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Abstract

We introduce the general and powerful scheme of predicting information re-use
in optimization algorithms. This allows us to devise a computationally efficient
algorithm for bandit convex optimization with new state-of-the-art guarantees for
both Lipschitz loss functions and loss functions with Lipschitz gradients. This is
the first algorithm admitting both a polynomial time complexity and a regret that is
polynomial in the dimension of the action space that improves upon the original
regret bound for Lipschitz loss functions, achieving a regret of O (Tll/ 163/ S) . Our
algorithm further improves upon the best existing polynomial-in-dimension bound
(both computationally and in terms of regret) for loss functions with Lipschitz

gradients, achieving a regret of O (T3/13d5/3).

1 Introduction

Bandit convex optimization (BCO) is a key framework for modeling learning problems with sequential
data under partial feedback. In the BCO scenario, at each round, the learner selects a point (or action)
in a bounded convex set and observes the value at that point of a convex loss function determined by
an adversary. The feedback received is limited to that information: no gradient or any other higher
order information about the function is provided to the learner. The learner’s objective is to minimize
his regret, that is the difference between his cumulative loss over a finite number of rounds and that
of the loss of the best fixed action in hindsight.

The limited feedback makes the BCO setup relevant to a number of applications, including online
advertising. On the other hand, it also makes the problem notoriously difficult and requires the learner
to find a careful trade-off between exploration and exploitation. While it has been the subject of
extensive study in recent years, the fundamental BCO problem remains one of the most challenging
scenarios in machine learning where several questions concerning optimality guarantees remain open.

The original work of Flaxman et al. [2005] showed that a regret of ) (T°/6) is achievable for bounded

loss functions and of O (TS/ 4) for Lipschitz loss functions (the latter bound is also given in [Kleinberg,
2004]), both of which are still the best known results given by explicit algorithms. Agarwal et al.

[2010] introduced an algorithm that maintains a regret of 6(T2/ 3) for loss functions that are both
Lipschitz and strongly convex, which is also still state-of-the-art. For functions that are Lipschitz
and also admit Lipschitz gradients, Saha and Tewari [2011] designed an algorithm with a regret of

G(TQ/ 3) regret, a result that was recently improved to 6(T5/ 8) by Dekel et al. [2015].
Here, we further improve upon these bounds both in the Lipschitz and Lipschitz gradient settings. By
incorporating the novel and powerful idea of predicting information re-use, we introduce an algorithm

with a regret bound of O (T"1/16) for Lipschitz loss functions. Similarly, our algorithm also achieves
the best regret guarantee among computationally tractable algorithms for loss functions with Lipschitz
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gradients: ) (TS/ 13). Both bounds admit a relatively mild dependency on the dimension of the action
space.

We note that the recent remarkable work by [Bubeck et al., 2015, Bubeck and Eldan, 2015] has
proven the existence of algorithms that can attain a regret of O(7''/2), which matches the known
lower bound Q(Tl/ 2) given by Dani et al.. Thus, the dependency of our bounds with respect to 7" is
not optimal. Furthermore, two recent unpublished manuscripts, [Hazan and Li, 2016] and [Bubeck
et al., 2016], present algorithms achieving regret O(Tl/ 2). These results, once verified, would be
ground-breaking contributions to the literature. However, unlike our algorithms, the regret bound
for both of these algorithms admits a large dependency on the dimension d of the action space:
exponential for [Hazan and Li, 2016], d®0-5) for [Bubeck et al., 2016]. One hope is that the novel
ideas introduced by Hazan and Li [2016] (the application of the ellipsoid method with a restart button
and lower convex envelopes) or those by Bubeck et al. [2016] (which also make use of the restart
idea but introduces a very original kernel method) could be combined with those presented in this
paper to derive algorithms with the most favorable guarantees with respect to both 7" and d.

We begin by formally introducing our notation and setup. We then highlight some of the essential
ideas in previous work before introducing our new key insight. Next, we give a detailed description
of our algorithm for which we prove theoretical guarantees in several settings.

2 Preliminaries

2.1 BCO scenario

The scenario of bandit convex optimization, which dates back to [Flaxman et al., 2005], is a sequential
prediction problem on a convex compact domain X C R?. At each round ¢ € [1, T, the learner
selects a (possibly) randomized action z; € X and incurs the loss f;(z;) based on a convex function
ft: K — R chosen by the adversary. We assume that the adversary is oblivious, so that the loss
functions are independent of the player’s actions. The objective of the learner is to minimize his
regret with respect to the optimal static action in hindsight, that is, if we denote by A the learner’s
randomized algorithm, the following quantity:

T T
;ft(mt)] —grcrgj%;ft(ﬂﬁ)~ (1)

We will denote by D the diameter of the action space X in the Euclidean norm: D = sup, ,cx ||z —
yl||2. Throughout this paper, we will often use different induced norms. We will denote by || - || 4
the norm induced by a symmetric positive definite (SPD) matrix A = 0, defined for all z € R? by
|z]|a = VaT Ax. Moreover, we will denote by || - || 4.« its dual norm, given by || - || 4—1. To simplify
the notation, we will write || - ||, instead of || - [|y2x(s), When the convex and twice differentiable
function R: int(X) — R is clear from the context. Here, int(X) is the set interior of XK.

