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Abstract
We study a problem of best-effort adaptation motivated by several applications
and considerations, which consists of determining an accurate predictor for a
target domain, for which a moderate amount of labeled samples are available,
while leveraging information from another domain for which substantially more
labeled samples are at one’s disposal. We present a new and general discrepancy-
based theoretical analysis of sample reweighting methods, including bounds
holding uniformly over the weights. We show how these bounds can guide the
design of learning algorithms that we discuss in detail. We further show that
our learning guarantees and algorithms provide improved solutions for standard
domain adaptation problems, for which few labeled data or none are available
from the target domain. We finally report the results of a series of experiments
demonstrating the effectiveness of our best-effort adaptation and domain adapta-
tion algorithms, as well as comparisons with several baselines. We also discuss
how our analysis can benefit the design of principled solutions for fine-tuning.

Keywords: Domain adaptation, Distribution shift, ML fairness.

1 Introduction
Consider the following adaptation problem that frequently arises in applications.
Suppose we have access to a fair amount of labeled data from a target domain P and
to a significantly larger amount of labeled data from a different domain Q. How can

1



Springer Nature 2021 LATEX template

2 Best-Effort Adaptation

we best exploit both collections of labeled data to come up with as accurate a predic-
tor as possible for the target domain P? We will refer to this problem as the best-effort
adaptation problem since we seek the best method to leverage the additional labeled
data from Q to come up with a best predictor for P. One would imagine that the data
from Q should be helpful in improving upon the performance obtained by training
only on the P data, if Q is not too different from P. The question is how to measure
this difference and account for it in the learning algorithm. This best-effort problem
differs from standard domain adaptation problems where typically very few or no
labeled data from the target is at one’s disposal.

Best-effort adaptation can also be motivated by fairness considerations, such as
racial disparities in automated speech recognition (Koenecke et al., 2020). A signif-
icant gap has been reported for the accuracy of speech recognition systems when
tested on speakers of vernacular English versus non-vernacular English speakers. In
practice, there is a substantially larger amount of labeled data available for the non-
vernacular domain since it represents a larger population of English speakers. As a
result, it might not be possible, with the training data in hand, to achieve an accuracy
for vernacular speech similar to the one achieved for non-vernacular speech. Such
a recognition system might therefore have only one method for equalizing accuracy
between these populations: namely, degrading the system’s performance on the larger
population. Alternatively, one could instead formulate the problem of maximizing
the performance of the system on the vernacular speakers, leveraging all the data
available at hand to find the best-effort predictor for vernacular speakers.

Here, we present a detailed study of best-effort adaptation, including a new and
general theoretical analysis of reweighting methods using the notion of discrepancy,
as well as new algorithms and empirical evaluations. We further show how our analy-
sis can be extended to that of domain adaptation problems, for which we also design
new algorithms and report experimental results.

There is a very broad literature dealing with adaptation solutions for distinct
scenarios and we cannot present a comprehensive survey here. Instead, we briefly
discuss here the most closely related work and give a detailed discussion of previous
work in Section 7. We also refer the reader to papers such as (Pan and Yang, 2009;
Wang and Deng, 2018). Let us add that similar scenarios to best-effort adaptation
have been studied in the past under some different names such as inductive transfer
or supervised domain adaptation but with the assumption of much smaller labeled
data from the target domain (Garcke and Vanck, 2014; Hedegaard et al., 2021).

The work we present includes a significant theoretical component and benefits
from prior theoretical analyses of domain adaptation. The theoretical analysis of
domain adaptation was initiated by Kifer et al. (2004) and Ben-David et al. (2006)
with the introduction of a dA-distance between distributions. The authors used this
notion to derive VC-dimension learning bounds for the zero-one loss, which was
elaborated on in subsequent works (Blitzer et al., 2008; Ben-David et al., 2010).
Later, Mansour et al. (2009a) and Cortes and Mohri (2011, 2014) presented a gen-
eral analysis of single-source adaptation for arbitrary loss functions, where they
introduced the notion of discrepancy, a divergence measure adequately aligned with
domain adaptation. Discrepancy coincides with the dA-distance in the special case
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of the zero-one loss. It takes into account the loss function and hypothesis set and,
importantly, can be estimated from finite samples. The authors gave a discrepancy
minimization algorithm based on a reweighting of the losses of sample points. We
use their notion of discrepancy in our new analysis. Cortes et al. (2019) presented an
extension of the discrepancy minimization algorithm based on the so-called general-
ized discrepancy, which both incorporates a hypothesis-dependency and works with
a less conservative notion of local discrepancy defined by a supremum over a sub-
set of the hypothesis set. The notion of local discrepancy has been since adopted in
several recent publications, in the study of active learning or adaptation (de Mathelin
et al., 2022; Zhang et al., 2019c, 2020) and is also used in part of our analysis.

While our main motivation is best-effort adaptation, in Section 3, we present a
general analysis that holds for all sample reweighting methods. Our theoretical anal-
ysis and learning bounds are new and are based on the notion of discrepancy. They
include learning guarantees holding uniformly with respect to the weights, as well as
a lower bound suggesting the importance of the discrepancy term in our bounds. Our
theory guides the design of principled learning algorithms for best-effort adaptation,
BEST and SBEST, that we discuss in detail in Section 4. This includes our estimation
of the discrepancy terms via DC-programming (Appendix A.3).

In Section 5, we further show how our analysis can be extended to the case where
few labeled data or none are available from the target domain, that is the scenario
of (unsupervised or weakly supervised) domain adaptation. Here too, we derive new
discrepancy-based learning bounds based on reweighting, including uniform bounds
with respect to the weights (Section 5.1). Interestingly, here, an additional set of sam-
ple weights naturally appears in the analysis, to account for the absence of labels
from the target. Our theoretical analysis leads to the design of a new adaptation
algorithms, BEST-DA (Section 5.2). We further discuss in detail how in this scenario
labeled discrepancy terms can be upper-bounded in terms of unlabeled ones, includ-
ing unlabeled local discrepancies, and how some additional amount of labeled data
can be beneficial (Section 5.3).

In Section 6, we report the results of experiments with both our best-effort
adaptation algorithms and our domain adaptation algorithms demonstrating their
effectiveness, as well as comparisons with several baselines. This includes a dis-
cussion and empirical analysis of how our results benefit the design of principled
solutions for fine-tuning and other few-shot algorithms. We start with the introduction
of some preliminary definitions and concepts related to adaptation (Section 2).

2 Preliminaries
We write X to denote the input space and Y the output space. In the regression setting,
Y is assumed to be a measurable subset of R. We use H to represent a hypothesis set
of functions from X to Y, and `∶Y × Y→ R a loss function, with values in [0,1].

We will study problems with a source domain Q and target domain P, where Q

and P are distributions over X × Y. We will denote by Q̂ the empirical distribution
associated to a sample S of size m drawn from Qm and similarly by P̂ the empirical
distribution associated to a sample S′ of size n drawn from Pn. We will denote by
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QX and PX the marginal distributions of Q and P on X. We will denote by L(P, h)
the population loss of a hypothesis over P defined as: L(P, h) = E(x,y)∼P[`((x), y)].

Several notions of discrepancy have been shown to be adequate measures
between distributions for adaptation problems (Kifer et al., 2004; Mansour et al.,
2009a; Mohri and Muñoz Medina, 2012; Cortes and Mohri, 2014; Cortes et al.,
2019). We will denote by dis(P,Q) the labeled discrepancy of P and Q, also called
Y-discrepancy in (Mohri and Muñoz Medina, 2012; Cortes et al., 2019) and defined
by:

dis(P,Q) = sup
h∈H

E
(x,y)∼P

[`(h(x), y)] − E
(x,y)∼Q

[`(h(x), y)]. (1)

We omit the use of absolute values around the difference of expectations, unlike the
original discrepancy definitions in prior work, as the one-sided definition is sufficient
for our analysis.

By definition, computing the labeled discrepancy assumes access to labels from
both P and Q. In contrast, the unlabeled discrepancy, denoted by dis(P,Q), requires
no access to such labels

dis(P,Q) = sup
h,h′∈H

E
x∼PX

[`(h(x), h′(x))] − E
x∼QX

[`(h(x), h′(x))]. (2)

As shown by Mansour et al. (2009a), the unlabeled discrepancy can be accurately
estimated from finite (unlabeled) samples from QX and PX when H admits a favor-
able Rademacher complexity, for example a finite VC-dimension. The unlabeled
discrepancy is a divergence measure tailored to (unsupervised) adaptation that can be
upper bounded by the `1-distance. It coincides with the so-called dA-distance intro-
duced by Kifer et al. (2004) in the special case of the zero-one loss. We will also be
using the finer notion of local labeled discrepancy for some suitably chosen subsets
H1 and H2 of H:

disH1×H2
(P,Q) = sup

(h,h′)∈H1×H2

E
x∼PX

[`(h(x), h′(x))] − E
x∼QX

[`(h(x), h′(x))]. (3)

Local discrepancy (Cortes et al., 2019) is defined by a supremum over smaller sets
and is thus a more favorable quantity.

We further extend all the discrepancy definitions just presented to the case where
P and Q are finite signed measures over X × Y, using the same expressions as above.
In particular, for any two distributions P,Q and real numbers a and b, we extend the
definition of labeled discrepancy to that of aP and bQ as follows:

dis(aP, bQ) = sup
h∈H

E
(x,y)∼P

[a `(h(x), y)] − E
(x,y)∼Q

[b `(h(x), y)]. (4)

We also abusively extend the definition of discrepancy to distributions over sam-
ple indices. As an example, given the samples S and S′ and a distribution q over
their [m + n] indices, we define the discrepancy dis(P̂,q) as follows: dis(P̂,q) =
suph∈H

1
n ∑

n
i=m+1 `(h(xi), yi) −∑m+n

i=1 qi`(h(xi), yi).
In our analysis of generalization we use an extended version of the standard

notion of Rademacher complexity of a hypothesis set H, Rm(H), which is defined as
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follows for i.i.d. samples S = (x1, . . . , xm) of size m (Koltchinskii and Panchenko,
2002; Bartlett and Mendelson, 2002; Mohri et al., 2018):

Rm(H) = E
σ,S

[sup
h∈H

1

m

m

∑
i=1

σih(xi)],

where σis are independent uniform random variables taking values in {−1,+1}. The
expectation is taken over σis and the draw of an i.i.d. sample S of size m from the
distribution considered.

3 Discrepancy-based generalization bounds
There are many algorithms in adaptation based on various methods for reweighting
sample losses and it is natural to seek a similar solution for best-effort adaptation (see
Section 7). In this section, we present a general theoretical analysis covering all such
sample reweighting methods. We introduce new discrepancy-based generalization
bounds, including learning bounds holding uniformly over the weights. Next, we
compare them with existing guarantees and derive a simplified corollary.

3.1 General learning bounds for sample reweighting methods
We assume that the learner has access to a labeled sample S =
((x1, y1), . . . , (xm, ym)) drawn from Qm and a labeled sample S′ =
((xm+1, ym+1), . . . , (xm+n, ym+n)) drawn from Pn. In the problems we consider,
we typically have m ≫ n, but our analysis applies is general. For a non-negative
vector q in [0,1][m+n], we denote by q the total weight on the first m points:
q = ∑mi=1 qi and by Rq(` ○H) the q-weighted Rademacher complexity:

Rq(` ○H) = E
S,S′,σ

[sup
h∈H

m+n

∑
i=1

σiqi`(h(xi), yi)], (5)

where the Rademacher variables σi are independent random variables distributed uni-
formly over {−1,+1}. The q-weighted Rademacher complexity is a natural extension
of the Rademacher complexity taking into consideration distinct weights assigned
to sample points. It can be upper-bounded as follows in terms of the (unweighted)
Rademacher complexity: Rq(` ○H) ≤ ∥q∥∞(m+n)Rm+n(` ○H), with equality for
uniform weights (see Lemma 10, Appendix A).

The following is a general learning guarantee expressed in terms of the weights
q. Note that we do not require q to be a distribution over [m + n], that is ∥q∥1 may
not equal one.

Theorem 1 Fix a vector q in [0,1][m+n]. Then, for any δ > 0, with probability at least 1 − δ
over the draw of an i.i.d. sample S of size m from Q and an i.i.d. sample S′ of size n from P,
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the following holds for all h ∈H:

L(P, h) ≤
m+n

∑
i=1

qi`(h(xi), yi) + dis([(1 − ∥q∥1) + q]P,qQ) + 2Rq(` ○H) + ∥q∥2

¿
Á
ÁÀ log 1

δ

2
.

Note that when q is a distribution, the term dis([(1 − ∥q∥1) + q]P,qQ) admits the
following simpler form, since ∥q∥1 = 1:

dis([(1 − ∥q∥1) + q]P,qQ) = dis(qP,qQ) = qdis(P,Q). (6)

where the last equality holds by the definition (4). The following theorem shows that
that the bound of Theorem 1 is tight as a function of the discrepancy term when q is
a distribution, which emphasizes the crucial significance of this term. The proofs for
both theorems are given in Appendix A.

Theorem 2 Fix a distribution q in the simplex ∆m+n. Then, for any ε > 0, there exists h ∈ H
such that, for any δ > 0, the following lower bound holds with probability at least 1 − δ over
the draw of an i.i.d. sample S of size m from Q and an i.i.d. sample S′ of size n from P:

L(P, h) ≥
m+n

∑
i=1

qi`(h(xi), yi) + qdis(P,Q) − 2Rq(` ○H) − ∥q∥2

¿
Á
ÁÀ log 1

δ

2
− ε.

In particular, for ∥q∥2,Rq(` ○H) ∈ O( 1
√

m+n
), we have:

L(P, h) ≥
m+n

∑
i=1

qi`(h(xi), yi) + qdis(P,Q) +Ω(
1

√
m + n

).

The bound of Theorem 1 cannot be used to choose q since it holds for a fixed
choice of that vector. A standard way to derive a uniform bound over q is via cover-
ing numbers. That requires applying the union bound to the centers of an ε-covering
of [0,1][m+n] for the `1 distance. But, the corresponding covering numberN1 would
be inO((1/ε)m+n), resulting in an uninformative bound, even for ∥q∥2 = 1/

√
m + n,

since
√

logN1/m + n would be a constant. Instead, we present an alternative anal-
ysis, generalizing Theorem 1 to hold uniformly over q in {q∶ ∥q − p0∥1 < 1}, where
p0 could be interpreted as a reference (or ideal) reweighting choice. The proof is
presented in Appendix A.

Theorem 3 For any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample
S of size m from Q and an i.i.d. S′ of size n from P, the following holds for all h ∈ H and
q ∈ {q∶ ∥q − p0

∥1 < 1}:

L(P, h) ≤
m+n

∑
i=1

qi`(h(xi), yi) + dis([(1 − ∥q∥1) + q]P,qQ) + dis(p0,q)

+ 2Rq(` ○H) + 7∥q − p0
∥1 + [∥q∥2 + 2∥q − p0

∥1]
⎡
⎢
⎢
⎢
⎣

√

log log2
2

1−∥q−p0∥1
+

√
log 2

δ
2

⎤
⎥
⎥
⎥
⎦
.
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Note that for q = p0, the bound coincides with that of Theorem 1.

Learning bounds insights. Theorems 1 and 3 provide general guarantees for
best-effort adaptation. They suggest that, for adaptation to succeed via sample
reweighting, a favorable balance of several key terms is important. The first term
suggests minimizing the q-weighted empirical loss. However, the bound advises
against doing so at the price of assigning non-zero weights only to a small frac-
tion of the points since that would increase the ∥q∥2 term. In fact, a comparison
with the familiar inverse of square-root of the sample size term appearing in other
bounds suggests interpreting (1/∥q∥2

2) as the effective sample size. As already indi-
cated, when q is a distribution, the second term admits the following simpler form:
dis([(1 − ∥q∥1) + q]P,qQ) = qdis(P,Q) (Equation 6). Thus, the second term of
these bounds suggests allocating less weight to the points drawn from Q, when the
discrepancy dis(P,Q) is large. The weighted discrepancy term dis(p0,q) and the `1-
distance ∥q − p0∥1 in Theorem 3 both press q to be chosen relatively closer to the
reference p0. Finally, the Rademacher complexity term is a familiar measure of the
complexity of the hypothesis set, which here additionally takes into consideration the
weights.

