j=1 e

h(x,j)+log(mj)
) .

• Equalization (EQUAL) Loss [Tan et al., 2020]:

ℓEQUAL(h,x, y) = − log(
eh(x,y)

∑n
j=1wjeh(x,j)

) ,

with weight wj = 1 − β1{mj
m <λ}

1{y≠j}, where β ∼ Bernoulli(p), and 1 > p > 0, 1 > λ > 0
are hyperparameters.
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• Class-Balanced (CB) Loss [Cui et al., 2019]:

ℓCB(h,x, y) = −
1 − γ

1 − γ
my
m

log( eh(x,y)

∑n
j=1 e

h(x,j)
) ,

where 1 > γ > 0 is a hyperparameter.

• FOCAL Loss [Ross and Dollár, 2017]:

ℓFOCAL(h,x, y) = −(1 −
eh(x,y)

∑n
j=1 e

h(x,j)
)
γ

log( eh(x,y)

∑n
j=1 e

h(x,j)
) ,

where γ ≥ 0 is a hyperparameter.

• LDAM Loss [Cao et al., 2019]:

ℓLDAM(h,x, y) = − log(
eh(x,y)−∆y

eh(x,y)−∆y +∑j≠y e
h(x,j)

) ,

where ∆j = C

m
1
4
j

for j ∈ [n], and C > 0 is a hyperparameter.

• Generalized Class-Aware (GCA) Loss:

ℓGCA(h,x, y) =
m

my
Ψq( eh(x,y)/ρy

∑y′∈Y e
h(x,y′)/ρy

),

where q ∈ [0,1) and ρ = (ρ1, . . . , ρn) is a vector of positive parameters for each class.

• Generalized Logit-Adjusted (GLA) Loss:

ℓGLA(h,x, y) = Ψq

⎛
⎜⎜⎜
⎝

eh(x,y)+
log(my/m)

1−q

∑y′∈Y e
h(x,y′)+

log(my′ /m)

1−q

⎞
⎟⎟⎟
⎠
,

where q ∈ [0,1) is a hyperparameter.

C.2 Hyperparameter search protocol

As stated in Section 6, all hyperparameters for the baseline methods and our algorithms were
optimized via cross-validation. The search ranges for each tunable parameter were as follows:

• CE Loss, WCE Loss: These methods do not have tunable hyperparameters beyond standard
optimization settings.

• LA Loss: We fixed the hyperparameter τ = 1 as the algorithm is only Bayes-consistent for
that value.

• EQUAL Loss: p was selected from {0.1,0.2, . . . ,0.9}, and λ was selected from
{0.176,0.5,0.8,1.5,1.76,2.0,3.0,5.0} × 10−3 by following Tan et al. [2020],

• CB Loss: γ was selected from {0.1,0.2, . . . ,0.9,0.99,0.999,0.9999} by following Cui
et al. [2019],

• FOCAL Loss: γ was selected from {1.0,1.5, . . . ,10.0} and {0.0,0.1, . . . ,0.9} by following
Ross and Dollár [2017].

• LDAM Loss: C was selected from {10−4, . . . ,104} and {5×10−4, . . . ,5×103} by following
Cao et al. [2019].

• GCA Loss: ρ was chosen as ( m
1/3
1

∑
n
k=1 m

1/3
k

, . . . ,
m1/3

n

∑
n
k=1 m

1/3
k

) by following Cortes et al. [2025].

q was selected from {0.0,0.1, . . . ,0.9}.
• GLA Loss: q was selected from {0.0,0.1, . . . ,0.9}.
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D Conditional regret for the balanced loss: proof of Lemma 1

Lemma 1. For any x ∈ X, the best-in-class conditional error and the conditional regret for ℓBAL

can be expressed as follows:

C∗ℓBAL
(H, x) = ∑

y∈Y

p(y ∣ x)
p(y)

− max
y∈H(x)

p(y ∣ x)
p(y)

∆CℓBAL,H(h,x) = max
y∈H(x)

p(y ∣ x)
p(y)

− p(h(x)) ∣ x)
p(h(x))

.

Proof. By the definition and Bayes’ theorem, the conditional error can be expressed as follows:

CℓBAL
(h,x) = ∑

y∈Y

p(y ∣ x)
p(y)

1h(x)≠y

= ∑
y∈Y

p(y ∣ x)
p(y)

− p(h(x) ∣ x)
p(h(x))

.