Regp(A) =E

We will consider different levels of regularity for the functions f; selected by the adversary. We will
always assume that they are uniformly bounded by some constant C' > 0, that is | f;(z)| < C for all
t € [1,T] and z € X, and, by shifting the loss functions upwards by at most C, we will also assume,
without loss of generality, that they are non-negative: f; > 0, for all ¢ € [1, T]. Moreover, we will
always assume that f; is Lipschitz on X (henceforth denoted %1 (X)):

vt e [LT], Vo,y € X, [fi(x) = fi(y)] < Lllx = ylla-
In some instances, we will further assume that the functions admit -Lipschitz gradients on the
interior of the domain (henceforth denoted €11 (int(X))):
3H > 0: Vt € [1,T], Yo,y € int(X), [|Vfi(z) = VFi(y)ll2 < Hllz — yll2.
Since f; is convex, it admits a subgradient at any point in . We denote by g; one element of

the subgradient at the point z; € X selected by the learner at round ¢. When the losses are 11,
the only element of the subgradient is the gradient, and g, = V f;(z;). We will use the shorthand

Vg = 22:1 vs to denote the sum of ¢ vectors vy, . .., vs. In particular, g;.;+ will denote the sum of
the subgradients g, for s € [1,].

Lastly, we will denote by B1(0) = {z € R?: ||z]|; < 1} C R? the d-dimensional Euclidean ball of
radius one and by 9B (0) the unit sphere.



2.2 Follow-the-regularized-leader template

A standard algorithm in online learning, both for the bandit and full-information setting is the
follow-the-regularized-leader (FTRL) algorithm. At each round, the algorithm selects the action that
minimizes the cumulative linearized loss augmented with a regularization term R: X — R. Thus,
the action z;4 is defined as follows:

Tyy1 = argminng, 2 + R(z),
zeX
where 7 > 0 is a learning rate that determines the tradeoff between greedy optimization and
regularization.

If we had access to the subgradients at each round, then, FTRL with R(z) = ||z]|3 and = %

would yield a regret of O(v/dT’), which is known to be optimal. But, since we only have access to the
loss function values f;(z;) and since the loss functions change at each round, a more refined strategy
is needed.

2.2.1 One-point gradient estimates and surrogate losses

One key insight into the bandit convex optimization problem, due to Flaxman et al. [2005], is that the
subgradient of a smoothed version of the loss function can be estimated by sampling and rescaling
around the point the algorithm originally intended to play.

Lemma 1 ([Flaxman et al., 2005, Saha and Tewari, 2011]). Let f: X — R be an arbitrary function
(not necessarily differentiable) and let U(OB1(0)) denote the uniform distribution over the unit
sphere. Then, for any § > 0 and any SPD matrix A > 0, the function f defined for all x € K

by f(z) = Ey~v(oB, o) lf(x + 0Au)] is differentiable over int(X) and, for any x & int(X),
g = 4f(z+ 5Au)A~ w is an unbiased estimate ofVJ?(m):

d I
U o) gf(a:—&—éAu)A u| = Vf(x).

The result shows that if at each round ¢ we sample u; ~ U(9B1(0)), define an SPD matrix A, and
play the point y; = x; + 0 A;u (assuming that y, € X), then g; = %f(xt + 0 Asug) Ay tug is an
unbiased estimate of the gradient of f at the point z; originally intended: Elg] = Vf(xt). Thus, we
can use FTRL with these smoothed gradient estimates: 7441 = argmin,c4 79,2 + R(z), at the

cost of the approximation error from f; to ﬁ Furthermore, the norm of these estimate gradients can
be bounded.

Lemma 2. Let § > 0, uy € 0B1(0) and A; > 0, then the norm of g, = %f(xt + (5Atut)At_1ut can
be bounded as follows: ||g¢||?%. < g—iC’Q.
t

. . . e 2 _ _ 2
Proof. Since f; is bounded by C, we can write ||g¢[|%> < & C?u Ay P A2A; uy < LC2. O
t

This gives us a bound on the Lipschitz constant of ﬁ in terms of d, 4, and C.

2.2.2 Self-concordant barrier as regularization

When sampling to derive a gradient estimate, we need to ensure that the point sampled lies within the
feasible set K. A second key idea in the BCO problem, due to Abernethy et al. [2008], is to design
ellipsoids that are always contained in the feasible sets. This is done by using tools from the theory
of interior-point methods in convex optimization.

Definition 1 (Definition 2.3.1 [Nesterov and Nemirovskii, 1994]). Let X C R4 be closed convex, and
letv > 0. A C? function R: int(X) — R is a v-self-concordant barrier for X if for any sequence
(25)3%, with z, — 0K, we have R(z;) — oo, and if for all x € int(XK), and y € RY, the following
inequalities hold:

IVAR(@) [y, y, 9]l < 20yl [VR(2) Tyl < vyl



Since self-concordant barriers are preserved under translation, we will always assume for convenience
that min,cq R(x) = 0.

Nesterov and Nemirovskii [1994] show that any d-dimensional closed convex set admits an O(d)-
self-concordant barrier. This allows us to always choose a self-concordant barrier as regularization.

We will use several other key properties of self-concordant barriers in this work, all of which are
stated precisely in Appendix 7.1.

3 Previous work

The original paper by Flaxman et al. [2005] sampled indiscriminately around spheres and projected
back onto the feasible set at each round. This yielded a regret of O (T°%/4) for €% loss functions.

The follow-up work of Saha and Tewari [2011] showed that for @'+! loss functions, one can run FTRL
with a self-concordant barrier as regularization and sample around the Dikin ellipsoid to attain an

improved regret bound of O (T%/3).

More recently, Dekel et al. [2015] showed that by averaging the smoothed gradient estimates
and still using the self-concordant barrier as regularization, one can achieve a regret of O (T 5/ 8).