3.2 Discussion of learning bound of Theorem 1 and comparisons
Here, we compare the bound of Theorem 1 with some existing discrepany-based
ones and show how they can be recovered as special cases. In particular, we show
that the discrepancy-based bound of Cortes et al. (2019), which is the basis for the
discrepancy minimization algorithm of Cortes and Mohri (2014), is always an upper
bound on a special case (specific choice of the weights) of the bound of Theorem 1.

It is instructive to examine some special cases for the choice of q, which will
demonstrate how our guarantees can recover several previous bounds as a special
case. Since our algorithms seek to choose the best weight (and best hypothesis) based
on these bounds, this shows that their search space includes that of algorithms based
on those previous bounds.

We note that assigning non-uniform weights to the points in S should not be
viewed as unnatural, even though the points are sampled from the same distribution.
This is because these weights serve to make the q-weighted empirical loss closer
to the empirical loss for the target sample. As an example, importance weighting
seeks distinct weights for each point based on the source and target distributions.
Nevertheless, we discuss a simple α-reweighting method, which allocates uniform
weights to source points. We show that, under some assumptions, even for this very
simple choice of the weights, the learning bound can be more favorable than the one
for training only on target samples.

q chosen uniformly on S. For q chosen to be the uniform distribution on S,
we have q = 1, ∥q∥2 = 1

√
m

, and the bound coincides with the labeled discrepancy-
based bound for P of Cortes et al. (2019)[Prop. 5; Eq. (9)]. Indeed, for q chosen to
be supported only on S, the theorem gives a q-discrepancy domain adaptation bound
from Q to P, in terms of a q-Rademacher complexity and ∥q∥2.
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q chosen uniformly on S′. Here q = 0, ∥q∥2 = 1
√
n

, and the bound coincides with
the standard Rademacher complexity bound for P for learning from a labeled sample
of size n:

L(P, h) ≤ 1

n

m+n

∑
i=m+1

`(h(xi), yi) + 2Rn(` ○H) +
√

log 1
δ

2n
. (7)

Here, Rn(` ○ H) is the standard Rademacher complexity defined as in (5) where
the expectation is over S′ and q is the uniform distribution over S′. Thus, for q
minimizing the right-hand side of the bound of the theorem, the learning bound is at
least as favorable as one restricted to learning from the labeled points from P. But
the bound also demonstrates that it is possible to do better than just learning from
P. In fact, for Q = P, we have dis(P,Q) = 0, and q can be chosen to be uniform
over T = (S,S′), thus ∥q∥2 = 1

√

m+n
. The bound then coincides with the standard

Rademacher complexity bound for a sample of sizem+n for the distribution P. More
generally, such a bound holds for any two distributions P and Q with dis(P,Q) = 0.

The learning bound (7) can be straightforwardly upper-bounded by the weighted
discrepancy bound of Cortes et al. (2019)[Prop. 5; Eq. (10)], for any p with support
S:

L(P, h) ≤
m

∑
i=1

pi`(h(xi), yi) + dis(P̂,p) + 2Rn(` ○H) + [
log 1

δ

2n
]

1
2

, (8)

using the inequality

L(P̂, h) ≤
m

∑
i=1

pi`(h(xi), yi) + dis(P̂,p),

which holds for any p, by definition of the discrepancy. Thus, there is a specific
choice of the weights in our bound that makes it a lower bound for that of Cortes
et al. (2019), regardless of how the weights p are chosen in their bound (the inequality
holds uniformly over p). Our algorithm seeks the best choice of the weights in our
bound, for which our bound is thus guaranteed to be a lower bound for that of Cortes
et al. (2019), regardless of how the weights p are chosen in their bound.

The weighted-discrepancy minimization algorithm of Cortes and Mohri (2014) is
based on a two-stage minimization of (8) and in that sense is sub-optimal compared
to an algorithm seeking to minimize the bound of Theorem 1.

q chosen uniformly α-weighted on S. Let d = dis(P,Q), d̂ and d̂ = dis(Q̂, P̂).
Consider the following simple, and in general suboptimal, choice of q as a distribu-
tion defined by:

q = αm

m + n qi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q
m
= α
m+n

if i ∈ [m];
1−q
n

= m(1−α)+n
(m+n)n

otherwise,
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where α = Ψ(1−d) for some non-decreasing function Ψ with Ψ(0) = 0 and Ψ(1) = 1.
We will compare the right-hand side of the bound of Theorem 1, which we denote by
B, with its right-hand side B0 for q chosen to be uniform over S′ corresponding to
supervised learning on just S′:

B0 = L(P̂, h) + 2Rn(` ○H) +
√

log 1
δ

2n
.

In Appendix A.5, we show that under some assumptions, we have B −B0 ≤ 0. Thus,
even for this sub-optimal choice of q, under those assumptions, the guarantee of the
theorem is then strictly more favorable than the one for training on S′ only, uniformly
over h ∈H.

3.3 Corollary
Theorem 3 suggests choosing h ∈ H and q ∈ {q∶ ∥q − p0∥1 < 1} to minimize the
right-hand side of the inequality and seek the best balance between these key terms.
This guides the design of our learning algorithms. The following corollary provides
a slightly simplified version of Theorem 3 (see Appendix A).

Corollary 4 For any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample S
of sizem from Q and an i.i.d. sample S′ of size n from P, the following holds for all h ∈H and
q ∈ {q∶ ∥q − p0

∥1 < 1}:

L(P, h) ≤
m+n

∑
i=1

qi`(h(xi), yi) + qdis(P,Q) + dis(p0,q) + 2Rq(` ○H)

+ 8∥q − p0
∥1 + [∥q∥2 + 2∥q − p0

∥1]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√

log log2
2

1−∥q−p0∥1
+

¿
Á
ÁÀ log 2

δ

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

4 Best-Effort adaptation algorithms
In this section, we describe new learning algorithms for best-effort adaptation
directly benefiting from the theoretical analysis of the previous section.

Optimization problem, BEST and SBEST algorithms. The previous section sug-
gests seeking h ∈ H and q ∈ [0,1]m+n to minimize the bound of Theorem 3 or that
of Corollary 4. To simplify the discussion, we will focus on the algorithm derived
from Corollary 4. A similar but finer algorithm consists instead of using directly
Theorem 3.

Assume that H is a subset of a normed vector space and that the Rademacher
complexity term can be bounded by an upper bound on the norm squared ∥h∥2. Then,
using the shorthand di = dis(P,Q)1i∈[m], the optimization problem can be written as:

min
h∈H,q∈[0,1]m+n

m+n

∑
i=1

qi[`(h(xi), yi) + di] + dis(p0,q) + λ∞∥q∥∞∥h∥2
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+ λ1∥q − p0∥1 + λ2∥q∥2
2,

where λ1, λ2 and λ∞ are non-negative hyperparameters. A natural choice for p0 in
our scenario is the uniform distribution over S′, which is the empirical distribution in
the absence of any point from a different distribution Q, or an appropriate mixture of
the empirical distribution over S and the empirical distribution over S′. We will refer
by BEST to an algorithm seeking to minimize this objective. We will also consider a
simpler version of our algorithm, SBEST, where we upper-bound dis(p0,q) by ∥q −
p0∥1, in which case this additional term is subsumed by the existing one with λ1

factor.
When the loss function ` is convex with respect to its first argument, the

objective function is convex in h and in q. In particular, dis(p0,q) is a con-
vex function of q as a supremum of convex functions (affine functions in q):
dis(p0,q) = suph∈H{∑m+n

i=1 (p0
i − qi)`(h(xi), yi)}. But, the objective function is

not jointly convex.

Alternating minimization solution. One method for solving the problem consists
of alternating minimization (or block coordinate descent), that is of minimizing the
objective over H for a fixed value of q and next of minimizing with respect to q
for a fixed value of h. In general, this method does not benefit from convergence
guarantees, although there is a growing body of literature proving guarantees under
various assumptions (Grippo and Sciandrone, 2000; Li et al., 2019; Beck, 2015).

DC-programming solution. An alternative solution consists of casting the problem
as an instance of DC-programming (difference of convex) by rewriting the objective
as a difference. Note that for any non-negative and convex function f and any non-
decreasing and convex function Ψ defined over R+, Ψ ○ f is convex: for all (x,x′) ∈
X2 and α ∈ [0,1],

(Ψ ○ f)(αx + (1 − α)x′) ≤ Ψ(αf(x) + (1 − α)f(x′))
≤ α(Ψ ○ f)(x) + (1 − α)(Ψ ○ f)(x′),

where the first inequality holds by the convexity of f and the non-decreasing property
of Ψ and the last one by the convexity of Ψ. In particular, for any non-negative and
convex function f , f2 is convex. Thus, we can rewrite the non-jointly convex terms
of the objective as the following DC-decompositions:

qi`(h(xi), yi) =
1

2
[[qi + u]2 − [q2

i + u2]],

∥q∥∞∥h∥2 = 1

2
[[∥q∥∞ + ∥h∥2]2 − [∥q∥2

∞
+ ∥h∥2]],

where u = `(h(xi), yi). We can then use the DCA algorithm of Tao and An (1998),
(see also Tao and An (1997)), which in our differentiable case coincides with the
CCCP algorithm of Yuille and Rangarajan (2003), further analyzed by Sriperum-
budur et al. (2007). The DCA algorithm guarantees convergence to a critical point.
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The global optimum can be found by combining DCA with a branch-and-bound or
cutting plane method (Tuy, 1964; Horst and Thoai, 1999; Tao and An, 1997). We
also present a solution based on convex optimization in the case of the squared loss
with a linear or kernel-based hypothesis set (Appendix A.2).

Discrepancy estimation. Our algorithm requires estimating the discrepancy terms
di. We discuss our DC-programming solution to this problem in detail in
Appendix A.3.

As already pointed, our learning bounds are general and can be used for the
analysis of various specific reweighting methods with bounded weights, including
discrepancy minimization (Cortes and Mohri, 2014), KMM (Huang et al., 2006),
KLIEP (Sugiyama et al., 2007), importance weighting (Cortes et al., 2010), when
the weights are bounded, and many others. However, unlike our algorithms, which
simultaneously learn the weights and the hypothesis and directly benefit from the
learning bounds of the previous section, these algorithms typically consist of two
stages and do not exploit the guarantees discussed: in the first stage, they deter-
mine some weights q, irrespective of the labeled samples and the empirical loss; in
the second stage, they use these weights to learn a hypothesis minimizing the q-
weighted empirical loss. Additionally, some methods admit other specific drawbacks.
For example, it was shown by Cortes et al. (2010), both theoretically and empirically,
that, in general, importance weighting may not succeed. Note also that the method
relies only on the ratio of the densities and does not take into account, unlike the
discrepancy, the hypothesis set and the loss function.

5 Domain adaptation
The analysis of Section 3 can also be used to derive general discrepancy-based guar-
antees for domain adaptation, where the learner has access to few or no labeled points
from the target domain. In this section, we analyze the case where the input points in
S′ are unlabeled. Our analysis can be straightforwardly extended to the case where a
small fraction of the labels in S′ are available. Our theoretical analysis leads to the
design of new algorithms for domain adaptation.

5.1 Domain adaptation generalization bounds
For convenience, in this section, we will use a different notation for the weights on
S and S′: q ∈ [0,1]m for the weights on S, q′ ∈ [0,1]n for the weights on S′. The
labels of the points in S′ appear in the first term of the bound of Theorem 1, the q-
weighted empirical loss. Since they are not available, we upper-bound the empirical
loss in terms of a p-weighted empirical loss and a discrepancy term:

m

∑
i=1

qi`(h(xi), yi) +
n

∑
i=1

q′i`(h(xm+i), ym+i)

≤
m

∑
i=1

(qi + pi)`(h(xi), yi) + dis(q′,p), (9)
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for any weight vector p ∈ [0,1]m. This yields immediately the following theorem.

Theorem 5 Fix the vectors q in [0,1][m] and q′ ∈ [0,1]n. Then, for any δ > 0, with proba-
bility at least 1− δ over the draw of an i.i.d. sample S of size m from Q and an i.i.d. sample S′

of size n from P, the following holds for all p in [0,1][m] and h ∈H:

L(P, h) ≤
m

∑
i=1

(qi + pi)`(h(xi), yi) + dis(q′,p) + dis([1 − ∥q′∥1]P, ∥q∥1Q)

+ 2R
(q,q′)(` ○H) +

¿
Á
ÁÀ(∥q∥2

2 + ∥q′∥2
2) log 1

δ

2
.

Let (q,q′) denote the vector in [0,1]m+n formed by appending q′ to q. The learn-
ing bound of Theorem 5 can be extended to hold uniformly over all p in [0,1][m] and
(q,q′) in {(q,q′) ∈ [0,1]m × [0,1]n∶ ∥(q,q′) − p0∥1 < 1}, where p0 is a reference (or
ideal) reweighting choice over the (m + n) points.

Theorem 6 For any δ > 0, with probability at least 1 − δ over the drawn of an i.i.d. sample S
of size m from Q and an i.i.d. sample S′ of size n from P, the following holds for all h ∈ H,
q ∈ {q∶ ∥(q,q′) − p0

∥1 < 1} and all p ∈ [0,1]m:

L(P, h) ≤
m

∑
i=1

(qi + pi)`(h(xi), yi) + dis(q′,p)

+ dis([1 − ∥q′∥1]P, ∥q∥1Q)

+ dis(p0, (q,q′)) + 2R
(q,q′)(` ○H) + 7∥(q,q′) − p0

∥1

+ [∥q∥2 + 2∥(q,q′) − p0
∥1]

⎡
⎢
⎢
⎢
⎣

√

log log2
2

1−∥(q,q′)−p0∥1
+

√
log 2

δ
2

⎤
⎥
⎥
⎥
⎦
.

Proof The proof follows immediately by applying inequality (9), which holds for all p ∈

[0,1]m, to the bound of Theorem 3. �

Corollary 7 For any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample S
of size m from Q and an i.i.d. sample S′ of size n from P, the following holds for all h ∈ H,
q ∈ {q∶ ∥(q,q′) − p0

∥1 < 1} and all p ∈ [0,1]m:

L(P, h) ≤
m

∑
i=1

(qi + pi)`(h(xi), yi) + dis(q′,p)

+ ∥q∥1dis(P,Q)

+ dis(p0, (q,q′)) + 2R
(q,q′)(` ○H) + 8∥(q,q′) − p0

∥1

+ [∥q∥2 + 2∥(q,q′) − p0
∥1]

⎡
⎢
⎢
⎢
⎣

√

log log2
2

1−∥(q,q′)−p0∥1
+

√
log 2

δ
2

⎤
⎥
⎥
⎥
⎦
.
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Proof The result follows Theorem 6 and the application of the upper bound used in the proof
of Corollary 1. �

Note that, here, both p and q′ can be chosen to make the weighted-discrepancy
term dis(q′,p) smaller. Several of the comments on Theorem 1 similarly apply here.
In particular, it is worth pointing out that the learning bound of Cortes et al. (2019)
can be recovered for a specific choice of the weights. This holds even in the special
case where q = 0 and where q′ is a distribution:

L(P, h) ≤
m

∑
i=1

pi`(h(xi), yi) + dis(q′,p) + 2Rq′(` ○H) + ∥q′∥2

√
log 1

δ

2
.

In that case, choosing q′ to be the empirical distribution on S′ leads to the bound of
Cortes et al. (2019) (see also inequality (8), in Appendix 3.2). An alternative choice of
the weights may lead to a smaller discrepancy term dis(q′,p) and a better guarantee
overall. Our learning algorithm will seek an optimal choice for the weights.

The discrepancy quantities appearing in the bound of the theorem cannot be
estimated in the absence of labels for S′. Thus, we need to resort to upper-bounds
expressed in terms of unlabeled discrepancies, using only unlabeled data from P. A
detailed analysis is presented in Section 5.3.