Since {h(x)∶h ∈H} = H(x), the best-in-class conditional error can be expressed as follows:

C∗ℓBAL
(H, x) = ∑

y∈Y

p(y ∣ x)
p(y)

− max
y∈H(x)

p(y ∣ x)
p(y)

,

which proves the first part of the lemma. This leads to

∆CℓBAL,H(h,x) = CℓBAL
(h,x) − C∗ℓBAL

(H, x) = max
y∈H(x)

p(y ∣ x)
p(y)

− p(h(x) ∣ x)
p(h(x))

,

which proves the second part of the lemma.

E H-Consistency for the GCA losses: proof of Theorem 5

Theorem 5. Let H be a regular hypothesis set and ℓGCE a GCE loss. Assume that there exists a
function Γ(t) = β tα for some α ∈ (0,1] and β > 0, such that the following H-consistency bound
holds for all h ∈H and any distribution,

Rℓ0−1(h) −R∗ℓ0−1(H) +Mℓ0−1(H) ≤ Γ(RℓGCE
(h) −R∗ℓGCE

(H) +MℓGCE
(H)).

Then, the following H-consistency bound holds for ℓGCA with respect to ℓBAL for all h ∈H and any
distribution:

RℓBAL
(h) −R∗ℓBAL

(H) +MℓBAL
(H) ≤ Γ(RℓGCA

(h) −R∗ℓGCA
(H) +MℓGCA

(H)),

where Γ(t) = β ( 1
pmin
)
1−α

tα. In the special case where the approximation error AℓGCA
(H) = 0, this

bound simplifies to:

RℓBAL
(h) −R∗ℓBAL

(H) ≤ Γ(RℓGCA
(h) −R∗ℓGCA

(H)).

Proof. The proof involves a reduction of the conditional regrets of the balanced and GCA losses
to those of the zero-one and GCE losses under a newly defined distribution and the use of known
H-consistency bounds for GCE losses. We define a new conditional probability q(y ∣ x) as q(y ∣
x) = p(y∣x)

p(y)
1

Z(x)
, where Z(x) = ∑y∈Y

p(y∣x)
p(y)

≤ 1
pmin

is the normalization factor. By Lemma 1, the
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conditional regret of ℓBAL can be expressed and upper-bounded as follows:

∆CℓBAL,H(h,x) =max
y∈Y

p(y ∣ x)
p(y)

− p(h(x)) ∣ x)
p(h(x))

= Z(x)(max
y∈Y

q(y ∣ x) − q(x ∣ h(x)))

= Z(x)∆Cℓ0−1,H(h,x)
≤ Z(x)Γ(∆CℓGCE,H(h,x)) (H-consistency bound of ℓGCE)

= Z(x)Γ
⎛
⎝∑y∈Y

q(y ∣ x)ℓGCE(h,x, y) − inf
h∈Y
∑
y∈Y

q(y ∣ x)ℓGCE(h,x, y)
⎞
⎠

= Z(x)Γ
⎛
⎝

1

Z(x)
⎛
⎝∑y∈Y

p(y ∣ x)
p(y)

ℓGCE(h,x, y) − inf
h∈Y
∑
y∈Y

p(y ∣ x)
p(y)

ℓGCE(h,x, y)
⎞
⎠
⎞
⎠

= Z(x)Γ
⎛
⎝

1

Z(x)
⎛
⎝∑y∈Y

p(y ∣ x)ℓGCA(h,x, y) − inf
h∈Y
∑
y∈Y

p(y ∣ x)ℓGCA(h,x, y)
⎞
⎠
⎞
⎠

= Z(x)Γ( 1

Z(x)
∆CℓGCA,H(h,x))

= β Z(x)1−α∆CℓGCA,H(h,x)α

≤ β ( 1

pmin
)
1−α

∆CℓGCA,H(h,x)α

Thus, taking expectations gives:

RℓBAL
(h) −R∗ℓBAL

(H) +MℓBAL
(H) = E

x
[∆CℓBAL,H(h,x)]

≤ E
x
[Γ(∆CℓGCA,H(h,x))]

≤ Γ(E
x
[∆CℓGCA,H(h,x)])

(concavity of Γ and Jensen’s ineq.)