Specifically, denote by g; = k%rl Zf:o gt the average of the past k + 1 incurred gradients, where

gi—; = 0fort — ¢ < 0. Then we can play FTRL on these averaged smoothed gradient estimates:
Ty1 = argmingg ng, = + R(z), to attain the better guarantee.

Abernethy and Rakhlin [2009] derive a generic estimate for FTRL algorithms with self-concordant

barriers as regularization:

Lemma 3 ([Abernethy and Rakhlin, 2009]-Theorem 2.2-2.3). Let X be a closed convex set in
R and let R be a v-self-concordant barrier for X. Let {g:}_; C R% and n > 0 be such that
N|1gt ||z, < 1/4 forall t € [1,T). Then, the FTRL update x;41 = argmin, g g1,x + R(z) admits

the following guarantees:

T T
1
e = zealls, < 2l s Ve €K, Yool @ - 2) < lald, .+ L R()
t=1 t=1

By Lemma 2, if we use FTRL with smoothed gradients, then the upper bound in this lemma can be
further bounded by
T
. 1 C?d? 1
251, Rla) < 20T =g+ R(w).
t=1

Furthermore, the regret is then bounded by the sum of this upper bound and the cost of approximating

fr with ft On the other hand, Dekel et al. [2015] showed that if we used FTRL with averaged
smoothed gradients instead, then the upper bound in this lemma can be bounded as

32C2d?

T
1 1
2n E HgtHi,* + —R(z) <2nT ( + 2D2L2> + —R(x).
— n §*(k+1) n

The extra factor (k + 1) in the denominator, at the cost of now approximating f; with f;, is what
contributes to their improved regret result.

In general, finding surrogate losses that can both be approximated accurately and admit only a mild
variance is a delicate task, and it is not clear how the constructions presented above can be improved.

4 Algorithm

4.1 Predicting the predictable

Rather than designing a newer and better surrogate loss, our strategy will be to exploit the structure of
the current state-of-the-art method. Specifically, we draw upon the technique of predictable sequences
from [Rakhlin and Sridharan, 2013]. The idea here is to allow the learner to preemptively “guess” the



gradient at the next step and optimize for this in the FTRL update. Specifically, if g; 1 is an estimate
of the time ¢ + 1 gradient g;4; based on information up to time ¢, then the learner should play:

ZTy41 = argmin(gr. + EtH)Tx + R(x).
zeX

This optimistic FTRL algorithm admits the following guarantee:
Lemma 4 (Lemma 1 [Rakhlin and Sridharan, 2013]). Let X be a closed convex set in R% and let R
be a v-self-concordant barrier for X. Let {g;}1_, C R% and 1 > 0 such that n||g; — Gt||z, » < 1/4

Vt € [1,T). Then the FTRL update ;11 = argmingcq(g1:¢ + ge+1) ' © + R(x) admits the following
guarantee:

T T
. 1
Ve ek, Y g/ (@ —x)<2) g —Gllz, . + 593(@-
t=1 t=1

In general, it is not clear what would be a good prediction candidate. Indeed, this is why Rakhlin
and Sridharan [2013] called this algorithm an “optimistic” FTRL. However, notice that if we elect
to play the averaged smoothed losses as in [Dekel et al., 2015], then the update at each time is
gr = %_H Zf:o Jit—s. This implies that the time ¢ + 1 gradientis g; 1 = %_H Zf:o Jt+1_i, which
includes the smoothed gradients from time ¢ + 1 down to time ¢ — (k — 1). The key insight here is
that at time ¢, all but the (¢ + 1)-th gradient are known!

This means that if we predict

k k
~ 1 N 1 1 N
Jt+1 = a1 ;gtﬂﬂ I 19t+1 N izzlgtHﬂ,

then the first term in the bound of Lemma 4 will be in terms of

1 < 1 < 1
gt — Gt = m;gtﬂ' - m;gtﬂ' = mgt

In other words, all but the time ¢ smoothed gradient will cancel out. Essentially, we are predicting
the predictable portion of the averaged gradient and guaranteeing that the optimism will pay off.

Moreover, where we gained a factor of %ﬂ in the averaged loss case, we should expect to gain a
1

factor of (Z=)E by using this optimistic prediction.

Note that this technique of optimistically predicting the variance reduction is widely applicable. As
alluded to with the reference to [Schmidt et al., 2013], many variance reduction-type techniques,
particularly in stochastic optimization, use historical information in their estimates (e.g. SVRG
[Johnson and Zhang, 2013], SAGA [Defazio et al., 2014]). In these cases, it is possible to “predict”
the information re-use and improve the convergence rates of each algorithm.

4.2 Description and pseudocode

Here, we give a detailed description of our algorithm, OPTIMISTICBCO. At each round ¢, the
algorithm uses a sample u; from the uniform distribution over the unit sphere to define an unbiased
estimate of the gradient of ﬁ, a smoothed version of the loss function f;, as described in Section 2.2.1:
G < 4 fe(ye) (V2R () ~/?u,. Next, the trailing average of these unbiased estimates over a fixed

window of length k + 1 is computed: g; = %_H Zf:o Jit—s. The remaining steps executed at each
round coincide with the Follow-the-Regularized-Leader update with a self-concordant barrier used
as a regularizer, augmented with an optimistic prediction of the next round’s trailing average. As
described in Section 4.1, all but one of the terms in the trailing average are known and we predict
their occurence:

§t+1 =

k
1 ~ . _ ~ \T

75 Gt41—is  Tey1 = argming (gre + ger1) o+ R(w).
k+1¢:1 t4+1—1 t+ ol n (g1 t+1) ()

Note that Theorem 3 implies that the actual point we play, y;, is always a feasible point in K. Figure 1
presents the pseudocode of the algorithm.