5.2 Domain adaptation BEST-DA algorithm
The analysis of the previous section suggests seeking h ∈H, q and p in [0,1]m and q′

in [0,1]n to minimize the bound of Theorem 6 or that of Corollary 7. As in Section 4,
assume that H is a subset of a normed vector space and that the Rademacher com-
plexity term can be bounded in terms of an upper bound on the norm squared ∥h∥2.
Then, the optimization problem corresponding to Corollary 7 can be written as
follows:

min
h∈H,q,p∈[0,1]m

q′∈[0,1]n

m

∑
i=1

(qi + pi) `(h(xi), yi) + ∥q∥1d + dis(q′,p) + dis(p0, (q,q′)) (10)

+ λ∞∥(q,q′)∥∞ ∥h∥2 + λ1∥(q,q′) − p0∥1 + λ2(∥q∥2
2 + ∥q′∥2

2),

where λ1, λ2 and λ∞ are non-negative hyperparameters and where we used the short-
hand d = dis(P,Q). We are omitting subscripts to simplify the presentation but, as
discussed in the previous section, the unlabeled discrepancies in the optimization
problem may be local unlabeled discrepancies, which are finer quantities. As in the
best-effort adaptation, a natural choice for p0 in the domain adaptation scenario is
the uniform distribution over the input points of S′, or an appropriate mixture of
the empirical distribution over S and the empirical distribution over S′. In practice,
specific applications may motivate various choices.

We will refer by BEST-DA to the algorithm seeking to minimize this objective.
Our comments and analysis of the BEST optimization (Section 4) apply similarly
here. In particular, the problem can be similarly cast as a DC-programming problem
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or a convex optimization problem. The unlabeled discrepancy term d = dis(P,Q) can
be accurately estimated from dis(P,Q). In Appendix B.3, we show in detail how to
compute dis(P,Q) and how to evaluate the sub-gradients of the weighted discrepancy
terms.

Discussion of new BEST-DA algorithm
Our BEST-DA algorithm benefits from more favorable guarantees than previous
discrepancy-based algorithms (Mansour et al., 2009a; Cortes and Mohri, 2014;
Cortes et al., 2019) and algorithms seeking to minimize the learning bound (8), with
the unlabeled discrepancy upper bounded by the label discrepancy. This is because,
as already pointed out, BEST-DA is based on a learning guarantee that admits as a
special case (8). Thus, the best choice of the weights and predictor sought by the
algorithm include those corresponding to previous algorithms as a special case.

Moreover, as discussed in Section 3, our upper bounds in terms of local discrep-
ancy are finer than those used in previous work. In particular, BEST-DA improves
upon the DM algorithm (discrepancy minimization) of Cortes and Mohri (2014),
which has been shown empirically by the authors to outperform other domain adapta-
tion baselines in regression tasks. DM seeks to minimize (8) via a two-stage method,
by first seeking weights that minimize the unlabeled weighted-discrepancy (second
term) and subsequently seeking h ∈ H to minimize the empirical loss for that fixed
choice of q. This two-stage method may be suboptimal, compared to an algorithm
seeking to directly minimize the bound to find (h,q). The solution q found to min-
imize the discrepancy term in the first stage may, for example, assign significantly
larger weights to some sample points, which could lead to a poor choice of the
predictor in the second stage.

An alternative sophisticated technique based on the so-called generalized dis-
crepancy is advocated by Cortes et al. (2019). The main benefit of this technique is
to allow for the weights to be chosen as a function of the hypotheses, unlike the two-
stage DM solution of Cortes and Mohri (2014). Our BEST-DA algorithm, however,
already offers that advantage since the hypothesis h and the weights q, q′ and p are
sought simultaneously as a solution of the optimization problem. Note, however that
the choice of the weights in the generalized discrepancy method does not take into
consideration the empirical losses, unlike our algorithm. Furthermore, BEST-DA min-
imizes a learning bound admitting as a special case (8), the best learning guarantee
presented by the authors in support of their algorithm. Let us add that authors state
that their guarantee for the generalized discrepancy method is not comparable to that
of DM algorithm.

5.3 Labeled discrepancy upper bounds
The analysis of Section 3 is based on the labeled discrepancy measure dis(P,Q) or
its estimate from finite samples dis(P̂, Q̂), which assumes access to labeled data from
the target distribution P. In typical domain adaptation problems, however, there is
little labeled data or none from the target domain P. Thus, instead we need to resort
to an upper-bound on dis(P,Q) in terms of the unlabeled discrepancy, which only
uses unlabeled data from P.
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We will discuss two types of upper bounds, first in the special case of the squared
loss, next in the case of an arbitrary µ-Lipschitz loss. Our analysis benefits from that
of previous work (Cortes and Mohri, 2014; Cortes et al., 2019) but improves upon
that, as discussed later.
Squared loss. Here, we give an upper bound on the labeled discrepancy in the case of
the squared loss. For any hypothesis h0 ∈H, we denote by δH,h0

(P̂, Q̂) the squared-
loss label discrepancy of P̂ and Q̂:

δH,h0
(P̂, Q̂) = sup

h∈H
∣ E
(x,y)∼P̂

[h(x)(y − h0(x))] − E
(x,y)∼Q̂

[h(x)(y − h0(x))]∣. (11)

Lemma 8 Let ` be the squared loss. Then, for any hypothesis h0 in H, the following upper
bound holds for the labeled discrepancy:

dis(P̂, Q̂) ≤ disH×{h0}
(P̂, Q̂) + 2δH,h0

(P̂, Q̂).

The proof is given below in Appendix B.1. The local unlabeled discrepancy
disH×{h0}

(P̂, Q̂) captures the closeness of the input distributions P̂X and Q̂X . It is
a significantly more favorable term that the standard unlabeled discrepancy since it
admits only a maximum over h ∈H and not over both h and h′ in H.

For a suitable choice of h0 ∈ H, the term δH,h0
(P̂, Q̂) captures the closeness of

the empirical output labels on P̂ and Q̂. Note that for P̂ = Q̂, we have δH,h0
(P̂, Q̂) =

0 for any h0 ∈ H. When the covariate-shift assumption holds and the problem is
separable, h0 can be chosen so that δH,h0

(P̂, Q̂) = 0. More generally, when h0 can
be chosen so that ∣y − h0(x)∣ is relatively small on both samples corresponding to P̂

and Q̂ and the hypotheses h ∈ H are bounded by some M > 0, then δH,h0
(P̂, Q̂) is

relatively small. Note that adaptation is in general not possible if the learner receives
vastly different labels on the source domain Q than those corresponding to the target
P.
µ-Lipschitz loss. Here, we give an upper bound on the labeled discrepancy for any
µ-Lipschitz loss. For any hypothesis h0 ∈H, we denote by ηH,h0

(P̂, Q̂) the Lipschitz
loss labeled discrepancy defined by

ηH,h0
(P̂, Q̂) = E

(x,y)∼P̂
[∣y − ho(x)∣] + E

(x,y)∼Q̂
[∣y − ho(x)∣]. (12)

Lemma 9 Let ` be a loss function that is µ-Lipschitz with respect to its second argument. Then,
for any hypothesis h0 in H, the following upper bound holds for the labeled discrepancy:

dis(P̂, Q̂) ≤ disH×{h0}
(P̂, Q̂) + µηH,h0

(P̂, Q̂).

The proof is given below in Appendix B.2.
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The Lipschitz loss labeled discrepancy ηH,h0
(P̂, Q̂) is a coarser quantity than

δH,h0
(P̂, Q̂). In particular, even when P̂ = Q̂, ηH,h0

(P̂, Q̂) is not zero. However, as
with δH,h0

(P̂, Q̂) it captures the closeness of the output labels on P̂ and Q̂. When h0

can be chosen so that the sum of expected values ∣y−h0(x)∣ is relatively small on both
samples corresponding to P̂ and Q̂ then, ηH,h0

(P̂, Q̂) is relatively small. As already
pointed out, adaptation is not possible when the learner received very different labels
on the two domains.

The upper bounds of Lemmas 8 and 9 hold in the stochastic setting and are thus
more general than those derived for the deterministic label setting in previous work
(Cortes and Mohri, 2014; Cortes et al., 2019). They are also finer bounds expressed
in terms of the more favorable local discrepancy and somewhat more favorable label
discrepancy terms defined in terms of expectation over the empirical distributions as
opposed to a supremum.

In both the squared loss and Lipschitz cases, when a relatively small labeled
sample S′ drawn i.i.d. from P is available, we can use it to select h0 via

h0 = argmin
h0∈H

δH,h0
(P̂S′ , Q̂) or h0 = argmin

h0∈H

ηH,h0
(P̂S′ , Q̂).

When no labeled data from the target domain is at our disposal, we cannot
choose h0 by leveraging any existing information. We can then assume that
minh0∈H δH,h0

(P̂, Q̂) ≪ 1 in the squared loss case or minh0∈H ηH,h0
(P̂, Q̂) ≪ 1 in

the Lipschitz case, that is that the source labels are relatively close to the target ones
based on these measures and use the standard unlabeled discrepancy:

dis(P̂, Q̂) ≤ dis(P̂, Q̂) + 2 min
h0∈H

δH,h0
(P̂, Q̂)

dis(P̂, Q̂) ≤ dis(P̂, Q̂) + µ min
h0∈H

ηH,h0
(P̂, Q̂).

6 Experimental evaluation
We evaluated our algorithms in best-effort adaptation, fine-tuning, and (unsuper-
vised) domain adaptation. We performed cross-validation using labeled data from the
target to pick the hyperparameters for our algorithms and the baselines. See Appendix
C for details on data and experimental procedures. For all the experiments we use the
SBEST algorithm.

6.1 Best-Effort adaptation
Here, we have labeled data both from the source and the target domains. Two natural
baselines are to train solely on P, or solely Q. A third baseline is the α-reweighted q
as described in Appendix 3.2.

We consider a linear binary classification task with the labels for P generated as
sgn(wp ⋅ x) for a randomly chosen unit vector wp. The distribution Q admits two
parts. For η ∈ (0.5,1), (1−η)m examples are labeled according to sgn(wq ⋅x) where
∥wp−wq∥ ≤ ε, while the remaining examples are set to a fixed vector u and labeled +1.
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Table 1 Performance of SBEST, compared to baseline approaches on UCI/Newsgroups classification
tasks. Best results are marked in boldface, ties in italics.

Dataset Train source Q Train target P KMM gapBoost SBEST

Adult 82.72 ± 0.10 81.61 ± 0.42 81.24 ± 0.01 83.1 ± 0.02 83.30 ± 0.28
German 68.24 ± 0.21 69.87 ± 0.27 65.7 ± 0.01 69.8 ± 0.03 71.26 ± 0.11
Accent 27.20 ± 0.26 81.64 ± 0.22 53.1 ± 0.03 81.2 ± 0.04 84.15 ± 0.30
comp vs sci 83.2 ± 0.004 89.4 ± 0.03 83.1 ± 0.004 92.08 ± 0.01 94.4 ± 0.01
rec vs sci 79.2 ± 0.007 91.3 ± 0.02 79.7 ± 0.004 92.2 ± 0.01 92.4 ± 0.004
comp vs talk 71.4 ± 0.002 89.9 ± 0.02 71 ± 0.006 90.6 ± 0.01 91 ± 0.02
comp vs rec 65.4 ± 0.007 85.2 ± 0.01 67.7 ± 0.007 85.9 ± 0.01 88 ± 0.01
rec vs talk 81.3 ± 0.004 88 ± 0.02 81.2 ± 0.005 89.2 ± 0.01 92.3 ± 0.03
sci vs talk 88.2 ± 0.005 93.3 ± 0.008 88.5 ± 0.003 94.6 ± 0.01 94.6 ± 0.02

These ηm examples represent the noise in Q and, as η increases, dis(P,Q) gets larger.
For this setting, we evaluated the baselines and SBEST with the logistic loss and linear
hypotheses. In line with the previously mentioned setting, all experiments involving
linear hypothesis sets in this work are conducted without incorporating a bias term.
For further elaboration and illustrative examples, please consult Appendix C.
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Fig. 1 Simulated data.

Simulated data. The goal of this experiment was to
demonstrate that SBEST outperforms the simple base-
lines just mentioned and to compare the performance of
the Alternate Minimization (SBEST-AM) and the DC-
programming (SBEST-DC) optimization solutions.

Figure 1 shows the performance for η = 10% as n
increases. For small sizes, n, of the target data P, both
α-reweighting and the baseline that trains solely on Q are
significantly impacted. This is because these methods cannot distinguish between
non-noisy and noisy data points. On the other hand, both SBEST-AM and SBEST-DC
can counter the effect of the noise by generating q-weights that are predominantly
supported on the non-noisy samples. The performance of these algorithms is fairly
independent of the size of n as, for η = 10%, they can still make an effective use of
90% of the m = 1000 examples. As n increases, α-reweighting and the baseline that
trains solely on P reach the performance of SBEST. We also note that SBEST-AM
and SBEST-DC perform equivalently and in all the following experiments, we use
SBEST-AM. For experiments with other values of η and further discussion of this
experiment, see Appendix C.

Real-world data. Baselines. We compare SBEST with the popular Kernel Mean
Matching (KMM) algorithm (Huang et al., 2006) and also the recently proposed
gapBoost algorithm (Wang et al., 2019). The gapBoost algorithm constructs an
ensemble of classifiers. In round t, the algorithm maintains a distribution q over the
entire data. It then trains a classifier ht using q-weighted loss minimization as well as
classifiers ht,Q and ht,P trained on the source and the target data respectively, again
using weighted loss minimization. It then uses the disagreement among the three
classifiers to update the weights for the next round. Finally, it outputs a weighted
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Table 2 Performance of SBEST, compared to baseline approaches in CIFAR-10.

Fine-tuning Train on P gapBoost SBEST

Last layer (CIFAR-10) 88.61 ± .43 87.1 ± .01 89.62 ± .32
Full model (CIFAR-10) 90.18 ± .31 90.8 ± .02 92.30 ± .24
Last layer (Civil) 63.1 ± .12 64.7 ± .11 65.8 ± .12
Full model (Civil) 65.8 ± .01 67.2 ± .01 68.3 ± .14

combination of the classifiers ht.

Real-world data. Classification. We used three datasets from the UCI machine
learning repository (Dua and Graff, 2017): the Adult-Income, German-Credit,
and Speaker Accent Recognition. In addition, we used six adaptation tasks
derived from the Newsgroups dataset, as considered in prior work (Wang et al.,
2019). For the definition of Q and P, and other experimental parameters, see
Appendix C. The results are reported in Table 1. The KMM algorithm does not make
use of labels for matching distributions, and is naturally outperformed by SBEST,
and so is gapBoost.

Real-world data. Regression. We also carried out experiments on five regression
datasets from the UCI repository (Dua and Graff, 2017) and compared against base-
lines KMM and the DM algorithm (Cortes and Mohri, 2014). We did not compare
with gapBoost, since the algorithm was designed only for classification Wang et al.
(2019). See Appendix C for similarly strong results in this setting.

6.2 Fine-tuning tasks
Here, we applied our algorithms to fine-tuning pre-trained models in classification.
In the pre-training/fine-tuning paradigm (Raffel et al., 2020), a model is pre-trained
on a generalist dataset (coming from Q). The model is then fine-tuned on a task-
specific dataset (generated from P). Two predominantly used fine-tuning approaches
are last-layer fine-tuning (Subramanian et al., 2018; Kiros et al., 2015) and full-model
fine-tuning (Howard and Ruder, 2018). In the former, the representations obtained
from the last layer of the pre-trained model are used to train a simple model (often a
linear hypothesis) on the data from P. We chose the simple model to be a multi-class
logistic regression model. In the latter approach, the model is initialized from the
pre-trained model and all the parameters are fine-tuned (often via gradient descent)
on P. We explored the additional advantages of combining data from both P and
Q during fine-tuning. There has been recent interest in carefully combining various
tasks/data for the purpose of fine-tuning and avoid the phenomenon of “negative
transfer” (Aribandi et al., 2021). Our proposed theory presents a principled approach.