= Γ(RℓGCA
(h) −R∗ℓGCA

(H) +MℓGCA
(H)),

where Γ(t) = β ( 1
pmin
)
1−α

tα. This concludes the first part of the proof. The second part follows
directly from the fact that the minimizability gap MℓGCA

(H) vanishes when the approximation error,
AℓGCA

(H), is zero. This concludes the first part of the proof. The second part follows directly
using the fact that when the approximation error is zero: AℓGCA

(H) = 0, the minimizability gap
MℓGCA

(H) vanishes.

Note that, for simplicity, we assumed ρy = 1 for all y in Theorem 5 and its proof. To handle varying
values of ρy, we can directly extend the H-consistency bounds for the general cross-entropy (GCE)
family, as derived in [Mao et al., 2023f,b], to the setting where GCE uses distinct ρy values. We can
then similarly show that these extended bounds for the GCE family can be transformed into bounds
for the GCA losses.

F Negative results for the LA losses: proof of Theorem 2

Theorem 2. When τ ≠ 1, the LA loss ℓLA is not Bayes-consistent with respect to the balanced loss
ℓBAL.

Proof. The Bayes classifier h∗LA of the LA loss satisfies the following condition:

eh
∗

LA(x,y)+τ log(p(y))

∑y′∈Y e
h∗
LA
(x,y′)+τ log(p(y′))

= p(y ∣ x)
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By rearranging the terms, we have

eh
∗

LA(x,y) = p(y ∣ x)
p(y)τ ∑

y′∈Y

eh
∗

LA(x,y
′
)+τ log(p(y′))

= p(x ∣ y)p(y)
p(y)τp(x) ∑y′∈Y

eh
∗

LA(x,y
′
)+τ log(p(y′)) (Bayes’ theorem)

= p(x ∣ y)p(y)1−τ

p(x) ∑
y′∈Y

eh
∗

LA(x,y
′
)+τ log(p(y′)).

Thus, since the term ∑y′∈Y eh
∗

LA
(x,y′)+τ log(p(y′))

p(x)
does not depend on y, we obtain

h∗LA(x) = argmax
y∈Y

h∗LA(x, y) = argmax
y∈Y

eh
∗

LA(x,y) = argmax
y∈Y

p(x ∣ y)p(y)1−τ .

By Lemma 1, we know that the Bayes classifier h∗bal of the Balanced loss satisfies that

h∗bal = argmax
y∈Y

p(y ∣ x)
p(y)

= argmax
y∈Y

p(x ∣ y).

Therefore, for any τ ≠ 1, there exists a distribution such that h∗LA(x) ≠ h∗bal. This implies that when
τ ≠ 1, the LA loss ℓLA is not Bayes-consistent with respect to the balanced loss ℓBAL.

G Bayes-Consistency for the GLA losses: proof of Theorem 3

Theorem 3. For any q ∈ [0,1), the GLA Loss ℓGLA is Bayes-consistent with respect to the balanced
loss ℓBAL.

Proof. The Bayes classifier h∗GLA of the GLA loss satisfies the following condition:

eh
∗

GLA(x,y)+
log(p(y))

1−q

∑y′∈Y e
h∗
GLA

(x,y′)+
log(p(y′))

1−q

= (p(y ∣ x))
1

1−q

∑y′∈Y(p(y′ ∣ x))
1

1−q

By rearranging the terms, we have

eh
∗

GLA(x,y) = (p(y ∣ x))
1

1−q

(p(y))
1

1−q

∑y′∈Y e
h∗GLA(x,y

′
)+

log(p(y′))
1−q

∑y′∈Y(p(y′ ∣ x))
1

1−q

= (p(x ∣ y)
p(x)

)
1

1−q ∑y′∈Y e
h∗GLA(x,y

′
)+

log(p(y′))
1−q

∑y′∈Y(p(y′ ∣ x))
1

1−q

. (Bayes’ theorem)

Thus, since the term ∑y′∈Y e
h∗
GLA

(x,y′)+
log(p(y′))

1−q

∑y′∈Y(p(y
′∣x))

1
1−q

does not depend on y, we obtain

h∗GLA(x) = argmax
y∈Y

h∗GLA(x, y) = argmax
y∈Y

eh
∗

GLA(x,y) = argmax
y∈Y

p(x ∣ y).