OPTIMISTICBCO(R, 6,1, k, 1)
1 fort+ 1toT do
ug < SAMPLE(U(0B1(0)))
Yt & Tt + (S(VQR(Z‘t))_%Ut
PLAY (y)
ft(y:) < RECEIVELOSS(y;
1

gt < 5ft(yt)k(v R(we))~

gt < ril > im0 Gt—i

~ 1 k ~

Ji+1 k1 Zi:l Jt+1—i
. _ ~ T

9 $t+1T<— argmingcq 1 (g1t + ge+1) « + R(x)

10 return ), , fi(y:)

)

[c<BEEN B o) SRV I N I S

Figure 1: Pseudocode of OPTIMISTICBCO, with R: int(X) — R, § € (0,1],n > 0, k € Z, and
z € K.

5 Regret guarantees

In this section, we state our main results, which are regret guarantees for OPTIMISTICBCO in the
@01 and @11 cases. We also highlight the analysis and proofs for each regime.

5.1 Main results

The following is our main result for the C%! case.

Theorem 1 (C¥! Regret). Let X C RY be a convex set with diameter D and (f;)L_, a sequence of
loss functions with each f;: K —> R, C-bounded and L-Lipschitz. Let R be a v-self-concordant
barrier for X. Then, for nk < the regret of OPTIMISTICBCO can be bounded as follows:

Ck " 2Cd*nT
2 0%2(k+1)2

120d’

1
Regr(OPTIMISTICBCO) < €LT + LODT + + —log(1/¢)
n

+ LT23D

V3L'? + V2D Lk + \/R(sd\/ﬂ .

In particular, forn = T—11/16q=3/8 § = T=5/1643/8 | = TV/841/4 the following guarantee holds
for the regret of the algorithm:

Regy (OPTIMISTICBCO) = O (T11/16d3/8) :

The above result is the first improvement on the regret of Lipschitz losses in terms of 1" since the
original algorithm of Flaxman et al. [2005] that is realizable from a concrete algorithm as well as
polynomial in both dimension and time (both computationally and in terms of regret).

Theorem 2 (C!'! Bound). Let X C RY be a convex set with diameter D and (f;)I_, a sequence of
loss functions with each f;: X — R, C- bounded, L-Lipschitz and H-smooth. Let R be a v-self-
concordant barrier for X. Then, for nk < the regret of OPTIMISTICBCO can be bounded as
follows:

Regy(OPTIMISTICBCO) < LT + H§*D?*T

ﬁ 1/2 Wd 1 T

In particular, forn = T—8/13d=5/6 § = T=5/2641/3 |, = TV/3d5/3 the following guarantee holds
for the regret of the algorithm:

Reg, (OPTIMISTICBCO) = O (T8/13d5/3) :

12d’

+ (TL+ DHT)2nkD




This result is currently the best polynomial-in-time regret bound that is also polynomial in the
dimension of the action space (both computationally and in terms of regret). It improves upon the
work of Saha and Tewari [2011] and Dekel et al. [2015].

We now explain the analysis of both results, starting with Theorem 1 for €%! losses.

5.2 CY! analysis

Our analysis proceeds in two steps. We first modularize the cost of approximating the original losses
f+(yr) incurred with the averaged smoothed losses that we treat as surrogate losses. Then we show
that the algorithm minimizes the regret against the surrogate losses effectively. The proofs of all
lemmas in this section are presented in Appendix 7.2.

Lemma 5 (C%! Structural bound on true losses in terms of smoothed losses). Let (f;)L_; be a
sequence of loss functions, and assume that fi: X — R, is C-bounded and L-Lipschitz, where
K C R Denote

. d _
fi(z) = uNU(IBEB (O))[ft(ilf +0Aw)], G = gft(yt)At g, Yt = Ty + 0 Auyg

for arbitrary A, 6, and w. ~ Let x* = argmin,cq ZtT:1 fi(z), and let xf €
Argming e o yiv(y.09)>e |y — 27| Assume that we play y; at every round. Then the following
structural estimate holds:

T T R
Regr(A) = E[Y_ filye) = fu(2")] < LT + 2L6DT + Y _Elfu(xe) — fula?))-
t=1

t=1

Thus, at the price of e LT + 2LJ DT, it suffices to look at the performance of the averaged losses for
the algorithm. Notice that the only assumptions we have made so far are that we play points sampled
on an ellipsoid around the desired point scaled by d and that the loss functions are Lipschitz.

Lemma 6 (C%! Structural bound on smoothed losses in terms of averaged losses). Let (f;)L_; be
a sequence of loss functions, and assume that f;: X — R is C-bounded and L-Lipschitz, where
K C R Denote

.  d _
fi(x) = ' NU((%EB (O))[ft(x +0Aw)], G = gft(yt)At Y, oy = a0+ 6 Avuy

for arbitrary Ay b, and w..  Let ¥ = argmingcq Zle fi(z), and let x¥ €
argming e o yiv(y.05)>e |y — *||. Furthermore, denote

k k
- 1 -~ B 1 .
fi(z) = k1 ;ft,i(x), gt = o1 ;gtﬂv

Assume that we play y; at every round. Then we have the structural estimate:
T

T
S| - Fa| < Faor s Elloc- ala) + 8 (6 - a).
t=1

te[1,T],:€[0,kAt] =1

While we use averaged smoothed losses as in [Dekel et al., 2015], the analysis in this lemma is
actually somewhat different. Because Dekel et al. [2015] always assume that the loss functions are in
@L1, they elect to use the following decomposition:

Filws) = Ji(@?) = folw) = Julwo) + Jolwe) = Fulwd) + Jo(?) = filee?).
This is because they can relate V fi(z) = k%_l Zf:o Vﬁ_i(xe) to g, = k%_l Zf:o Vﬁ_i(xt_i)

using the fact that the gradients are Lipschitz. Since the gradients of C%! functions are not Lipschitz,
we cannot use the same analysis. Instead, we use the decomposition

Fol@e) = fu@l) = fulwe) = Fomi(@emi) + Fomilwes) — fola@l) + fulzl) — fola?).