We used the CIFAR-10 vision dataset (Krizhevsky et al., 2009) and formed a
pre-training task (source) by combining data from classes: {’airplane’, ’automobile’,
’bird’, ’cat’, ’deer’, ’dog’}. For this task we use a standard ResNet-18 architecture
(He et al., 2016). The fine-tuning task (target) consists of data from classes: {’frog’,
’horse’, ’ship’, ’truck’}. In addition, we also used the Civil Comments dataset. For
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Table 3 Relative MSE achieved by GDM, DM and KMM against a normalized MSE of 1.0 obtained via
BEST-DA on various adaptation tasks. For reference we also report the relative MSE achieved by training
only on the source Q.

Q P GDM DM KMM TRAIN ON Q

BOOKS
DVD
ELEC
KTCHN

1.25 ± 0.01
0.88 ± 0.01
1.06 ± 0.03

1.26 ± 0.11
0.89 ± 0.03
1.08 ± 0.04

1.43 ± 0.08
1.50 ± 0.05
1.47 ± 0.01

2.34 ± 0.19
2.13 ± 0.13
1.55 ± 0.01

DVD
BOOKS
ELEC
KTCHN

1.14 ± 0.02
1.08 ± 0.01
1.1 ± 0.03

1.17 ± 0.10
1.10 ± 0.12
1.12 ± 0.02

1.64 ± 0.14
2.40 ± 0.05
1.10 ± 0.02

2.18 ± 0.18
3.26 ± 0.07
2.34 ± 0.05

ELEC
BOOKS
DVD
KTCHN

0.98 ± 0.01
0.98 ± 0.02
0.96 ± 0.01

1.00 ± 0.01
1.00 ± 0.06
0.98 ± 0.06

1.33 ± 0.06
1.00 ± 0.06
1.04 ± 0.01

1.34 ± 0.04
1.04 ± 0.08
1.14 ± 0.01

KTCHN
BOOKS
DVD
ELEC

1.00 ± 0.03
1.2 ± 0.002
1.64 ± 0.02

1.04 ± 0.07
1.33 ± 0.03
1.67 ± 0.54

1.27 ± 0.09
1.32 ± 0.03
1.87 ± 0.56

1.12 ± 0.08
1.42 ± 0.04
1.89 ± 0.56

this we used a BERT-small model (Devlin et al., 2019) for pre-training. For more
detail on the dataset and experimental procedure, see Appendix C. As can be seen
from Table 2, SBEST comfortably outperforms both the standard approach of training
just on P, as well as gapBoost.

6.3 Domain adaptation
We next evaluated our proposed BEST-DA algorithm in the domain adaptation set-
ting. No labeled target data was used by our algorithm or other baselines for training.
However, we used a small labeled validation set of size 50 to determine the param-
eters for all the algorithms. This is consistent with experimental results reported in
prior work (e.g., (Cortes and Mohri, 2014)).

We used the multi-domain sentiment analysis dataset of (Blitzer et al., 2007) that
has been used in prior work on domain adaptation (Cortes and Mohri, 2014; Cortes
et al., 2019) for the regression setting. The dataset consists of text reviews associated
with a star rating from 1 to 5 for different categories. We considered four categories
namely BOOKS, DVD, ELECTRONICS, and KITCHEN. Our methodology is inspired by
prior work (Mohri and Muñoz Medina, 2012; Cortes and Mohri, 2014) with certain
simplifications, see Appendix C for details.

For each category, we formed a regression task by converting the review text to
a 128-dimensional vector and fitting a linear regression model to predict the rating.
The predictions of the model are then defined as the ground truth regression labels.
We then formed adaptation problems for each pair of distinct tasks: (TaskA, TaskB)
where TaskA, TaskB are in {BOOKS, DVD, ELECTRONICS, KITCHEN}. In each case,
we formed the source domain (Q) by taking 500 labeled samples from TaskA and 200
labeled examples from TaskB. The target (P) was formed by taking 300 unlabeled
examples from TaskB. This led to 12 adaptation problems with varying levels of
difficulty.
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We compared with KMM and the discrepancy minimization algorithms (GDM)
(Cortes et al., 2019) and DM (Cortes and Mohri, 2014). We report in Table 3 the
results averaged over 10 independent source/target splits, where we normalized the
error (MSE) of BEST-DA to be 1.0 and presented the relative MSE achieved by the
other methods. In all but one adaptation category (elec), BEST-DA outperforms or
ties with existing methods (boldface). GDM is considered the state-of-the-art and
does indeed outperform DM in our experiments. Appendix C contains additional
experimental details as well as experiments for domain adaptation in the covariate-
shift setting.

7 Related work

7.1 Adaptation and transfer learning
Discrepancy-based adaptation theory. The work we present includes a significant
theoretical component and benefits from prior theoretical analyses of domain adapta-
tion. The theoretical analysis of domain adaptation was initiated by Kifer et al. (2004)
and Ben-David et al. (2006) with the introduction of a dA-distance between distribu-
tions. They used this notion to derive VC-dimension learning bounds for the zero-one
loss, which was elaborated on in follow-up publications like (Blitzer et al., 2008; Ben-
David et al., 2010). Later, Mansour et al. (2009a) and Cortes and Mohri (2011, 2014)
presented a general analysis of single-source adaptation for arbitrary loss functions,
where they introduced the notion of discrepancy, which they argued is a divergence
measure tailored to domain adaptation. The notion of discrepancy coincides with the
dA-distance in the special case of the zero-one loss. It takes into account the loss
function and the hypothesis set and, importantly, can be estimated from finite sam-
ples. The authors further gave Rademacher complexity learning bounds in terms of
the discrepancy for arbitrary hypothesis sets and loss functions, as well as point-
wise learning bounds for kernel-based hypothesis sets. They also gave a discrepancy
minimization algorithm based on a reweighting of the losses of sample points. We
use their notion of discrepancy in our new analysis. Cortes et al. (2019) presented
an extension of the discrepancy minimization algorithm based on the so-called gen-
eralized discrepancy, which allows for the weights to be hypothesis-dependent and
which works with a less conservative notion of local discrepancy defined by a supre-
mum over a subset of the hypothesis set. The notion of local discrepancy has been
since adopted in several recent publications, in the study of active learning or adap-
tation (de Mathelin et al., 2022; Zhang et al., 2019c, 2020) and is also used in part
of our analysis. Finally, a PAC-Bayesian analysis of adaptation has also been given
by Germain et al. (2013), using a related notion of discrepancy. Note also that, as
argued in Appendix A.3, for our analysis of best-effort adaptation and algorithms, we
can restrict ourselves to a small ball B(hP, r) around the best hypothesis found by
training on P, with r in the order of 1/√n. This leads to a more favorable discrep-
ancy term, which is similar to the super transfer or localization benefits mentioned
by Hanneke and Kpotufe (2019). This advantage can be leveraged when there is a
sufficient amount of labeled data from the target distribution, as in the scenario of
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best-effort adaptation. In standard domain adaptation, however, it would not be pos-
sible to estimate such local discrepancy quantities, which are also used in the analysis
of Zhang et al. (2020), and thus the corresponding learning bounds or notions would
be not be algorithmically useful.

A theoretical analysis and algorithm for driting distributions are given by Mohri
and Muñoz Medina (2012). The assumptions made in the analysis of adaptation were
discussed by Ben-David et al. (2010) who presented several negative results for the
zero-one loss.

Many of the theoretical guarantees for domain adaptation (Ben-David et al., 2006;
Ben-David et al., 2010; Zhang et al., 2019a) have upper bounds that include the
term λH = minh∈H{L(P, h) +L(Q, h)}, which, as pointed out by Mansour et al.
(2009a), roughly doubles the representation error one incurs for H and results overall
in learning bounds with a factor of 3 of the error with the respect to an ideal target.
This can make these bounds vacuous in some natural scenarios. Moreover, the λH
terms cannot be estimated from observations. The learning bounds of Mansour et al.
(2009a) do not admit the factor of 3 of the error drawback, but they also contain
terms depending on the best-in-class predictors with respect to both distributions that
cannot be estimated. In general, they are not comparable with the bounds of Ben-
David et al. (2006). Our learning bounds differ from these analyses since we compare
the target loss of a predictor with an empirical q-weighted empirical loss on a sample
from Q or both Q and P and not just with an unweighted loss for a sample drawn from
Q. Furthermore, our learning guarantees are high-probability bounds, while those
of these previous work hold with probability one. The latter can be derived from
straightforward applications of triangle inequality. Crucially, our learning bounds can
be leveraged by algorithms, while previous bounds do not include any non-trivial
term that can be optimized.

Multiple-source adaptation theory. Mansour et al. (2021) presented a theory
of multiple-source adaptation with limited target labeled data using the notion of
discrepancy. A series of publications by Mansour et al. (2009a,b), Hoffman et al.
(2018, 2021, 2022) and Cortes et al. (2021) give an extensive theoretical and algo-
rithmic analysis of the problem of multiple-source adaptation (MSA) scenario where
the learner has access to unlabeled samples and a trained predictor for each source
domain, with no access to source labeled data. This approach has been further used
in many applications such as object recognition (Hoffman et al., 2012; Gong et al.,
2013a,b). Zhao et al. (2018) and Wen et al. (2020) considered MSA with only unla-
beled target data available and provided generalization bounds for classification and
regression.

Other adaptation analyses. There are alternative analyses of the adaptation
problem based on divergences between distributions that do not take into account the
specific loss function or hypothesis set used. These include methods based on impor-
tance weighting (Sugiyama et al., 2007; Zhang et al., 2020; Lu et al., 2021; Sugiyama
et al., 2007). Cortes et al. (2010) gave a theoretical analysis of importance weighting,
including learning bounds based on the analysis of unbounded loss functions (see
also (Cortes et al., 2019)), showing both theoretically and empirically that importance
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weighting can fail in a number of cases, depending on the magnitude of the second-
moment of the weights, including in simple cases of the two domain being Gaussian
distributions. This holds even for perfectly estimated importance weights. The pub-
lications in this category also include those using the Wasserstein distance (Courty
et al., 2017; Redko et al., 2017), which in some sense is closer to the notion of dis-
crepancy but yet does not capture the hypothesis set used. An alternative distance
used is that of Kernel Mean Matching (KMM), which is the difference between the
expectation of the feature vector in the source domain and the target domain (Huang
et al., 2006). Several other publications have also adopted also that distance (Long
et al., 2015; Redko and Bennani, 2016). The KMM algorithm seeks to reweight the
source sample to make this difference as small as possible. This, however, ignores
other moments of the distributions, as well as the loss function and the hypothesis
sets. Nevertheless, in some instances, the distance is close to and somewhat related
to discrepancy. The experiments reported by Cortes and Mohri (2014) suggest that,
while in some instances KMM performs well, in some others it does not. This vari-
ance might be due to the fact that the distance does not always capture key aspects
related to the loss function and the hypothesis set. In other experiments reported
by Cortes et al. (2019), the performance of KMM is sometimes worse than train-
ing on the sample S drawn from Q (without reweighting). This problem was already
reported for another algorithm, KLIEP, by Sugiyama et al. (2007). Variants of boost-
ing designed for transfer also tacitly reweight examples (Huang et al., 2017; Zheng
et al., 2020).

Note that the algorithms suggested for KMM, importance-weighting, KLIEP and
other similar methods can all be viewed as specific methods for reweighting the
sample losses. In that sense, they are all covered by our general analysis, when the
weights are bounded. However, note also that they are all two-stage algorithms: the
weights are first chosen to reduce or minimize some distance, irrespective of their
effect on the weighted empirical loss, and next the weights are fixed and used to
minimize the empirical weighted loss.

An interesting non-parametric analysis of adaptation is presented in (Kpotufe and
Martinet, 2018; Hanneke and Kpotufe, 2019). Hanneke and Kpotufe (2019) do not
give an adaptation algorithm, however. A causal view of adaptation is also analyzed
in (Zhang et al., 2013; Gong et al., 2016).

Transfer learning analyses. Other scenarios of transfer learning have been stud-
ied by Kuzborskij and Orabona (2013); Perrot and Habrard (2015); Du et al. (2017)
including by leveraging smaller target labeled data and auxiliary hypotheses (see also
(Hanneke and Kpotufe, 2019) already mentioned). The problem of active adaptation
or transfer learning has been investigated by several publications Yang et al. (2013);
Chattopadhyay et al. (2013); Berlind and Urner (2015). Another somewhat related
problem is that of multi-task learning studied by Maurer (2006); Maurer et al. (2016);
Pentina and Lampert (2017); Pentina and Ben-David (2018). The scenario of life-
long learning is also somewhat related (Pentina and Lampert, 2014, 2015; Pentina
and Urner, 2016; Balcan et al., 2019).

Other adaptation or transfer learning publications. The space of transfer
learning and domain adaptation approaches is massive (Chen et al., 2011; Zhang
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et al., 2019b; Wang and Mahadevan, 2011; Sener et al., 2016; Hoffman et al., 2012;
Ghifary et al., 2016; Zhao et al., 2019, 2018; Li et al., 2018; Bousmalis et al., 2017;
Sun et al., 2016; Kundu et al., 2020; Sun and Saenko, 2016; Ghifary et al., 2016;
Long et al., 2016; Courty et al., 2016; Saito et al., 2018; Wang et al., 2018; Motiian
et al., 2017; Sun and Saenko, 2016) and includes interesting analyses and observa-
tions such as that of III (2007) about a surprisingly good baseline and follow-up by
Sun et al. (2016). We recommend readers to surveys such as Pan and Yang (2009);
Wang and Deng (2018); Li (2012) for a comprehensive overview. We briefly outline
the most relevant approaches here.

There is a very large recent literature dealing with experimental studies of domain
adaptation in various tasks. Ganin et al. (2016) proposed to learn features that can-
not discriminate between source and target domains. Tzeng et al. (2015) proposed
a CNN architecture to exploit unlabeled and sparsely labeled target domain data.
Motiian et al. (2017), Motiian et al. (2017) and Wang et al. (2019) proposed to train
maximally separated features via adversarial learning. Saito et al. (2019) proposed to
use a minmax entropy method for domain adaptation.

Several algorithms have been proposed for multiple-source adaptation. Khosla
et al. (2012); Blanchard et al. (2011) proposed to combine all the source data and
train a single model. Duan et al. (2009, 2012) used unlabeled target data to obtain
a regularizer. Domain adaptation via adversarial learning was studied by Pei et al.
(2018); Zhao et al. (2018). Crammer et al. (2008) considered learning models for
each source domain, using close-by data of other domains. Gong et al. (2012) ranked
multiple source domains by how well they can adapt to a target domain. Other solu-
tions to multiple-source domain adaptation include, clustering (Liu et al., 2016),
learning domain-invariant features (Gong et al., 2013a), learning intermediate repre-
sentations (Jhuo et al., 2012), subspace alignment techniques (Fernando et al., 2013),
attributes detection (Gan et al., 2016), using a linear combination of pre-trained clas-
sifiers (Yang et al., 2007), using multitask auto-encoders (Ghifary et al., 2015), causal
approaches (Sun et al., 2011), two-state weighting approaches (Sun et al., 2011),
moments alignment techniques (Peng et al., 2019) and domain-invariant component
analysis (Muandet et al., 2013).

When some labeled data from both source and target are available, a variety of
practical methods have been studied. III (2007) performs an empirical comparison
amongst a collection of basic models when some labeled data is available from both
source and target: source-only, target-only, training on all data together, uniformly α-
weighting the source data and (1−α)-weighting the target data, using the prediction
of a model on the source as a feature for training on the target, linearly interpo-
lating between source-only and target-only models, and a “lifted” approach where
each sample is projected into X3, corresponding to source/target/general informa-
tion copies of the feature space, and show empirically that each of these benchmarks
performs fairly well, with the latter outperforming the others most of the time.

Some recent work focuses on adversarial adaptation (Motiian et al., 2017; Pei
et al., 2018; Ganin et al., 2016). The problem of domain generalization, that is gen-
eralization to an arbitrary target distribution within some set has been studied by
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(Mohri et al., 2019) and is also related to that of robust learning (Chen et al., 2017;
Konstantinov and Lampert, 2019; Jhuo et al., 2012).

We discuss separately, in the following section, the relationship of our work with
fine-tuning methods.