By Lemma 1, we know that the Bayes classifier h∗bal of the Balanced loss satisfies that

h∗bal = argmax
y∈Y

p(y ∣ x)
p(y)

= argmax
y∈Y

p(x ∣ y).

Therefore, we have h∗GLA(x) = h∗bal. This implies that the GLA loss ℓGLA is Bayes-consistent with
respect to the balanced loss ℓBAL.
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H H-Consistency for the GLA losses: proof of Theorem 4

Theorem 4. Assume that H is complete. Then, for any q ∈ [0,1), the following H-consistency bound
holds for the GLA loss ℓGLA:

RℓBAL
(h) −R∗ℓBAL

(H) +MℓBAL
(H) ≤ Γ(RℓGLA

(h) −R∗ℓGLA
(H) +MℓGLA

(H)),

where Γ(t) =
√
2t

pmin
for q = 0, and Γ(t) =

√
2t

(pmin)
1

1−q (1−q)
1
2

for q ∈ (0,1). In the special case where the

approximation error AℓGLA
(H) = 0, the bound simplifies to:

RℓBAL
(h) −R∗ℓBAL

(H) ≤ Γ(RℓGLA
(h) −R∗ℓGLA

(H)),

Proof. The proof involves a characterization of the conditional regret of the balanced loss and the
use of Gibbs distributions and Pinsker-type inequalities for analyzing GLA losses.

By Lemma 1, for complete hypothesis sets, the conditional regret of the balanced loss can be
expressed as follows:

∆CℓBAL,H(h,x) =max
y∈Y

p(y ∣ x)
p(y)

− p(h(x)) ∣ x)
p(h(x))

.

Let y(x) = argmaxy∈Y
p(y∣x)
p(y)

, where we choose the label with the same deterministic strategy for
breaking ties as that of h(x) = argmaxy∈Y h(x, y). We analyze by cases.

Case I: q = 0. In this case, the conditional regret for the GLA loss can be written as

CℓGLA
(h,x)) = − ∑

y∈Y

p(y ∣ x) log( eh(x,y)+log(p(y))

∑y′∈Y e
h(x,y′)+log(p(y′))

) = − ∑
y∈Y

p(y ∣ x) log(S(x, y))

where we let S(x, y) = eh(x,y)

∑y′∈Y eh(x,y′)
∈ [0,1] for any y ∈ Y with h(x, y) = h(x, y) + log(p(y)) and

the constraint that ∑y∈Y S(x, y) = 1. Note that S can be viewed as a Gibbs distribution induced by h

with prior p(y). Leveraging the facts that S is a surjection and H is complete, minimizing over S, we
know that C∗ℓGLA

(H, x) has the following form:

C∗ℓGLA
(H, x) = − ∑

y∈Y

p(y ∣ x) log(p(y ∣ x)).

Thus, we obtain
∆CℓGLAH(h,x) = CℓGLA

(h,x) − C∗ℓGLA
(H, x)

= ∑
y∈Y

p(y ∣ x) log(p(y ∣ x)) − ∑
y∈Y

p(y ∣ x) log(S(x, y))

= ∑
y∈Y

p(y ∣ x) log(p(y ∣ x)) − ∑
y∈Y

p(y ∣ x) log( eh(x,y)+log(p(y))

∑y′∈Y e
h(x,y′)+log(p(y′))

)

= ∑
y∈Y

p(y ∣ x) log
⎛
⎝
p(y ∣ x)

∑y′∈Y e
h(x,y′)+log(p(y′))

eh(x,y)+log(p(y))
⎞
⎠

= D(p(⋅ ∣ x)∣∣S(x, ⋅))
where D(p∣∣q) is the relative entropy of two distributions p and q. Consider the case where y(x) ≠
h(x). Then, by Pinsker’s inequality [Mohri et al., 2018, Proposition E.7], we have

∆CℓGLAH(h,x)
= D(p(⋅ ∣ x)∣∣S(x, ⋅))

≥ 1

2
∥p(⋅ ∣ x) − S(x, ⋅)∥2

1
(Pinsker’s inequality)

≥ 1

2
(∣p(y(x) ∣ x) − S(x, y(x))∣ + ∣p(h(x) ∣ x) − S(x,h(x))∣)2

= 1

2
(p(y(x))∣p(y(x) ∣ x)

p(y(x))
− S(x, y(x))

p(y(x))
∣ + p(h(x))∣p(h(x) ∣ x)

p(h(x))
− S(x,h(x))

p(h(x))
∣)