The next lemma affirms that we do indeed get the improved W factor from predicting the
predictable component of the average gradient.



Lemma 7 (€%! Algorithmic bound on the averaged losses). Let (f;)-_, be a sequence of loss
functions, and assume that f;: X — R, is C-bounded and L-Lipschitz, where X C R%. Let

x* = argming g Zthl fi(x), and let x € argmingexc giy(y,000)>e |y — 27| Assume that we play

_0

according to the algorithm with nk < 555

Then we maintain the following guarantee:

T

) . 2002nT 1., ,
> RG] (@ —at)] < P CESE + HfR(xe).
t=1

So far, we have demonstrated a bound on the regret of the form:

Ck 20d°nT 1
Regr(A) < eLT 4+ 2L6DT + 5 + LTte[T]S}ilg[k/\t] E[||zt—i — x¢|2] + 20+ 1)2 + nfR(xe).
Thus, it remains to find a tight bound on sup,c(y, 17,c(0,kn4 ElllZt—i — 2¢[|2], which measures the
stability of the actions across the history that we average over. This result is similar to that of Dekel
et al. [2015], except that we additionally need to account for the optimistic gradient prediction used.
Lemma 8 (C%! Algorithmic bound on the stability of actions). Let (f;)I_, be a sequence of loss
functions, and assume that f;: KX — R is C-bounded and L-Lipschitz, where X C R®. Assume

that we play according to the algorithm with nk < ﬁ. Then the following estimate holds:

V/3L1/2 V48Cd
Ell|z;—; — < 2nkD 2DL )
[l z¢l2] < 2nk ( 3 +V2DL + N

Proof. [of Theorem 1] Putting all the pieces together from Lemmas 5, 6, 7, 8, shows that

E 20dnT 1 V48CdV'k

Regp(A)<eT+ 1607+ 8 4 2CPNT Loy 1monp|vari 2 vapryy YBCWE]
2 02(k+1)2 n )

Since x. is at least € away from the boundary, it follows from [Abernethy and Rakhlin, 2009] that

R(ze) < vlog(l/e). Plugging in the stated quantities for 7, k, and J yields the result. O

5.3 CY! analysis

The analysis of the C*! regret bound is similar to the €% case. The only difference is that we leverage
the higher regularity of the losses to provide a more refined estimate on the cost of approximating f;
with f;. Apart from that, we will reuse the bounds derived in Lemmas 6, 7, and 8. The proof of the
following lemma, along with that of Theorem 2, is provided in Appendix 7.3.
Lemma 9 (C%! Structural bound on true losses in terms of smoothed losses). Let (f;)L_, be a
sequence of loss functions, and assume that fi: KX — R is C-bounded, L-Lipschitz, and H-smooth,
where X C R%. Denote

fe(z) = qu(IaEBl(O))[ft(x +0Aw)], g = %ft(yt)Aflut’ Yr =t + 04w
for arbitrary Ay, 9, and wuy. Let z* = argmin,cq Zthl fe(x), and let z* €
ArgMing coc gii(y,00%)>e 1Y — x*||. Assume that we play y; at every round. Then the following
structural estimate holds:

T T
Regr(A) = B[ filye) — fila)] < eLT + 2H8* DT + Y Elfi(w;) - fulw?)].

t=1
6 Conclusion

We designed a computationally efficient algorithm for bandit convex optimization admitting state-
of-the-art guarantees for C%! and @'! loss functions. This was achieved using the general and
powerful technique of predicting predictable information re-use. The ideas we describe here are
directly applicable to other areas of optimization, in particular stochastic optimization.
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7 Appendix

7.1 Properties of self-concordant barriers

This section highlights some properties of self-concordant barriers that will be useful in this work.

The ellipsoid induced by a self-concordant barrier at each point in the interior of the feasible set,
{y € R?: ||yl < 1}, is called the Dikin ellipsoid. The first result tells us that we can sample around

the Dikin ellipsoid without worrying about leaving the feasible region.

Theorem 3 (Theorem 2.1.1 [Nesterov and Nemirovskii, 1994]). Let K be a closed convex set
in RY, and let R be a v-self-concordant barrier for X. Then for any x € int(X), we have that
{y e R ||y — 2|, < 1} C int(X).

The next result, presented in [Dekel et al., 2015], is a variant of John’s ellipsoid theorem for ellipsoids
induced by self-concordant barriers. It shows that the Euclidean norm and the norm induced by the
barrier are equivalent up to the diameter of the convex set.

Lemma 10 (Lemma 6 [Dekel et al., 2015]). Let K be a closed convex set in R?, and let R be a
v-self-concordant barrier for X. Then for any v € X and y € R?, the following inequality holds:
D7Y|z]lex < ll2ll2 < D] 2la-

The second result shows that the Hessian of a self-concordant barrier changes slowly within the Dikin
ellipsoid of a point.