7.2 Relationship with fine-tuning methods
Here, we discuss the connection of our work with fine-tuning (Howard and Ruder,
2018; Peters et al., 2018; Houlsby et al., 2019) of pre-trained models. A comprehen-
sive description of fine-tuning methods is beyond the scope of this work, but see (Guo
et al., 2019; You et al., 2020; Aribandi et al., 2021; Aghajanyan et al., 2021; Wei et al.,
2021) for some recent results. A related area is few shot-learning algorithms and
related meta-learning algorithms such as MAML (Finn et al., 2017) include (Wang
et al., 2019; Motiian et al., 2017), and Reptile (Nichol et al., 2018).

In general, consider a scenario where there exists good common feature mapping
Φ∶X → Rd for both the Q and P. Let f be the result of pre-training a neural network
on Q data. The mapping in f corresponding to some depth of the hidden layers can
then be viewed as a good approximation of Φ. Alternatively, Φ may be the output of
a representation learning algorithm.

There are several fine-tuning methods introduced in the literature (Subramanian
et al., 2018; Kiros et al., 2015; Howard and Ruder, 2018; Raffel et al., 2020) that
consists of adapting f to domain P. This may be by using f as an initialization
point and applying SGD with sample S′ drawn from P, while fixing the hidden layer
parameters to a given depth. It may be by forgetting the weights at the top layer(s)
and retraining them by using S′ alone. Or, it may be done by continuing training
with a mixture of S′ and a new sample from S. Training on such a mixture avoids
‘catastrophic forgetting’. In all cases, the problem can be cast as that of learning a
hypothesis with feature vector Φ by using sample S and S′, or sample S′ alone, which
is a special case of the scenario we analyzed in Section 3. The algorithms presented
in Section 4 provide a principled solution to this problem by taking into consideration
the discrepancy between Q and P and by selecting suitable q-weights to guarantee a
better generalization.

8 Conclusion
We presented a comprehensive study of best-effort adaptation (or supervised adapta-
tion), including a new discrepancy-based theoretical analysis, algorithms benefiting
from the corresponding learning guarantees, as well as a series of empirical results
showcasing their performance in several tasks. We further demonstrated how our
analysis can be leveraged to derive learning guarantees in domain adaptation, as well
as new enhanced adaptation algorithms. Our analysis and algorithms are likely to
be useful in the study of other adaptation scenarios and admit a variety of other
applications. In fact, our analysis applies to any sample reweighting method.
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Mohri, M. and A. Muñoz Medina 2012. New analysis and algorithm for learning with
drifting distributions. In N. H. Bshouty, G. Stoltz, N. Vayatis, and T. Zeugmann
(Eds.), Algorithmic Learning Theory - 23rd International Conference, ALT 2012,
Lyon, France, October 29-31, 2012. Proceedings, Volume 7568 of Lecture Notes
in Computer Science, pp. 124–138. Springer.

Mohri, M., A. Rostamizadeh, and A. Talwalkar. 2018. Foundations of Machine
Learning (Second ed.). MIT Press.

Mohri, M., G. Sivek, and A.T. Suresh 2019. Agnostic federated learning. In
International Conference on Machine Learning, pp. 4615–4625. PMLR.

Motiian, S., Q. Jones, S. Iranmanesh, and G. Doretto 2017. Few-shot adversarial
domain adaptation. In Advances in Neural Information Processing Systems, pp.
6670–6680.

Motiian, S., M. Piccirilli, D.A. Adjeroh, and G. Doretto 2017. Unified deep
supervised domain adaptation and generalization. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 5715–5725.

Muandet, K., D. Balduzzi, and B. Schölkopf 2013. Domain generalization via
invariant feature representation. In ICML, Volume 28, pp. 10–18.

Nichol, A., J. Achiam, and J. Schulman. 2018. On first-order meta-learning
algorithms.

Pan, S.J. and Q. Yang. 2009. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering 22(10): 1345–1359 .



Springer Nature 2021 LATEX template

34 Best-Effort Adaptation

Pavlopoulos, J., J. Sorensen, L. Dixon, N. Thain, and I. Androutsopoulos. 2020.
Toxicity detection: Does context really matter?

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12: 2825–2830 .

Pei, Z., Z. Cao, M. Long, and J. Wang 2018. Multi-adversarial domain adaptation.
In AAAI, pp. 3934–3941.

Peng, X., Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang 2019. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1406–1415.

Pentina, A. and S. Ben-David 2018. Multi-task Kernel Learning based on Probabilis-
tic Lipschitzness. In F. Janoos, M. Mohri, and K. Sridharan (Eds.), Algorithmic
Learning Theory, ALT 2018, 7-9 April 2018, Lanzarote, Canary Islands, Spain,
Volume 83 of Proceedings of Machine Learning Research, pp. 682–701. PMLR.

Pentina, A. and C.H. Lampert 2014. A PAC-bayesian bound for lifelong learn-
ing. In Proceedings of the 31th International Conference on Machine Learning,
ICML 2014, Beijing, China, 21-26 June 2014, Volume 32 of JMLR Workshop and
Conference Proceedings, pp. 991–999. JMLR.org.

Pentina, A. and C.H. Lampert 2015. Lifelong learning with non-i.i.d. tasks. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.),
Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pp. 1540–1548.

Pentina, A. and C.H. Lampert 2017. Multi-task learning with labeled and unlabeled
tasks. In D. Precup and Y. W. Teh (Eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, Volume 70 of Proceedings of Machine Learning Research, pp.
2807–2816. PMLR.

Pentina, A. and R. Urner 2016. Lifelong learning with weighted majority votes.
In D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett (Eds.),
Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 3612–3620.

Perrot, M. and A. Habrard 2015. A theoretical analysis of metric hypothesis trans-
fer learning. In F. R. Bach and D. M. Blei (Eds.), Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-
11 July 2015, Volume 37 of JMLR Workshop and Conference Proceedings, pp.



Springer Nature 2021 LATEX template

Best-Effort Adaptation 35

1708–1717. JMLR.org.

Peters, M.E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer 2018, June. Deep contextualized word representations. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), New Orleans, Louisiana, pp. 2227–2237. Association for Computational
Linguistics.

Raffel, C., N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and
P.J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21: 140:1–140:67 .

Redko, I. and Y. Bennani. 2016. Non-negative embedding for fully unsupervised
domain adaptation. Pattern Recognit. Lett. 77: 35–41 .

Redko, I., A. Habrard, and M. Sebban 2017. Theoretical analysis of domain adapta-
tion with optimal transport. In M. Ceci, J. Hollmén, L. Todorovski, C. Vens, and
S. Dzeroski (Eds.), Machine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22,
2017, Proceedings, Part II, Volume 10535 of Lecture Notes in Computer Science,
pp. 737–753. Springer.

Rodriguez-Lujan, I., J. Fonollosa, A. Vergara, M. Homer, and R. Huerta. 2014. On
the calibration of sensor arrays for pattern recognition using the minimal number
of experiments. Chemometrics and Intelligent Laboratory Systems 130: 123–134.
https://doi.org/https://doi.org/10.1016/j.chemolab.2013.10.012 .

Saito, K., D. Kim, S. Sclaroff, T. Darrell, and K. Saenko 2019. Semi-supervised
domain adaptation via minimax entropy. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 8050–8058.

Saito, K., K. Watanabe, Y. Ushiku, and T. Harada 2018. Maximum classifier discrep-
ancy for unsupervised domain adaptation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 3723–3732.

Sener, O., H.O. Song, A. Saxena, and S. Savarese 2016. Learning transferrable repre-
sentations for unsupervised domain adaptation. In Advances in Neural Information
Processing Systems, pp. 2110–2118.

Sriperumbudur, B.K., D.A. Torres, and G.R.G. Lanckriet 2007. Sparse eigen methods
by D.C. programming. In ICML, pp. 831–838.

Subramanian, S., A. Trischler, Y. Bengio, and C.J. Pal 2018. Learning general
purpose distributed sentence representations via large scale multi-task learning.
In 6th International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

https://doi.org/https://doi.org/10.1016/j.chemolab.2013.10.012


Springer Nature 2021 LATEX template

36 Best-Effort Adaptation

OpenReview.net.

Sugiyama, M., M. Krauledat, and K. Müller. 2007. Covariate shift adaptation by
importance weighted cross validation. J. Mach. Learn. Res. 8: 985–1005 .

Sugiyama, M., S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe 2007.
Direct importance estimation with model selection and its application to covari-
ate shift adaptation. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis
(Eds.), Advances in Neural Information Processing Systems 20, Proceedings of the
Twenty-First Annual Conference on Neural Information Processing Systems, Van-
couver, British Columbia, Canada, December 3-6, 2007, pp. 1433–1440. Curran
Associates, Inc.

Sun, B., J. Feng, and K. Saenko 2016. Return of frustratingly easy domain adaptation.
In Proceedings of the AAAI Conference on Artificial Intelligence, Volume 30.

Sun, B. and K. Saenko 2016. Deep coral: Correlation alignment for deep domain
adaptation. In European conference on computer vision, pp. 443–450. Springer.

Sun, Q., R. Chattopadhyay, S. Panchanathan, and J. Ye 2011. A two-stage weighting
framework for multi-source domain adaptation. In Advances in neural information
processing systems, pp. 505–513.

Tao, P.D. and L.T.H. An. 1997. Convex analysis approach to DC programming:
theory, algorithms and applications. Acta Mathematica Vietnamica 22(1): 289–355
.

Tao, P.D. and L.T.H. An. 1998. A DC optimization algorithm for solving the trust-
region subproblem. SIAM Journal on Optimization 8(2): 476–505 .

Tuy, H. 1964. Concave programming under linear constraints. Translated Soviet
Mathematics 5: 1437–1440 .

Tzeng, E., J. Hoffman, T. Darrell, and K. Saenko 2015. Simultaneous deep transfer
across domains and tasks. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 4068–4076.

Vergara, A., S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, and R. Huerta. 2012.
Chemical gas sensor drift compensation using classifier ensembles. Sensors and
Actuators B: Chemical 166-167: 320–329. https://doi.org/https://doi.org/10.1016/
j.snb.2012.01.074 .

Wang, B., J.A. Mendez, M. Cai, and E. Eaton 2019. Transfer learning via minimizing
the performance gap between domains. In Proceedingz of NeurIPS, pp. 10644–
10654.

https://doi.org/https://doi.org/10.1016/j.snb.2012.01.074
https://doi.org/https://doi.org/10.1016/j.snb.2012.01.074


Springer Nature 2021 LATEX template

Best-Effort Adaptation 37

Wang, C. and S. Mahadevan 2011. Heterogeneous domain adaptation using man-
ifold alignment. In Twenty-second international joint conference on artificial
intelligence.

Wang, J., W. Feng, Y. Chen, H. Yu, M. Huang, and P.S. Yu 2018. Visual domain
adaptation with manifold embedded distribution alignment. In Proceedings of the
26th ACM international conference on Multimedia, pp. 402–410.

Wang, M. and W. Deng. 2018. Deep visual domain adaptation: A survey. Neurocom-
puting 312: 135–153 .

Wang, T., X. Zhang, L. Yuan, and J. Feng 2019. Few-shot adaptive faster r-cnn. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7173–7182.

Wei, J., M. Bosma, V.Y. Zhao, K. Guu, A.W. Yu, B. Lester, N. Du, A.M. Dai, and
Q.V. Le. 2021. Finetuned language models are zero-shot learners.

Wen, J., R. Greiner, and D. Schuurmans 2020. Domain aggregation networks
for multi-source domain adaptation. In International Conference on Machine
Learning, pp. 10214–10224. PMLR.

Yang, J., R. Yan, and A.G. Hauptmann 2007. Cross-domain video concept detection
using adaptive svms. In ACM Multimedia, pp. 188–197.

Yang, L., S. Hanneke, and J.G. Carbonell. 2013. A theory of transfer learning with
applications to active learning. Mach. Learn. 90(2): 161–189 .

You, K., Z. Kou, M. Long, and J. Wang 2020. Co-tuning for transfer learn-
ing. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (Eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Yuille, A.L. and A. Rangarajan. 2003. The concave-convex procedure. Neural
Computation 15(4): 915–936 .

Zhang, K., B. Schölkopf, K. Muandet, and Z. Wang 2013. Domain adaptation under
target and conditional shift. In Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, Volume 28
of JMLR Workshop and Conference Proceedings, pp. 819–827. JMLR.org.

Zhang, T., I. Yamane, N. Lu, and M. Sugiyama 2020. A one-step approach to covari-
ate shift adaptation. In Proceedings of ACML, Volume 129 of Proceedings of
Machine Learning Research, pp. 65–80. PMLR.



Springer Nature 2021 LATEX template

38 Best-Effort Adaptation

Zhang, Y., T. Liu, M. Long, and M. Jordan 2019a, 09–15 Jun. Bridging theory
and algorithm for domain adaptation. In K. Chaudhuri and R. Salakhutdinov
(Eds.), Proceedings of the 36th International Conference on Machine Learning,
Volume 97 of Proceedings of Machine Learning Research, pp. 7404–7413. PMLR.

Zhang, Y., T. Liu, M. Long, and M. Jordan 2019b. Bridging theory and algorithm
for domain adaptation. In International Conference on Machine Learning, pp.
7404–7413. PMLR.

Zhang, Y., T. Liu, M. Long, and M.I. Jordan 2019c. Bridging theory and algorithm
for domain adaptation. In K. Chaudhuri and R. Salakhutdinov (Eds.), Proceed-
ings of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, Volume 97 of Proceedings of Machine
Learning Research, pp. 7404–7413. PMLR.

Zhang, Y., M. Long, J. Wang, and M.I. Jordan. 2020. On localized discrepancy for
domain adaptation.

Zhao, H., R.T. Des Combes, K. Zhang, and G. Gordon 2019. On learning invariant
representations for domain adaptation. In International Conference on Machine
Learning, pp. 7523–7532. PMLR.

Zhao, H., S. Zhang, G. Wu, J.M. Moura, J.P. Costeira, and G.J. Gordon. 2018.
Adversarial multiple source domain adaptation. Advances in neural information
processing systems 31: 8559–8570 .

Zheng, L., G. Liu, C. Yan, C. Jiang, M. Zhou, and M. Li. 2020. Improved trad-
aboost and its application to transaction fraud detection. IEEE Transactions on
Computational Social Systems 7(5): 1304–1316 .



Springer Nature 2021 LATEX template

CONTENTS OF APPENDIX 39

Contents of Appendix
A Best-effort adaptation 40

A.1 Theorems and proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.2 Convex optimization solution . . . . . . . . . . . . . . . . . . . . . . . 44
A.3 Discrepancy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.4 Pseudocode of alternate minimization procedure . . . . . . . . . . . . 46
A.5 α-reweighting method . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B Domain adaptation 49
B.1 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.2 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.3 Sub-Gradients and estimation of unlabeled discrepancy terms . . . . . 50

B.3.1 Sub-Gradients of unlabeled weighted discrepancy terms . . . 50
B.3.2 Estimation of unlabeled discrepancy terms . . . . . . . . . . . 51

C Further details about experimental settings 53
C.1 Best-Effort adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.1.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C.1.2 Real-world data: classification and regression . . . . . . . . . 54

C.2 Fine-tuning tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
C.3 Domain adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C.3.1 Domain adaptation – covariate-shift . . . . . . . . . . . . . . . 58



Springer Nature 2021 LATEX template

40 CONTENTS OF APPENDIX

Appendix A Best-effort adaptation

A.1 Theorems and proofs
Below we will work with a notion of discrepancy extended to finite signed measures,
as defined in (4).

Theorem 1 Fix a vector q in [0,1][m+n]. Then, for any δ > 0, with probability at least 1 − δ
over the draw of an i.i.d. sample S of size m from Q and an i.i.d. sample S′ of size n from P,
the following holds for all h ∈H:

L(P, h) ≤
m+n

∑
i=1

qi`(h(xi), yi) + dis([(1 − ∥q∥1) + q]P,qQ) + 2Rq(` ○H) + ∥q∥2

¿
Á
ÁÀ log 1

δ

2
.