2

.
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Plugging the expression of πh, we have

∆CℓGLAH(h,x)

≥ 1

2
(p(y(x))∣p(y(x) ∣ x)

p(y(x))
− eh(x,y(x))

∑y′∈Y e
h(x,y′)+log(p(y′))

∣ + p(h(x))∣p(h(x) ∣ x)
p(h(x))

− eh(x,h(x))

∑y′∈Y e
h(x,y′)+log(p(y′))

∣)
2

≥ (pmin)2

2
(∣p(y(x) ∣ x)

p(y(x))
− eh(x,y(x))

∑y′∈Y e
h(x,y′)+log(p(y′))

∣ + ∣p(h(x) ∣ x)
p(h(x))

− eh(x,h(x))

∑y′∈Y e
h(x,y′)+log(p(y′))

∣)
2

≥ (pmin)2

2
∣p(y(x) ∣ x)

p(y(x))
− p(h(x) ∣ x)

p(h(x))
+ eh(x,h(x))

∑y′∈Y e
h(x,y′)+log(p(y′))

− eh(x,y(x))

∑y′∈Y e
h(x,y′)+log(p(y′))

∣
2

(∣a∣ + ∣b∣ ≥ ∣a − b∣)

≥ (pmin)2

2
∣p(y(x) ∣ x)

p(y(x))
− p(h(x) ∣ x)

p(h(x))
∣
2

( p(y(x)∣x)
p(y(x))

− p(h(x)∣x)
p(h(x))

≥ 0 and eh(x,h(x))

∑y′∈Y eh(x,y′)+log(p(y′)) − eh(x,y(x))

∑y′∈Y eh(x,y′)+log(p(y′)) ≥ 0 by def. of y(x) and h(x))

= (pmin)2

2
(∆CℓBAL,H(h,x))

2
.

Then, by taking the expectation on both sides and using the Jensen’s inequality, we obtain

RℓBAL
(h) −R∗ℓBAL

(H) +MℓBAL
(H) ≤ Γ(RℓGLA

(h) −R∗ℓGLA
(H) +MℓGLA

(H)),

where Γ(t) =
√
2t

pmin
.

Case II: q ∈ (0,1). In this case, the conditional regret for the GLA loss can be written as

CℓGLA
(h,x)) = − ∑

y∈Y

p(y ∣ x)Ψq
⎛
⎜
⎝

eh(x,y)+
log(p(y))

1−q

∑y′∈Y e
h(x,y′)+

log(p(y′))
1−q

⎞
⎟
⎠
= − ∑

y∈Y

p(y ∣ x)Ψq(S(x, y))

where we let S(x, y) = eh(x,y)

∑y′∈Y eh(x,y′)
∈ [0,1] for any y ∈ Y with h(x, y) = h(x, y) + log(p(y))

1−q
and

the constraint that ∑y∈Y S(x, y) = 1. Note that S can be viewed as a Gibbs distribution induced by
h. Leveraging the facts that S is a surjection and H is complete, minimizing over S, we know that
C∗ℓGLA

(H, x) has the following form:

C∗ℓGLA
(H, x) = ∑

y∈Y

p(y ∣ x)Ψq⎛
⎝

p(y ∣ x)
1

1−q

∑y∈Y p(y ∣ x)
1

1−q

⎞
⎠
= 1

q
∑
y∈Y

p(y ∣ x)
⎛
⎝
1 −
⎛
⎝

p(y ∣ x)
1

1−q

∑y∈Y p(y ∣ x)
1

1−q

⎞
⎠

q
⎞
⎠
.

Thus, we obtain

∆CℓGLAH(h,x)
= CℓGLA

(h,x) − C∗ℓGLA
(H, x)