Theorem 4 (Theorem 2.1.1 [Nesterov and Nemirovskii, 1994]). Let X be a closed convex set in R,
and let R be a v-self-concordant barrier for X. Then for any x € int(X) and z € R? with ||y, < 1,
we have that

(1= llyll)” V*R(z) < V*R(z +y) < (1= [lyll) "> V’R(a).

The next result tells us that outside of an e annulus at the boundary of X, a self-concordant barrier
grows at most logarithmically.

Proposition 1 (Proposition 2.3.2 [Nesterov and Nemirovskii, 1994]). Let X be a closed convex set in
RY, and let R be a v-self-concordant barrier for X. For any ¢ € (0,1], let K, . = {y + (1 — €)(z —
y): « € X}. Then for all x € X, ., the following inequality holds: R(x) < vlog(1/e).

7.2 Proofs for C%! analysis

Lemma 5 (C%! Structural bound on true losses in terms of smoothed losses). Let (f;)1_, be a
sequence of loss functions, and assume that f: X — Ry is C-bounded and L-Lipschitz, where
K C RY. Denote

. d _
fi(x) = uNU((I?EBI(O))[ft(ZE +6Aw)], g = gft(yt)At 1Ut7 yr = Tt + 0 Aruy

for arbitrary Ay, 6, and w,.  Let x* = argmingcq Zthl fe(x), and let z¥ €
ArgMiny e i gigi(y,0%)>¢ ||y — T*||. Assume that we play y; at every round. Then the following
structural estimate holds:

T

T
Regr(A) = ]E[Z fe(ye) — fe(a™)] < eLT +2L5DT + ZE[E(%) — fulz?)).

t=1

10



Proof. Then using that the losses are Lipschitz, that ﬁ(m) > fi(z), and that we sample around
ellipsoids scaled by 9,

T
Regp(A) = E[Z fe(ye) = fo(@™)]

th y) = Foly) + Filw) = Fulwe) + fulw) — ful@?) + Fulal) = fila))
+ft< 5 = fula)]

T
th ye) = Jolwe) + Fol@?) = fi@D)] + D Elfilwe) — ful@?)] + eLT

t=1

< 2L5DT+6LT+ZE[ﬁ(xt) ~ Jela?)] -
t=1

Lemma 6 (C%! Structural bound on smoothed losses in terms of averaged losses). Let (f;)]_; be
a sequence of loss functions, and assume that f;: X — R is C-bounded and L-Lipschitz, where
K C R Denote

. d _
fi(z) = uNU((')Bl [ff( +6Aw)], G = gft(yt)At Ywe, oy =2+ 6 Ay

Jor arbitrary Ay, 6, and uy;.  Let x¥ = argming.g Zle fe(x), and let z¥ €
argMmin, e o giv(y, %) e |y — * || Furthermore, denote

1 1 <
ﬁth—i(ﬂ?)a gt:m;gt—i~

=0

Assume that we play y; at every round. Then we have the structural estimate:

S| - Fa) < FALT s Bl - ada] + B (- a).

=1 te[1,77,i€[0,kAt]

Proof. The following decomposition holds:

11



For the first term (i), we have the estimate

Tk R T k
Z P Z (ft Tt) ft—i(%ﬁ—i)) = Z Z ft i(xi—s)
t=1 i=0 A =
= Y o =l = (TR Rl
t=T—k+1
= Z kil(t—T-i-/f)ft(l"t)
t=T—k+1

if f < C,then f < C)
T

1
< — =T
_7§j =T+ R

k+1
Z [(t+T — k=T +k)C
t=1
k—1

1 (k-Dk ., _k
= = < —
;kﬂtc 20+ =2

For the third term (iii), we can say that

1 ko . o1 K N
Tl (th(xz) - ft($:)> = ZmZﬁ_i(w:) — fulal)

t=k+1 7
By ko
+;m; t—i(xl) — fe(z),

where the first term is equal to 0 and the second term is < 0 because f > 0. Finally, for the second

term (ii), we have that

T k B [T 1 k ~ ~
Z Z i(@e—i) — fe(@?)| =E Z k1l Z t—i(Te—i) — ft—z‘(l’:)]
t=1 i=0 Lt=1 i=0
T k
<E Zm _ (@i — )
Lt=1 =0
(T k
=E Zm _ gj—v(zt )+ Ge_ilw 1$t)]
Lt=1 1=0
r T 1 k
=E g, (z¢ — — P —
t:zlgt (z¢ — o) + ] ;gt (T mt)]




Next, by the linearity of expectation, we can write

T k B
B | g e - fla?)
t=1 i=0

—_

/ E [g,;(zi—i — 24)]

I
M“]

E [g;(xt — x:)] +

M=
7
+ | =
—

o~
Il
-
o~
Il
s
-
Il
<

[
M=

E (g (z: — )] +

M=
7
+ | =
—_
M»

E Vi) (@ — )]

~~
Il
—
o~
Il
A
-
<

= |

E[g/ (ze —20)] +

IA
M=
M=
7
+ | =
—_

E [V fes(@i-dllallees - o]

o~
Il
-
o~
Il

1

s
I
o

E (g (z; — )] + LT sup Elllzs—i — @2
1 te[1,T),i€[0,kAt] O]

[M]=

~
Il

Lemma 7 (€%! Algorithmic bound on the averaged losses). Let (f;)-_, be a sequence of loss
functions, and assume that f;: X — R, is C-bounded and L-Lipschitz, where X C R%. Let
¥ = argmin o4 ZtT 1 fe(z), and let :c* € argming e o gig(y,09)>e |y — * || Assume that we play

according to the algorithm with nk < Then we maintain the following guarantee:

120d

T
. . 2089 T 1. .
> R (w—a})] < 20+ 1) + ;R(%)

t=1

Proof. The first part of the proof is very similar to the analysis given in [Rakhlin and Sridharan,
2013]. For completeness and ease of presentation, we present the full argument here.