Proof Let S = ((x1, y1), . . . , (xm, ym)) be a sample of size m drawn i.i.d. from Q and
similarly S′ = ((xm+1, ym+1), . . . , (xm+n, ym+n)) a sample of size n drawn i.i.d. from P.
Let T denote the sample formed by S and S′, T = (S,S′). For any such sample T , define
Φ(T ) as follows:

Φ(T ) = sup
h∈H

{qL(Q, h) + (∥q∥1 − q)L(P, h) −LT (q, h)},

with LT (q, h) = ∑
m+n
i=1 qi`(h(xi), yi). Changing point xi to some other point x′i affects

Φ(T ) by at most qi. Thus, by McDiarmid’s inequality, for any δ > 0, with probability at least
1 − δ, the following holds for all h ∈H:

qL(Q, h) + (∥q∥1 − q)L(P, h) ≤ LT (q, h) + E[Φ(T )] + ∥q∥2

¿
Á
ÁÀ log 1

δ

2
. (A1)

Now, let T ′ = ((x′1, y
′

1), . . . , (x
′

m, y
′

m), (x′m+1, y
′

m+1), . . . , (x
′

m+n, y
′

m+n))) be a sample
drawn according to the same distribution as T , then we can write:

E
T ′

[LT ′(q, h)] =
m

∑
i=1

qi E[`(h(x
′

i), y
′

i)] +
m+n

∑
i=m+1

qi E[`(h(x
′

i), y
′

i)]

(linearity of expectation and weights qi independent of T )

=
m

∑
i=1

qiL(Q, h) +
m+n

∑
i=m+1

qiL(P, h) (i.i.d. sample)

= qL(Q, h) + (∥q∥1 − q)L(P, h). (A2)

In light of that equality, we can analyze the expectation term as follows:

E[Φ(T )] = E
T
[sup
h∈H

qL(Q, h) + (∥q∥1 − q)L(P, h) −LT (q, h)]

= E
T
[sup
h∈H

E
T ′

[LT ′(q, h)] −LT (q, h)]

= E
T
[sup
h∈H

E
T ′

[LT ′(q, h) −LT (q, h)]] (LT ′(q, h) independent of T ′)

≤ E
T,T ′

[sup
h∈H
LT ′(q, h) −LT (q, h)] (sub-additivity of supremum)
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= E
T,T ′

[sup
h∈H

m+n

∑
i=1

qi`(h(x
′

i), y
′

i) − qi`(h(xi), yi)]

= E
T,T ′,σ

[sup
h∈H

m+n

∑
i=1

σi(qi`(h(x
′

i), y
′

i) − qi`(h(xi), yi))]

(introducing Rademacher variables σi)

≤ E
T ′,σ

[sup
h∈H

m+n

∑
i=1

σiqi`(h(x
′

i), y
′

i)] + E
T,σ

[sup
h∈H

m+n

∑
i=1

−σiqi`(h(xi), yi)]

(sub-addivity of supremum and linearity of expectation)

= 2 E
T,σ

[sup
h∈H

m+n

∑
i=1

σiqi`(h(xi), yi)] (−σi and σi follow the same distribution)

= 2Rq(` ○H).

Finally, using the upper bound

L(P, h) − [qL(Q, h) + (∥q∥1 − q)L(P, h)] = [(1 − ∥q∥1) + q]L(P, h) − qL(Q, h)

≤ dis([(1 − ∥q∥1) + q]P,qQ),

inequality (A1), and the upper bound on E[Φ(T )], we obtain:

L(P, h) ≤ [qL(Q, h) + (∥q∥1 − q)L(P, h)] + dis([(1 − ∥q∥1) + q]P,qQ)

≤ LT (q, h) + dis([(1 − ∥q∥1) + q]P,qQ) + 2Rq(` ○H) + ∥q∥2

¿
Á
ÁÀ log 1

δ

2
,

which completes the proof. �

Next, we show that the learning bound just proven is tight in terms of the
weighted-discrepancy term.

Theorem 2 Fix a distribution q in the simplex ∆m+n. Then, for any ε > 0, there exists h ∈ H
such that, for any δ > 0, the following lower bound holds with probability at least 1 − δ over
the draw of an i.i.d. sample S of size m from Q and an i.i.d. sample S′ of size n from P:

L(P, h) ≥
m+n

∑
i=1

qi`(h(xi), yi) + qdis(P,Q) − 2Rq(` ○H) − ∥q∥2

¿
Á
ÁÀ log 1

δ

2
− ε.

In particular, for ∥q∥2,Rq(` ○H) ∈ O( 1
√

m+n
), we have:

L(P, h) ≥
m+n

∑
i=1

qi`(h(xi), yi) + qdis(P,Q) +Ω(
1

√
m + n

).

Proof Let L(q, h) denote∑m+n
i=1 qi`(h(xi), yi). By definition of discrepancy as a supremum,

for any ε > 0, there exists h ∈ H such that L(P, h) − L(Q, h) ≥ dis(P,Q) − ε. For that h, we
have

L(P, h) − qdis(P,Q) −L(q, h) ≥ L(P, h) − q(L(P, h) −L(Q, h)) −L(q, h) − ε

= (1 − q)L(P, h) + qL(Q, h) −L(q, h) − ε

= E[L(q, h)] −L(q, h) − ε.
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By McDiarmid’s inequality, with probability at least 1 − δ, we have E[L(q, h)] − L(q, h) ≥

−2Rq(` ○H) − ∥q∥2

√
log 1

δ
2 . Thus, we have:

L(P, h) − qdis(P,Q) −L(q, h) ≥ −2Rq(` ○H) − ∥q∥2

¿
Á
ÁÀ log 1

δ

2
− ε.

The last inequality follows directly by using the assumptions and Lemma 10. �

Theorem 3 For any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample
S of size m from Q and an i.i.d. S′ of size n from P, the following holds for all h ∈ H and
q ∈ {q∶ ∥q − p0

∥1 < 1}:

L(P, h) ≤
m+n

∑
i=1

qi`(h(xi), yi) + dis([(1 − ∥q∥1) + q]P,qQ) + dis(p0,q)

+ 2Rq(` ○H) + 7∥q − p0
∥1 + [∥q∥2 + 2∥q − p0

∥1]
⎡
⎢
⎢
⎢
⎣

√

log log2
2

1−∥q−p0∥1
+

√
log 2

δ
2

⎤
⎥
⎥
⎥
⎦
.

Proof Consider two sequences (εk)k≥0 and (qk)k≥0. By Theorem 1, for any fixed k ≥ 0, we
have:

P
⎡
⎢
⎢
⎢
⎢
⎣

L(P, h) >
m+n

∑
i=1

qki `(h(xi), yi) + dis([(1 − ∥qk∥1) + qk]P,qkQ)

+ 2Rqk(` ○H) +
∥qk∥2
√

2
εk

⎤
⎥
⎥
⎥
⎥
⎦

≤ e−ε
2
k .

Choose εk = ε +
√

2 log(k + 1). Then, by the union bound, we can write:

P
⎡
⎢
⎢
⎢
⎢
⎣

∃k ≥ 1∶L(P, h) >
m+n

∑
i=1

qki `(h(xi), yi) + dis([(1 − ∥qk∥1) + qk]P,qkQ) (A3)

+ 2Rqk(` ○H) +
∥qk∥2
√

2
εk

⎤
⎥
⎥
⎥
⎥
⎦

≤
+∞

∑
k=0

e−ε
2
k ≤

+∞

∑
k=0

e−ε
2
−log((k+1)2)

= e−ε
2 +∞

∑
k=1

1

k2
=
π2

6
e−ε

2

≤ 2e−ε
2

.

We can choose qk such that ∥qk − p0
∥1 = 1 − 1

2k
. Then, for any q ∈ {q∶ ∥q − p0

∥1 < 1}, there

exists k ≥ 0 such that ∥qk − p0
∥1 ≤ ∥q − p0

∥1 < ∥qk+1
− p0

∥1 and thus such that

√
2 log(k + 1) =

√

2 log log2
1

1 − ∥qk+1 − p0∥1
=

√

2 log log2
2

1 − ∥qk − p0∥1

≤

√

2 log log2
2

1 − ∥q − p0∥1
.

Furthermore, for that k, the following inequalities hold:
m+n

∑
i=1

qki `(h(xi), yi) ≤
m+n

∑
i=1

qi`(h(xi), yi) + dis(qk,q)
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≤
m+n

∑
i=1

qi`(h(xi), yi) + dis(qk,p0
) + dis(p0,q)

≤
m+n

∑
i=1

qi`(h(xi), yi) + ∥qk − p0
∥1 + dis(p0,q)

≤
m+n

∑
i=1

qi`(h(xi), yi) + ∥q − p0
∥1 + dis(p0,q),

dis([(1 − ∥qk∥1) + qk]P,qkQ) ≤ dis([(1 − ∥q∥1) + q]P,qQ)

+ ∥[(∥q∥1 − q) − (∥qk∥1 − qk)]P + [q − qk]Q∥
1

≤ dis([(1 − ∥q∥1) + q]P,qQ) + ∥qk − q∥1

≤ dis([(1 − ∥q∥1) + q]P,qQ) + 2∥q − p0
∥1,

Rqk(` ○H) ≤ Rq(` ○H) + ∥qk − q∥1 ≤ Rq(` ○H) + 2∥q − p0
∥1,

and ∥qk∥2 ≤ ∥q∥2 + ∥qk − q∥2

≤ ∥q∥2 + ∥qk − q∥1 ≤ ∥q∥2 + 2∥q − p0
∥1.

Plugging in these inequalities in (A3) concludes the proof. �

Corollary 4 For any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample S
of sizem from Q and an i.i.d. sample S′ of size n from P, the following holds for all h ∈H and
q ∈ {q∶ ∥q − p0

∥1 < 1}:

L(P, h) ≤
m+n

∑
i=1

qi`(h(xi), yi) + qdis(P,Q) + dis(p0,q) + 2Rq(` ○H)

+ 8∥q − p0
∥1 + [∥q∥2 + 2∥q − p0

∥1]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√

log log2
2

1−∥q−p0∥1
+

¿
Á
ÁÀ log 2

δ

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Proof Note that the discrepancy term of the bound of Theorem 3 can be further upper bounded
as follows:

dis([(1 − ∥q∥1) + q]P,qQ)

= sup
h∈H

{[(1 − ∥q∥1) + q] E
(x,y)∼P

[`(h(x), y)] − q E
(x,y)∼Q

[`(h(x), y)]}

≤ qdis(P,Q) + ∣1 − ∥q∥1∣ sup
h∈H

E
(x,y)∼P

[`(h(x), y)]

≤ qdis(P,Q) + ∣1 − ∥q∥1∣

= qdis(P,Q) + ∣∥p0
∥1 − ∥q∥1∣

≤ qdis(P,Q) + ∥p0
− q∥1.

Plugging this in the right-hand side in the bound of Theorem 3 completes the proof. �
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Lemma 10 Fix a distribution q over [m + n]. Then, the following holds for the q-weighted
Rademacher complexity:

Rq(` ○H) ≤ ∥q∥∞(m + n)Rm+n(` ○H).

Proof Since for any i ∈ [m + n], the function ϕi∶x ↦ qix is qi-Lipschitz and thus ∥q∥∞-
Lipschitz, the result is an application of the result of Meir and Zhang (Meir and Zhang, 2003,
Theorem 7). �

Note that the bound of the lemma is tight: equality holds when q is chosen to
be the uniform distribution. By McDiarmid’s inequality, the q-weighted Rademacher
complexity can be estimated from the empirical quantity

R̂q,S,S′(` ○H) = E
σ
[sup
h∈H

m+n

∑
i=1

σiqi`(h(xi), yi)],

modulo a term in O(∥q∥2).

A.2 Convex optimization solution
In the case of the squared loss with the hypothesis set of linear functions or kernel-
based functions, the optimization algorithm for BEST can be formulated as a convex
optimization problem.

We can proceed as follows when ` is the squared loss. We introduce new variables
ui = 1/qi, vi = 1/p0

i and define the convex set U = {u∶ui ≥ 1}. Using the following
four expressions:

qi(h(xi) − yi)2 = (h(xi) − yi)2

ui
, ∥q∥2

2 =∑
i

1

u2
i

,

∥q∥∞∥h∥2 = max
i

∥h∥2

ui
= ∥h∥2

umin
, ∥q − p0∥1 ≤∑

i

∣vi − ui∣ = ∥u − v∥1,

leads to the following convex optimization problem with new hyperparameters
γ∞, γ1, γ2:

min
h∈H,u∈U

m+n

∑
i=1

(h(xi) − yi)2 + di
ui

+ dis(( 1
ui
)
i
, ( 1

vi
)
i
)

+ γ∞
∥h∥2

umin
+ γ1∥u − v∥1 + γ2

m+n

∑
i=1

1

u2
i

.

Note that the first term is jointly convex as a sum of quadratic-over-linear or matrix
fractional functions (Boyd and Vandenberghe, 2014). When H is a subset of the
reproducing kernel Hilbert space associated to a positive definite kernelK, for a fixed
u, the problem coincides with a standard kernel ridge regression problem. Thus, we
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can rewrite it in terms of dual variables α, the kernel matrixK, Y = (y1, . . . , ym+n)⊺
and U = (u1, . . . , um+n)⊺ as follows:

min
u∈U

max
α

−α⊺(K + γ∞
umin

U)α + 2α⊺Y +
m+n

∑
i=1

di
ui

dis(( 1
ui
)
i
, ( 1

vi
)
i
) + γ1∥u − v∥1 + γ2

m+n

∑
i=1

1

u2
i

.

Solving for α yields the following convex optimization problem:

min
u∈U

Y ⊺(K + γ∞
umin

U)
−1

Y +
m+n

∑
i=1

di
ui
+ γ1∥u − v∥1 + γ2

m+n

∑
i=1

1

u2
i

.

Standard descent methods such as SGD can be used to solve this problem. Note
that the above can be further simplified using the upper bound 1/umin ≤ ∑m+n

i=1 1/ui.

A.3 Discrepancy estimation
First, note that if the P-drawn labeled sample at our disposal is sufficiently large, we
can reserve a sub-sample of size n1 to train a relatively accurate model hP. Thus, we
can subsequently reduce H to a ball B(hP, r) of radius r ∼ 1

√
n1

. This helps us work
with a finer local labeled discrepancy since the maximum in the definition is then
taken over a smaller set.

We do not have access to the discrepancy value dis(P,Q), which defines dis.
Instead, we can use the labeled samples from Q and P to estimate it. Our estimate d̂
of the discrepancy is given by

d̂ = max
h∈H

{ 1

n

m+n

∑
i=m+1

`(h(xi), yi) −
1

m

m

∑
i=1

`(h(xi), yi)}. (A4)

Thus, for a convex loss `, the optimization problems for computing d̂ can be naturally
cast as DC-programming problem, which can be tackled using the DCA algorithm
(Tao and An, 1998) and related methods already discussed for SBEST. For the squared
loss, the DCA algorithms is guaranteed to converge to a global optimum (Tao and
An, 1998).

By McDiarmid’s inequality, with high probability, ∣dis(P,Q)− d̂∣ can be bounded
by O(

√
m+n
mn

). More refined bounds such as relative deviation bounds or Bernstein-
type bounds provide more favorable guarantee when the discrepancy is relatively
small. When H is chosen to be a small ball B(hP, r), our estimate of the discrepancy
is further refined.

The optimization problem (A4) can be equivalently solved via the following
minimization:

d̂ = min
h∈H

{ 1

m

m

∑
i=1

`(h(xi), yi) −
1

n

m+n

∑
i=m+1

`(h(xi), yi)}.
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The DCA solution for this problem then consists of solving a sequence of T convex
optimization problems where h1 ∈H is chosen arbitrarity and where ht+1, t ∈ [T ] is
obtained as follows

ht+1 ∈ argmin
h∈H

{ 1

m

m

∑
i=1

`(h(xi), yi) −
1

n

m+n

∑
i=m+1

∇`(ht(xi), yi) ⋅ (h − ht)}.

The second term of the objective is obtained by a linearization of the loss.