= 1

q
∑
y∈Y

p(y ∣ x)(1 − S(x, y)q) − 1

q
∑
y∈Y

p(y ∣ x)
⎛
⎝
1 −
⎛
⎝

p(y ∣ x)
1

1−q

∑y∈Y p(y ∣ x)
1

1−q

⎞
⎠

q
⎞
⎠

=
∑y∈Y p(y ∣ x)((

p(y∣x)
1

1−q

∑y∈Y p(y∣x)
1

1−q
)
q

− S(x, y)q)

q

=
⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

1−q

⎛
⎝
1 −∑y∈Y(

p(y∣x)
1

1−q

∑y∈Y p(y∣x)
1

1−q
)
1−q

S(x, y)q
⎞
⎠

q

=
⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

1−q

T1−q(s(⋅ ∣ x)∣∣S(x, ⋅))
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where Tq(p∣∣q) denotes the Tsallis relative entropy of order q between the distributions p and q, and

s(y ∣ x) = p(y∣x)
1

1−q

∑y∈Y p(y∣x)
1

1−q
. Consider the case where y(x) ≠ h(x). Then, by a Pinsker-type inequality

[Rastegin, 2013, Eq. (4.13)], we have

∆CℓGLAH(h,x)

=
⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

1−q

T1−q(s(⋅ ∣ x)∣∣S(x, ⋅))

≥ 1 − q
2

⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

1−q

∥s(⋅ ∣ x) − S(x, ⋅)∥2
1

(Pinsker-type inequality [Rastegin, 2013, Eq. (4.13)])

≥ 1 − q
2

⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

1−q

(∣s(y(x) ∣ x) − S(x, y(x))∣ + ∣s(h(x) ∣ x) − S(x,h(x))∣)2

= 1 − q
2

⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

1−q

×
⎛
⎝
p(y(x))

1
1−q

RRRRRRRRRRR

s(y(x) ∣ x)
p(y(x))

1
1−q

− S(x, y(x))
p(y(x))

1
1−q

RRRRRRRRRRR
+ p(h(x))

1
1−q

RRRRRRRRRRR

s(h(x) ∣ x)
p(h(x))

1
1−q

− S(x,h(x))
p(h(x))

1
1−q

RRRRRRRRRRR

⎞
⎠

2

≥ 1 − q
2
(pmin)

2
1−q
⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

1−q

×
⎛
⎝

RRRRRRRRRRR

s(y(x) ∣ x)
p(y(x))

1
1−q

− s(h(x) ∣ x)
p(h(x))

1
1−q

+ S(x,h(x))
p(h(x))

1
1−q

− S(x, y(x))
p(y(x))

1
1−q

RRRRRRRRRRR

⎞
⎠

2

(∣a∣ + ∣b∣ ≥ ∣a − b∣)

≥ 1 − q
2
(pmin)

2
1−q
⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

1−qRRRRRRRRRRR

s(y(x) ∣ x)
p(y(x))

1
1−q

− s(h(x) ∣ x)
p(h(x))

1
1−q

RRRRRRRRRRR

2

.

( s(y(x)∣x)

p(y(x))
1

1−q
− s(h(x)∣x)

p(h(x))
1

1−q
≥ 0 and S(x,h(x))

p(h(x))
1

1−q
− S(x,y(x))

p(y(x))
1

1−q
≥ 0 by def. of y(x) and h(x))

Plugging the expression of s(⋅ ∣ x), we have

∆CℓGLAH(h,x)

≥ 1 − q
2
(pmin)

2
1−q
⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

1−qRRRRRRRRRRR

s(y(x) ∣ x)
p(y(x))

1
1−q

− s(h(x) ∣ x)
p(h(x))

1
1−q

RRRRRRRRRRR

2

= 1 − q
2
(pmin)

2
1−q
⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

−q−1RRRRRRRRRRRR
(p(y(x) ∣ x)

p(y(x))
)

1
1−q

− (p(h(x) ∣ x)
p(h(x))

)
1

1−q
RRRRRRRRRRRR

2

≤ 1 − q
2
(pmin)

2
1−q
⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

−q−1RRRRRRRRRRRR

p(y(x) ∣ x)
p(y(x))

(p(y(x) ∣ x)
p(y(x))

)
q

1−q

− p(h(x) ∣ x)
p(h(x))

(p(h(x) ∣ x)
p(h(x))

)
q

1−q
RRRRRRRRRRRR

2

≥ 1 − q
2
(pmin)

2
1−q
⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

−q−1RRRRRRRRRRRR

p(y(x) ∣ x)
p(y(x))

(p(y(x) ∣ x)
p(y(x))

)
q

1−q

− p(h(x) ∣ x)
p(h(x))

(p(h(x) ∣ x)
p(h(x))

)
q

1−q
RRRRRRRRRRRR

2

≥ 1 − q
2
(pmin)