Our algorithm is based on the update rule:
Tp1 = argming(gue + Gr1) '@ + R(@),

where
k—1 k

- 1 =R 1 R 1
gt+1 = m;gt—z = k+1;gt+1—z— k+19t+1-

Let z; = argmin, 17(g1.¢) '  + R(x). Then

T

> Elg (2~ )] =

t=1

9 (ze—2) + g (= — )

[M]=

H_
Il
_

(G —90) (xe — 20) + G (@0 — 20) + 3/ (20 — @)

Il
M=

t=1
Now we want to show that Vx,
T T
th 33t—2't)+gt 2z < fR Z
t=1 t=1

For T = 1, Vx, we need to show that
~ _ 1 _
g (z1— 1)+ < 591(32) +31 z.

But g; = 0, and so the result follows from the definition of ;.
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Now assume that the result is true for 7" — 1:

T T-1
DG wi—z)+3 2= Y9 (v —2)+ 3 2+ 95 (@ — 2) + Gryr
t=1 t=1
1 T-1
< ER(xT) + Z 9 vr + g7 (xr —yr) + gr - yr
t=1

(by the induction hypothesis)
T-1 T
+ (Z §t+§T> xr — Gryr + 91 yr
t=1
T-1 T
+ <Z ?Jt+§T> yr — gryr + gryr
t=1

<
(by definition of x7)
1 T\
= —R(yr) + <Z §t> yr
N t=1
T T
< + (Z gt> x Vz
t=1
(by definition of yr).
Thus, we have that
T T
S @ =9 (@ —2)+ 3 (@ —z)+5 (e —2) <Y (30— F0) (@ — ) + rR( ).
t=1 t=1

Now, we can use duality to apply the bound:
T

T
~ 1
> @ =90 (@ — =) + R Z 19t = Gtllwslwe — 2ell2, + 53(@
t=1 t=1

and we want to show that
. - 1
x4q41 = argmin(gy.s + gtH)Tx + 53%(:13)
xT
. T 1
s = argmingl o+ R(z)
xT

imply that
th - zt”l’t < 277||£_7t - gtHl’t,*'
Toward this end, we recall the following result from [Nesterov, 2004]:
Theorem 5 (Theorem 2.2 [Nesterov, 2004]). Let \(x, ') = ||V F(z)||v2p )1 = [|[VF(7)][2,« be
the Newton decrement of F at x. Suppose that \(x, F') < % and F'is a self-concordant barrier. Then

|z — argmin F||,, < 2A\(z, F).

Using this result, consider Fy41(z) = gy, 117+ %R(m) Then the theorem implies that if A(z, F}) <
1 (which is true if nk < ), then
e = zelle, = o — argmin Fy|lo, < 2X (4, Fy) = 20l|Ge — Gellz, +-

Thus, we have shown that

T
> Elg (x—x)] < 3? ZMEII% gell2, ]
t=1

14



‘We can also estimate that

k k
1 1 Cd?
Ellge — il ) = Bl Gii = 3 Giil2, .. = EllGill? <
[”gt gt”zt,*] [Hk—Fl yars gt e gt ||xt,* [”gt”xt,* (k+1)2 = (52(k5+1)2

O

Lemma 8 (C%! Algorithmic bound on the stability of actions). Let (f;)}_, be a sequence of loss
functions, and assume that f;: KX — Ry is C- bounded and L-Lipschitz, where K C RY. Assume

that we play according to the algorithm with nk < 120 - Then we have the following estimate:

V3L/? VA48Cd
E[||z—; — z¢|2] < 2nkD +V2DL + Y——
H| t tH2] n ( 2 \/E(S
Proof. As a first step, we can write that
t—1
Elllze—; — 2ell2] < Y Efllws — 2ogall2]-
s=t—1i

Now, Lemma 10 informs us that we can switch between the local norms and the Euclidean norm
while only paying a price of D. This allows us to say that ||zs — 25112 < D||lxs —

Let Gep1(x) = (g1 + Ge1) "2 + R(x). If n > 0 is such that Az, Gy41) < 1, then Theorem 2.2
of Nesterov implies that

e, = |25

S 2)\(1’57 Gs+1).

|25
Since
VGiy1(wi) = VGi(x) +1(ge + Ger1 — G¢) = 1(G¢ + Ge1 — G¢)s
we can write the Newton decrement as \(z, Gs+1) = 1[|Gs + Js+1 — s |z. -

By Jensen’s inequality, we can write

E{1g: + Gt = Gellec] < \JENIG: + Gt = 3, ).

Expanding out these terms, we can see that

k—1

k
1 1 1 .
Gt +Git1 — Gt = k—|—lzgt i k—|—lzgt z—m;%f

1 1
k+129t it a1 @ Gew)

which implies that

k—1
19 + Gt+1 — Gtllzy s < k+1”zgt illae,s + k+1||gt||$h

Let E; denote the conditional expectation at time ¢, where we condition on all the randomization for
the player up to time ¢. Then by using the fact that (o + 8 + 7)? < 3(a? + 5% + v?2), we have

_ L~ ~ 3
Eflge +Fern — ol ] < MZ E [Gi-i)I, . + IIng i~ oz + gt
3
< L+2D°L 4 o5 Hth i— E gl .-

=0

15



Denote h;—; = Gi—; — E¢—;[g:—i]- Then we can write this last term as

k—
Z E [Ge-dlllZ, ] ||th illz, ]
We now want to relate the norm || - ||, . to the earliest norm || - ||,_, « in the batch.