A.4 Pseudocode of alternate minimization procedure

Input: Samples {(x1, y1), . . . (xm+n, ym+n)}, tolerance τ , distribution p0, max iterations T ,
hyperparameters λ∞, λ1, λ2, discrepancy estimate d̂.

1. Initialize q0 to be the uniform distribution over [m + n].

2. Initialize h0 = argminh∈H ∑
m+n
i=1 q0,i`(h(xi), yi) + λ∞∥q0∥∞∥h∥2.

3. For t = 1, . . . T ,

• Set curr obj val = ∑mi=1 qt−1,i(`(ht−1(xi), yi) + d̂) +
∑m+n
i=m+1 qt−1,i`(ht−1(xi), yi) + λ∞∥qt−1∥∞∥ht−1∥2 + λ1∥qt−1 − p0∥1 +

λ2∥qt−1∥2.
• Compute qt = argminq∈∆m+n

∑mi=1 qi(`(ht−1(xi), yi) + d̂) +
∑m+n
i=m+1 qi`(ht−1(xi), yi) + λ∞∥q∥∞∥ht−1∥2 + λ1∥q − p0∥1 + λ2∥q∥2.

• Compute ht = argminh∈H ∑mi=1 qt,i(`(ht−1(xi), yi) + d̂) +
∑m+n
i=m+1 qt,i`(ht−1(xi), yi) + λ∞∥qt∥∞∥h∥2.

• Set new obj val = ∑mi=1 qt,i(`(ht(xi), yi) + d̂) +∑m+n
i=m+1 qt,i`(ht(xi), yi) +

λ∞∥qt∥∞∥ht∥2 + λ1∥qt − p0∥1 + λ2∥qt∥2.
• If ∣curr obj val − new obj val∣ ≤ τ , return qt, ht

4. Print: AM did not converge in T iterations. Return qT , hT .

Fig. A1 Alternate minimization procedure for best effort adaptation.

A.5 α-reweighting method
Let d=dis(P,Q), d̂ and d̂ = dis(Q̂, P̂). Consider the following simple, and in general
suboptimal, choice of q as a distribution defined by:

q = αm

m + n qi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q
m
= α
m+n

if i ∈ [m];
1−q
n

= m(1−α)+n
(m+n)n

otherwise,

where α = Ψ(1−d) for some non-decreasing function Ψ with Ψ(0) = 0 and Ψ(1) = 1.
We will compare the right-hand side of the bound of Theorem 1, which we denote by
B, with its right-hand side B0 for q chosen to be uniform over S′ corresponding to
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supervised learning on just S′:

B0 = L(P̂, h) + 2Rn(` ○H) +
√

log 1
δ

2n
.

We now show that under some assumptions, we have B − B0 ≤ 0. Thus, even for
this sub-optimal choice of q, under those assumptions, the guarantee of the theorem
is then strictly more favorable than the one for training on S′ only, uniformly over
h ∈H.

By definition of d̂, we can write:

L(q, h) = qL(Q̂, h) + (1 − q)L(P̂, h) ≤ qd̂ +L(P̂, h).

By definition of the q-Rademacher complexity and the sub-additivity of the supre-
mum, the following inequality holds:

Rq(` ○H) ≤ qRm(` ○H) + (1 − q)Rn(` ○H).

By definition of q, we can write:

∥q∥2
2n = n[m( q

m
)

2

+ n(1 − q

n
)

2

] = n

m
q2 + (1 − q)2

= 1 − 2q + m + n
m

q2

= 1 − (2 − α)q ≤ 1 − q.

Thus, using the inequality
√

1 − x ≤ 1 − x
2

, x ≤ 1, we have:

B −B0 ≤ 2q[Rm(` ○H) −Rn(` ○H)] + q(d + d̂) + [
√

1 − q − 1][ log 1
δ

2n
]

1
2

≤ 2q[Rm(` ○H) −Rn(` ○H)] + q(d + d̂) − q[ log 1
δ

8n
]

1
2

.

Suppose we are in the regime of relatively small discrepancies and that, given n,
both the discrepancy and the empirical discrepancies are upper bounded as follows:

max{d, d} <
√

log 1/δ
32n

. Assume also that for m ≫ n (which is the setting we are
interested in), we have Rm(`○H)−Rn(`○H) ≤ 0. Then, the first term is non-positive
and, regardless of the choice of α < 1, we have B −B0 ≤ 0. Thus, even for this sub-
optimal choice of q, under some assumptions, the guarantee of the theorem is then
strictly more favorable than the one for training on S′ only, uniformly over h ∈H.

Note that the assumption about the difference of Rademacher complexities is nat-
ural. For example, for a kernel-based hypothesis set H with a normalized kernel such
as the Gaussian kernel and the norm of the weight vectors in the reproducing ker-
nel Hilbert space (RKHS) bounded by Λ, it is known that the following inequalities
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hold: 1
√

2

Λ
√
m

≤ Rm(H) ≤ Λ
√
m

(Mohri et al., 2018). Thus, for m > 2n, we have

Rm(H) −Rn(H) ≤ Λ
√
m
− Λ

√

2n
< 0.
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Appendix B Domain adaptation

B.1 Proof of Lemma 8
Lemma 8 Let ` be the squared loss. Then, for any hypothesis h0 in H, the following upper
bound holds for the labeled discrepancy:

dis(P̂, Q̂) ≤ disH×{h0}
(P̂, Q̂) + 2δH,h0

(P̂, Q̂).

Proof For any h0, using the definition of the squared loss, the following inequalities hold:

dis(P̂, Q̂) = sup
h∈H

RRRRRRRRRRR

E
(x,y)∼P̂

[`(h(x), y)] − E
(x,y)∼Q̂

[`(h(x), y)]
RRRRRRRRRRR

≤ sup
h∈H

RRRRRRRRRRR

E
(x,y)∼P̂

[`(h(x), h0(x))] − E
(x,y)∼Q̂

[`(h(x), h0(x))]
RRRRRRRRRRR

+ sup
h∈H

∣ E
(x,y)∼P̂

[`(h(x), y)] − E
(x,y)∼P̂

[`(h(x), h0(x))]

+ E
(x,y)∼Q̂

[`(h(x), h0(x))] − E
(x,y)∼Q̂

[`(h(x), y)]∣

= disH×{h0}
(P̂, Q̂)

+ 2 sup
h∈H

RRRRRRRRRRR

E
(x,y)∼P̂

[h(x)(y − h0(x))] − E
(x,y)∼Q̂

[h(x)(y − h0(x))]
RRRRRRRRRRR

(def. of squared loss)

= disH×{h0}
(P̂, Q̂) + 2δH,h0

(P̂, Q̂). (def. of local discrepancy)

This completes the proof. �

B.2 Proof of Lemma 9
Lemma 9 Let ` be a loss function that is µ-Lipschitz with respect to its second argument. Then,
for any hypothesis h0 in H, the following upper bound holds for the labeled discrepancy:

dis(P̂, Q̂) ≤ disH×{h0}
(P̂, Q̂) + µηH,h0

(P̂, Q̂).

Proof When the loss function ` is µ-Lipschitz with respect to its second argument, we can use
the following upper bound:

dis(P̂, Q̂) = sup
h∈H

RRRRRRRRRRR

E
(x,y)∼P̂

[`(h(x), y)] − E
(x,y)∼Q̂

[`(h(x), y)]
RRRRRRRRRRR

≤ sup
h∈H

RRRRRRRRRRR

E
(x,y)∼P̂

[`(h(x), h0(x))] − E
(x,y)∼Q̂

[`(h(x), h0(x))]
RRRRRRRRRRR

+ sup
h∈H

∣ E
(x,y)∼P̂

[`(h(x), y)] − E
(x,y)∼P̂

[`(h(x), h0(x))]

+ E
(x,y)∼Q̂

[`(h(x), h0(x))] − E
(x,y)∼Q̂

[`(h(x), y)]∣
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≤ disH×{h0}
(P̂, Q̂) + µ E

(x,y)∼P̂
[∣y − ho(x)∣] + µ E

(x,y)∼Q̂
[∣y − ho(x)∣].

(` assumed µ-Lipschitz)

This completes the proof. �

B.3 Sub-Gradients and estimation of unlabeled discrepancy
terms

Here, we first describe how to compute the sub-gradients of the unlabeled weighted
discrepancy term dis(q′,p) that appears in the optimization problem for domain
adaptation (10), and similarly dis(p0, (q,q′)), in the case of the squared loss with
linear functions. Next, we show how the same analysis can be used to compute
the empirical discrepancy term dis(P̂, Q̂), which provides an accurate estimate of
d = dis(P,Q).

B.3.1 Sub-Gradients of unlabeled weighted discrepancy terms

Let ` be the squared loss and let H be the family of linear functions defined by
H = {x↦w ⋅Φ(x)∶ ∥w∥2 ≤ Λ}, where Φ is a feature mapping from X to Rk. We can
analyze the unlabeled discrepancy term dis(q′,p) using an analysis similar to that of
Cortes and Mohri (2014). By definition of the unlabeled discrepancy, we can write:

dis(q′,p) = sup
h,h′∈H

{
n

∑
i=1

q′i`(h(xm+i), h′(xm+i)) −
m

∑
i=1

pi`(h(xi), h′(xi))}

= sup
∥w∥2,∥w′∥2≤Λ

{
n

∑
i=1

q′i[(w −w′) ⋅Φ(xm+i)]2 −
m

∑
i=1

pi[(w −w′) ⋅Φ(xi)]2}

= sup
∥u∥2≤2Λ

{
n

∑
i=1

q′i[u ⋅Φ(xm+i)]2 −
m

∑
i=1

pi[u ⋅Φ(xi)]2}

= sup
∥u∥2≤2Λ

{
n

∑
i=1

q′iu
⊺Φ(xm+i)Φ(xm+i)⊺u −

m

∑
i=1

piu
⊺Φ(xi)Φ(xi)⊺u}

= sup
∥u∥2≤2Λ

{u⊺[
n

∑
i=1

q′iΦ(xm+i)Φ(xm+i)⊺ −
m

∑
i=1

piΦ(xi)Φ(xi)⊺]u}

= 4Λ2 sup
∥u∥2≤1

u⊺M(q′,p)u

= 4Λ2 max

⎧⎪⎪⎨⎪⎪⎩
0, sup

∥u∥2=1

u⊺M(q′,p)u
⎫⎪⎪⎬⎪⎪⎭

= 4Λ2 max{0, λmax(M(q′,p))},

where M(q′,p) = ∑ni=1 q
′

iΦ(xm+i)Φ(xm+i)⊺ − ∑mi=1 piΦ(xi)Φ(xi)⊺ and where
λmax(M(q′,p)) denotes the maximum eigenvalue of the symmetric matrix
M(q′,p). Thus, the unlabeled discrepancy dis(q′,p) can be obtained from the max-
imum eigenvalue of a symmetric matrix that is an affine function of q′ and p. Since
λmax is a convex function and since composition with an affine function preserves
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convexity, λmax(M(q′,p)) is a convex function of q′ and p. Since the maximum of
two convex function is convex, max{0, λmax(M(q′,p))} is also convex.

Rewriting λmax(M(q′,p)) as max∥u∥2=1 u⊺M(q′,p)u helps derive the sub-
gradient of λmax(M(q′,p)) using the sub-gradient calculation of the maximum of a
set of functions:

∇(q′,p)λmax(M(q′,p)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u⊺Φ(xm+1)Φ(xm+1)⊺u
⋮

u⊺Φ(xm+n)Φ(xm+n)⊺u
−u⊺Φ(x1)Φ(x1)⊺u

⋮
−u⊺Φ(xm)Φ(xm)⊺u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Φ(xm+1) ⋅ u)2

⋮
(Φ(xm+n) ⋅ u)2

−(Φ(x1) ⋅ u)2

⋮
−(Φ(xm) ⋅ u)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where u is the eigenvector corresponding to the maximum eigenvalue of M(q′,p).
Alternatively, we can approximate the maximum eigenvalue via the softmax expres-
sion

f(q′,p) = 1

µ
log

⎡⎢⎢⎢⎣

k

∑
j=1

eµλj(M(q′,p))
⎤⎥⎥⎥⎦
= 1

µ
log[Tr(eµM(q′,p))],

where eµM(q′,p) denotes the matrix exponential of µM(q′,p) and λj(M(q′,p)) the
jth eigenvalue of M(q′,p). The matrix exponential can be computed in O(k3) time
by computing the singular value decomposition (SVD) of the matrix. We have:

λmax(M(q′,p)) ≤ f(q′,p) ≤ λmax(M(q′,p)) + log k

µ
.

Thus, for µ = logk
ε

, f(q′,p) provides a uniform ε-approximation of λmax(M(q′,p)).
The gradient of f(q′,p) is given for all j ∈ [n] and i ∈ [m] by

∇q′j
f(q′,p) =

⟨eµM(q′,p),Φ(xm+j)Φ(xm+j)⊺⟩
Tr(eµM(q′,p))

= Φ(xm+j)⊺eµM(q′,p)Φ(xm+j)
Tr(eµM(q′,p))

∇pif(q′,p) = −
⟨eµM(q′,p),Φ(xi)Φ(xi)⊺⟩

Tr(eµM(q′,p))
= Φ(xi)⊺eµM(q′,p)Φ(xi)

Tr(eµM(q′,p))
.

The sub-gradient of the unlabeled discrepancy term dis(p0, (q,q′)) or a smooth
approximation can be derived in a similar, using the same analysis as above.

B.3.2 Estimation of unlabeled discrepancy terms

The unlabeled discrepancy d = dis(P,Q) can be accurately estimated from its empir-
ical version dis(P̂, Q̂) (Mansour et al., 2009a). In view of the analysis of the previous
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section, we have

dis(P̂, Q̂) = 4Λ2λmax(M(P̂, Q̂))

= 4Λ2λmax(
1

n

n

∑
i=1

Φ(xm+i)Φ(xm+i)⊺ −
1

m

m

∑
i=1

Φ(xi)Φ(xi)⊺).

Thus, this last expression can be used in place of d in the optimization problem for
domain adaptation.
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Appendix C Further details about experimental
settings

In this section we provide further details on our experimental setup starting with best
effort adaptation.

C.1 Best-Effort adaptation
Recall that in this setting we have labeled data from both source and target, however
the amount of labeled data from the source is much larger. We start by describing
the baselines that we compare our algorithms with. For the best-effort adaptation
problem two natural baselines are to learn a hypothesis solely on the target P, or train
solely on the source Q. A third baseline that we consider is the α-reweighted q as
discussed in Section 3.2. Note, α = 1 corresponds to training on all the available data
with a uniform weighting.

C.1.1 Simulated data

We first consider a simulated scenario where n samples from the target distribution
P are generated by first drawing the feature vector x i.i.d. from a normal distribution
with zero mean and spherical covariance matrix, i.e, N(0, Id×d). Given x, a binary
label y ∈ {−1,+1} is generated as sgn(wp ⋅x) for a randomly chosen unit vector wp ∈
Rd. For a fixed η ∈ (0.5,1), m = 1,000 i.i.d. samples from the source distribution
Q are generated by first drawing (1 − η)m examples from N(0, Id×d) and labeled
according to sgn(wq ⋅ x) where ∥wp − wq∥ ≤ ε, for a small value of ε. Notice that
when ε is small, the (1 − η)m samples are highly relevant for learning the target P.
The remaining ηm examples from Q are all set to a fixed vector u and are labeled as
+1. These examples represent the noise in Q and as η increases the presence of such
examples makes dis(P,Q) larger. In our experiments we set d = 20, ε = 0.01, and
vary η ∈ {0.05,0.1,0.15,0.2}.

On the above adaptation problem we evaluate the performance of the previously
discussed baselines with our proposed SBEST algorithm implemented via the alter-
nate minimization, SBEST-AM, and the DC-programming algorithms, SBEST-DC,
where the loss function considered is the logistic loss and the hypothesis set is the set
of linear models with zero bias. For each value of η, the results are averaged over 50
independent runs using the data generation process described above.

Figure C2 shows the performance of the different algorithms for various values
of the noise level η and as the number of examples n from the target increases. As
can be seen from the figure, both α-reweighting and the baseline that trains solely on
Q degrade significantly in performance as η increases. This is due to the fact the α-
reweighting procedure cannot distinguish between non-noisy and noisy data points
within the m samples generated from Q.