2
1−q
⎛
⎝∑y∈Y

p(y ∣ x)
1

1−q
⎞
⎠

−q−1

(p(y(x) ∣ x)
p(y(x))

)
2q
1−q

∣p(y(x) ∣ x)
p(y(x))

− p(h(x) ∣ x)
p(h(x))

∣
2

.
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Next, using ∑y∈Y p(y ∣ x)
1

1−q = ∥p(⋅ ∣ x)∥
1

1−q
1

1−q

≤ ∥p(⋅ ∣ x)∥
1

1−q

1 = 1 and p(y(x)∣x)
p(y(x))

= maxy∈Y
p(y∣x)
p(y)

≥ 1,

we can write:

∆CℓGLAH(h,x) ≥
1 − q
2
(pmin)

2
1−q ∣p(y(x) ∣ x)

p(y(x))
− p(h(x) ∣ x)

p(h(x))
∣
2

= 1 − q
2
(pmin)

2
1−q (∆CℓBAL,H(h,x))

2
.

Then, by taking the expectation on both sides and using the Jensen’s inequality, we obtain

RℓBAL
(h) −R∗ℓBAL

(H) +MℓBAL
(H) ≤ Γ(RℓGLA

(h) −R∗ℓGLA
(H) +MℓGLA

(H)),

where Γ(t) =
√
2t

(pmin)
1

1−q (1−q)
1
2

. This concludes the first part of the proof. The second part follows

directly using the fact that when the approximation error is zero: AℓGLA
(H) = 0, the minimizability

gap MℓGLA
(H) vanishes.

I Margin bound: proof of Theorem 7

Theorem 7 (Margin bound for cost-sensitive classification). Let H be a family of functions mapping
from X×[n] to R. Then, for any δ > 0, with probability at least 1−δ, each of the following inequalities
holds for all h ∈H:

RL(h) ≤ R̂S,ρ(h) + 4C
√
2nRm(H) +

√
log 1

δ

2m

RL(h) ≤ R̂S,ρ(h) + 4C
√
2n R̂S(H) + 3

√
log 2

δ

2m
.

Proof. Consider the family of functions taking values in [0,1]:
H′ = {z = (x, y) ↦ Lρ(h,x, y)∶h ∈H}.

By [Mohri et al., 2018, Theorem 3.3], with probability at least 1 − δ, for all g ∈H′,

E[g(z)] ≤ 1

m

m

∑
i=1

g(zi) + 2R̂S(H′) + 3

√
log 2

δ

2m
,

and thus, for all h ∈H,

E[Lρ(h,x, y)] ≤ R̂S,ρ(h) + 2R̂S(H′) + 3

√
log 2

δ

2m
.

Since RL(h) ≤ RLρ(h) = E[Lρ(h,x, y)], we have

RL(h) ≤ R̂S,ρ(h) + 2R̂S(H′) + 3

√
log 2

δ

2m
.

Fix h, (xi, yi) and ρ > 0, define Ψ as follows:

Ψ([h(xi, y)]y∈[n]) = c(xi, yi) max
y′∈[n]

{Φρ(h(xi, yi) − h(xi, y
′))}.

Then, by the sub-additivity of the maximum operator, we can write for any f, f̃ ∈H:

Ψ([h(xi, y)]y∈[n]) −Ψ([h̃(xi, y)]y∈[n])
≤ c(xi, yi) max

y′∈[n]
{Φρ(h(xi, yi) − h(xi, y

′))} − c(xi, yi) max
y′∈[n]

{Φρ(h̃(xi, yi) − h̃(xi, y
′))}

≤ 2c(xi, yi)
ρ

{∥[h(xi, y) − h̃(xi, y)]y∈[n]∥1} (by 1
ρ

-Lipschitzness of Φρ)

≤ 2C
√
n

ρ
∥[h(xi, y) − h̃(xi, y)]y∈[n]∥2.
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Thus, Ψ is 2
√
n

ρ
-Lipschitz with respect to the ∥⋅∥2 norm. Thus, by the vector contraction lemma

[Maurer, 2016, Cortes et al., 2016], R̂S(H′) can be bounded as follows:

R̂S(H′) ≤ 2C
√
2n R̂S(H).

This proves the second inequality. The first inequality, can be derived in the same way by using the
first inequality of [Mohri et al., 2018, Theorem 3.3].
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