In Figure C3(Left) we plot the best α chosen by the α-reweighting procedure
as a function of n. For reference we also plot the amount of mass on the non-noisy
points from Q, i.e., (1 − η) ⋅ m/(m + n). As can be seen from the figure, as n
increases the amount of mass selected over the source Q decreases. Furthermore, as
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Fig. C2 Comparison of SBEST against the baselines on simulated data in the classification setting. As
the noise rate and therefore the discrepancy between P and Q increases the performance of the baselines
degrades. In contrast, both the alternate minimization and the DC-programming algorithms effectively find
a good q-weighting and can adapt to the target.

expected this decrease is sharper as the amount of noise level increases. In particular,
α-reweighting is not able to effectively use the non-noisy samples from Q.

On the other hand, both SBEST-AM and SBEST-DC are able to counter the effect
of the noise by generating q-weightings that are predominantly supported on the non-
noisy samples. In Figure C3(Right) we plot the amount of probability mass that the
alternate minimization and the DC-programming implementations of SBEST assign
to the noisy data points.

As can be seen from the figure, the total probability mass decreases with n and
is also decreasing with the noise levels. These results also demonstrate that our algo-
rithms that compute a good q-weighting can do effective outlier detection since they
lead to solutions that assign much smaller mass to the noisy points.
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Fig. C3 (Left) Best α chosen by α-reweighting as a function of n. (Right) Total probability mass assigned
by SBEST to the noisy points.

C.1.2 Real-world data: classification and regression

Classification Next we evaluate our proposed algorithms and baselines for three real-
world datasets obtained from the UCI machine learning repository (Dua and Graff,
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2017). We first describe the datasets and our choices of the source and target domains
in each case. The first dataset we consider is the Adult-Income dataset. This is a
classification task where the goal is to predict whether the income of a given indi-
vidual is greater than or equal to $50K. The dataset has 32,561 examples. We form
the source domain Q by taking examples where the attribute gender equals ‘Male’
and the target domain P corresponds to examples where the gender is ‘Female’. This
leads to 21,790 examples from Q and 10,771 examples from P.

The second dataset we consider is the South-German-Credit dataset. This
dataset consists of 1,000 examples and the goal is to predict whether a given individ-
ual has good credit or bad credit. We form the source domain Q by condition on the
residence attribute and taking all examples where the attribute value is in {3,4} (indi-
cating that the individual has lived at the current residence for 3 or more than 4 years.)
The target domain is formed by taking examples where the residence attribute value
is in {1,2}. This split leads to 620 examples from Q and 380 training examples from
P.

The third dataset we consider is the Speaker-Accent-Recognition dataset.
In this dataset the goal is to predict the accent of a speaker given the speech signal.
We consider the source Q to be examples where the accent is ’US’ or ’UK’ and the
target to be examples where the accent is in {’ES’, ’FR’, ’GE’, ’IT’}. This split leads
to 150 training examples from Q and 120 training examples from P.

In each case we randomly split the examples from P into a training set of 70%
examples and a test set of 20% examples. The remaining 10% of the data is used
for cross validation. We provide results averaged over 10 such random splits. For the
six tasks from the Newsgroups dataset we follow the same methodology as in Wang
et al. (2019) to create the tasks.

In each of the above three cases we consider training a logistic regression clas-
sifier and compare the performance of SBEST with the baselines that we previously
discussed. The results are shown in Table 1 in the main paper.
Regression Next we consider the following regression datasets from the UCI
repository.

The wind dataset (Haslett and Raftery, 1989) where the task is to predict wind
speed from the given features. The source consists of data from months January
to November and the target is the data from December. This leads to a total of
5,500 examples from Q, 350 examples from P used for training and validation and
200 examples from P for testing. We create 10 random splits by dividing the 300
examples from P into a train set of size 150 and a validation set of size 200.

The airline dataset is derived from (Ikonomovska, 2009). We create the task
of predicting the amount of time the flight is delayed from various features such as
the arrival time, distance, whether or not the flight was diverted, and the day of the
week. We take a subset of the data for the Chicago O’Haire International Airport
(ORD) in 2008. The source and target consists of datat from different hours of the
day. This leads to 16,000 examples from Q and 500 examples from P (used as 200
for training and 300 for validation) and 300 examples for testing.

The gas dataset (Rodriguez-Lujan et al., 2014; Vergara et al., 2012; Dua and
Graff, 2017) where the task is to predict the concentration level from various sensor
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Table C1 MSE of the SBEST algorithm against baselines. We report relative errors normalized so that
training on target has an MSE of 1.0. Best results or ties in boldface.

Dataset KMM DM SBEST

Wind 1.2 ± 0.04 1.14 ± 0.03 0.97 ± 0.02
Airline 2.4 ± 0.09 1.72 ± 0.1 0.952 ± 0.03
Gas 0.41 ± 0.01 0.39 ± 0.01 0.38 ± 0.02
News 1.08 ± 0.01 1.1 ± 0.01 0.99 ± 0.01
Traffic 2.1 ± 0.1 2.08 ± 0.08 0.99 ± 0.002

measurements. The dataset consists of pre-determined batches and we take the first
six to be the source and the last batch of size 360,000 as the target (600 for training
and 1000 for validation and 1000 for testing).

The news dataset (Fernandes, 2015; Dua and Graff, 2017) where the goal is to
predict the popularity of an article. Our source data consists of articles from Mon-
day to Saturday and the target consists of articles from Sunday. This leads to 32500
examples from the source and 2737 examples for the target (737 for training, 1000
for validation and 1000 for testing).

The traffic dataset from the Minnesota Department of Transportation (Kwon,
2004; Dua and Graff, 2017) where the goal is to predict the traffic volume. We create
source and target by splitting based on the time of the day. This leads to 2200 exam-
ples from the source and 1000 examples from the test set (200 for training, 400 for
validation and 400 for testing).

In each of the datasets above we create 10 random splits based on the shuffling of
the training and validation set and report mean and average values over the splits. We
compare as baselines the KMM (Huang et al., 2006) algorithm and the DM algorithm
(Cortes and Mohri, 2014). Since both the algorithms were originally designed for
the setting when the target has no labels we modify them in the following way. We
run KMM (DM) on the source vs. target data to get a weight distribution q over the
source data. Finally, we perform weighted loss minimization by using the weights
in q for the source and uniform 1/n weights on the target of size n. The results are
shown in Table C1. As can be seen SBEST consistently outperforms the baselines.

C.2 Fine-tuning tasks
In this section we demonstrate the effectiveness of our proposed algorithms for the
purpose of fine-tuning pre-trained representations. In the standard pre-training/fine-
tuning paradigm (Raffel et al., 2020) a model is first pre-trained on a generalist
dataset (which is identified as coming from distribution Q). Once a good representa-
tion is learned, the model is then fine-tuned on a task specific dataset (generated from
target P). Two of the predominantly used fine-tuning approaches in the literature are
last layer fine-tuning (Subramanian et al., 2018; Kiros et al., 2015) and full model
fine-tuning (Howard and Ruder, 2018). In the former approach the representations
obtained from the last layer of the pre-trained model are used to train a simple model
(often a linear hypothesis) on the data coming from P. In our experiments we fix the
choice of the simple model to be a multi-class logistic regression model. In the latter
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approach, the model when train on P, is initialized from the pre-trained model and
all the parameters of the model are fine-tuned (via gradient descent) on the target dis-
tribution P. In this section we explore the additional advantages of combining data
from both P and Q during the fine-tuning stage via our proposed algorithms. There
has been recent interest in carefully combining various tasks/data for the purpose of
fine-tuning and avoid the phenomenon of “negative transfer” (Aribandi et al., 2021).
Our proposed theoretical results present a principled approach towards this.

To evaluate the effectiveness of our theory for this purpose, we consider the
CIFAR-10 vision dataset (Krizhevsky et al., 2009). The dataset consists of 50000
training and 10000 testing examples belonging to 10 classes. We form a pre-
training task on data from Q, by combining all the data belonging to classes:
{’airplane’, ’automobile’, ’bird’, ’cat’, ’deer’, ’dog’}. The fine-tuning task consists
of data belonging to classes: {’frog’, ’horse’, ’ship’, ’truck’}. We consider both the
approaches of last layer fine-tuning and full-model fine-tuning and compare the stan-
dard approach of fine-tuning only using data from P with our proposed algorithms.
We use 60% of the data from the source for pre-training, and the remaining 40% is
used in fine-tuning.

We split the fine-tuning data from P randomly into a 70% training set to be used in
fine-tuning, 10% for cross validation and and the remaining 20% to be used as a test
set. The results are reported over 5 such random splits. We perform pre-training on
a standard ResNet-18 architecture (He et al., 2016) by optimizing the cross-entropy
loss via the Adam optimizer. As can be seen in Table 2 both gapBoost and SBEST
that combine data from P and Q lead to a classifier with better performance for the
downstream task, however, SBEST clearly outperforms gapBoost.

The second dataset we consider is the Civil Comments dataset Pavlopoulos
et al. (2020). This dataset consists of text comments in online forums and the goal is
to predict whether a given comment is toxic or not. Each data point is also labeled
with identity terms that describes which subgroup the text in the comment is related
to. We create a subsample of the dataset where the target consists of examples from
the data points where the identity terms is “asian” and the source is the remaining
set of points. This leads to 394,000 points from the source and 20,000 points from
the target. We create 5 random splits of the data by randomly partitioning the target
data into 10,000 examples for finetuning, 2000 for validation and 8000 for testing.
We perform pre-training on a BERT-small model (Devlin et al., 2019) starting from
the default checkpoint as obtained from the standard tensorflow implementation of
the model.

C.3 Domain adaptation
In this section we evaluate the effectiveness of our proposed BEST-DA objective for
adaptation in settings where the target has very little to no labeled data. In order to
do this we consider multi-domain sentiment analysis dataset of (Blitzer et al., 2007)
that has been used in prior works on domain adaptation. The dataset consists of text
reviews associated with a star rating from 1 to 5 for various different categories such
as BOOKS, DVD, etc. We specifically consider four categories namely BOOKS, DVD,
ELECTRONICS, and KITCHEN. Inspired form the methodology adapted in prior works
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(Mohri and Muñoz Medina, 2012; Cortes and Mohri, 2014), for each category, we
form a regression task by converting the review text to a 128 dimensional vector
and fitting a linear regression model to predict the rating. In order to get the features
we first combine all the data from the four tasks and convert the raw text to a TF-
IDF representation using scikit-learn’s feature extraction library (Pedregosa et al.,
2011). Following this, we compute the top 5000 most important features by using
scikit-learn’s feature selection library, that in turn uses a chi-squared test to perform
feature selection. Finally, we project the obtained onto a 128 dimensional space via
performing principal component analysis.

After feature extraction, for each task we fit a ridge regression model in the
128 dimensional space to predict the ratings. The predictions of the model are then
defined as the ground truth regression labels. Following the above pre-processing
we form 12 adaptation problems for each pair of distinct tasks: (TaskA, TaskB)
where TaskA, TaskB are in {BOOKS, DVD, ELECTRONICS, KITCHEN}. In each case
we form the source domain (Q) by taking 500 labeled samples from TaskA and
200 labeled examples from TaskB. The target (P) is formed by taking 300 unla-
beled examples from TaskB. To our knowledge, there exists no principled method
for cross-validation in fully unsupervised domain adaptation. Thus, in our adaptation
experiments, we used a small labeled validation set of size 50 to determine the param-
eters for all the algorithms. This is consistent with experimental results reported in
prior work (e.g., (Cortes and Mohri, 2014)).

We compare our BEST-DA algorithm with the discrepancy minimization (DM)
algorithm of Cortes and Mohri (2014), and the (GDM) algorithm, (Cortes et al.,
2019), which is a state of the art adaptation algorithm for regression problems. We
also compare with the popular Kernel Mean Matching (KMM) algorithm, (Huang
et al., 2006), for domain adaptation. the results averaged over 10 independent source
and target splits, where we normalize the mean squared error (MSE) of BEST-DA
to be 1.0 and present the relative MSE achieved by the other methods. The results
show that in most adaptation problems, BEST-DA outperforms (boldface) or ties with
(italics) existing methods.

C.3.1 Domain adaptation – covariate-shift

Here we perform experiments for domain adaptation only under covariate shift and
compare the performance of our proposed BEST-DA objective with previous state of
the art algorithms. We again consider the multi-domain sentiment analysis dataset
(Blitzer et al., 2007) from the previous section and in particular focus on the books
category. We use the same feature representation as before and define the ground
truth as y = w∗ ⋅ x + σ2 where w∗ is obtained by fitting a ridge regression classifier.
We let the target be the uniform distribution over the entire dataset. We define the
source as follows: for a fixed value of ε, we pick a random hyperplane w and consider
a mixture distribution with mixture weight 0.99 on the set w ⋅ x ≥ ε and the mixture
weight of 0.01 on the set w ⋅ x < ε. The performance of BEST-DA as compared to
DM and KMM is shown in Table C2. As can be seen our proposed algorithm either
matches or outperforms current algorithms.
Hyperparameters for the algorithms.



Springer Nature 2021 LATEX template

CONTENTS OF APPENDIX 59

Table C2 MSE achieved by BEST-DA as compared to DM and KMM on the covariate shift task for
various values of ε.

METHOD ε = 0 ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.8 ε = 1.0
TRAIN ON Q 0.051 ± 0.001 0.06 ± 0.001 0.06 ± 0.004 0.07 ± 0.006 0.073 ± 0.002 0.073 ± 0.005
KMM 0.05 ± 1e − 4 0.05 ± 1e − 4 0.05 ± 3e − 4 0.06 ± 1e − 4 0.06 ± 1e − 4 0.07 ± 2e − 4
DM 0.02 ± 0.005 0.06 ± 0.003 0.05 ± 0.003 0.05 ± 0.001 0.06 ± 0.005 0.06 ± 0.003
BEST-DA 0.01 ± 0.006 0.02 ± 0.006 0.027 ± 0.005 0.04 ± 0.004 0.04 ± 0.007 0.04 ± 0.004

For our proposed SBEST and SBEST-DA algorithms the hyperparameters
λ∞, λ1, λ2 were chosen via cross validation in the range {1e − 3,1e − 2,1e − 1} ∪
{0,1,2, . . . ,10} ∪ {0,1000,2000,10000,50000,100000}. The h optimization step
of alternate minimization was performed using sklearn’s linear regression/logis-
tic regression methods (Pedregosa et al., 2011). During full layer fine-tuning on
ResNet/BERT models we use the Adam optimizer for the h optimization step with a
learning rate of 1e− 3 used for the CIFAR-10 dataset and a learning rate of 1e− 5 for
the BERT-small models.

For the q optimization we used projected gradient descent and the step size was
chosen via cross validation in the range {1e − 3,1e − 2,1e − 1}.

We re-implemented the gapBoost algorithm (Wang et al., 2019) in Python. Fol-
lowing the prescription by the authors of gapBoost we set the parameter γ =
1/n where n is the size of the target. We tune parameters ρS , ρT in the range
{0.1,0.2, . . . ,1} and the number of rounds of boosting in the range {5,10,15,20}.
We also re-implemented baselines DM (Cortes and Mohri, 2014) and the GDM
algorithm (Cortes et al., 2019). These DM algorithm was implemented via gradient
descent and the second stage of the GDM algorithm was implemented via alter-
nate minimization. The learning rates in each case searched in the range {1e −
3,1e − 2,1e − 1} and the regularization parameters were searched in the range
{1e−3,1e−2,1e−1,0,10,100}. The radius parameter for GDM was searched in the
range [0.01,1] in steps of 0.01. In line with our proposed algorithms, all baselines
were implemented without incorporating a bias term.

To our knowledge, there exists no principled method for cross-validation in fully
unsupervised domain adaptation. Thus, in our unsupervised adaptation experiments,
we used a small labeled validation set of size 50 to determine the parameters for all
the algorithms. This is consistent with experimental results reported in prior work
(Cortes and Mohri, 2014; Cortes et al., 2019).
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