To do this, we will show the following two facts:

L|ge 4 G = Gilla, o < 3
2. V0 < i < ksuchthatt — ¢ > 1, we have

1
Slellznie < lzllor s < 202llzs .

Writing out the expressions, we have that

k—1

k
1 1 1 -
gt = k:Jrl E Gi—ir Ji41 = k:Jrl E Gi—i, Gt = +1 ;:1 gi—

Fort = 1, we have

(PO P e
Er1 Tt T

x < % Vs, which together imply that

Gi+g—0g1=

and [[g;|[.

Ex)

2 Cd_20d
Skl - 0

||g1 +§2 _§1||I17 ||91le7

kE+1

Lett > 1. Then

k—1
o~ ~ 1 . .
19t + Gt+1 = Gellas v < k1 (Z 1Gt—ille, « + |9t|xt,*> ‘
=0

By the induction hypothesis,

2cd

||gé +§s+1 - gsH:L'S,* S 5 VS < t.

This implies that

nlgs + gs+1 — sl

S’*

< 7)—2§dV3 <t.

If we take 12knC'd < 6, then

T, — )\(xsterl) <

»Jk\'—‘

nllgs + §S+1 - .as

such that

o < 20)Gs + go+1 = Gsllaw < dn— < (since 12knCd < 9)

|| | vd
Ts+1 — Ts 5

Wl =

Thus, we have shown that

1
H.’IJS+1 — Xy Ty S g < 1.

By Theorem 4, this means that
d\* 2 -1 2 -1 d\ ™ 2 -1
1- 4773 VR(zs) T S VR(z511) " =g (11— 4775 VeR(zs)™ ",
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which implies the following relation on the induced norms: Vz,

d AN

and recursively, Vs € [t — k, ], Vz,

d k d —k
(1=405) Wl < ol < (1=405) el

Tgy* S H Tgy*k

Now, we want to show that (1 — 4n%)k > 1.
Since 12knC'd < §, we have
Cd 1 1
dn— < = < =
6 73 2
Using the fact that 1 — 8 > e =2 for 8 € [0, ] implies that

l\D\H

{1 - (4770;)} > e T > o723 >

Thus, we have that
1
Sz

2o S [[2la, o < 2|2]

which is (2).
This also further implies that

1 2 1
Hgt +§t+1 - gt”zt,* < — k+1 - ”gt l”Tt « T E+1 ”gtan

1=

IN

g kol
il ; 1Ge—illze_s e + 77— k: 1 Gt ], ,+

2 Cd 1 Cd
< k=
“k+1 9 E+1 6

1 Cd
_ ok 1 1
Tri s Rt
2Cd
< —
=75

Going back to the original quantity, we can now say that

||th ill2, ] < kg ||th illZ, i

3
=54 Z E[||he— 1||zt ..« (because h;_; is a martingale difference)

IA

;e
?16} jEmhtiiHi_i,*]
1=0

IA

3 k—1
ﬁlezm\|§t,i\\it_i,*]

162 C2d2

02d2
-

\ /\
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7.3 Proofs for C1'! analysis

Lemma 9 (C™! Structural bound on true losses in terms of smoothed losses). Let (f;)_, be a
sequence of loss functions, and assume that f,: KX — R is C-bounded, L-Lipschitz, and H-smooth,
where X C R%. Denote

. d _
fi(z) = u~U(8B [ft(x +0Aw)], G = gft(yt)At Yue,  ye=a + 6 A

for arbitrary A, 0, and uy. Let z* = argming.4 Zle fe(x), and let z¥ €
ArgMiny e i gisi(y,00)>¢ |y — | Assume that we play y; at every round. Then we have the
structural estimate:

T
Reg; (A Z a*)] < eLT + 2H8* DT + ZIE Filzy) = fo(@D)].

t=1

Proof. Then using the fact that the losses are Lipschitz and that we sample around ellipsoids scaled
by &, we have that

T
Regp(A) = E[Z filye) = fu(7)]

th v) = Fuly) + Filwe) = Fulwe) + fulwe) — fulw?) + Fulal) — fila))
+ft( o) — fi(z")]
th y) = filwd) + fu(@?) = fi@D)] + D Elfi(wr) — fula?)] + eLT

t=1

T
< 2HS8?D’T + LT + Y E[fy(z0) — fila?)].

t=1

O

Theorem 2 (C1! Bound). Let X C R? be a convex set with diameter D and (f,)L_, a sequence of
loss functions with each f;: X — R, C- bounded, L-Lipschitz and H-smooth. Let R be a v-self-

concordant barrier for X. Then, for nk < 120(1’ the regret of OPTIMISTICBCO can be bounded as

follows:
Reg; (OPTIMISTICBCO) < LT + H§*D*T
V3LY? V4a8Cd| 1 &*T
TL+ DHT)2nkD 2DL —log(1 Ck _—.
+ (TL + )21 ; +V2DL + N +n0g( /) + +”52(k+1)2

In particular, forn = T—8/13d=5/6 § = T=5/2641/3 |, = TV/13d5/3 the following guarantee holds
for the regret of the algorithm:

Reg (OPTIMISTICBCO) = O (T8/13d5/3) :

Proof. Putting the pieces together from Lemmas 6, 7, 8, and 9, shows that

Ck  20dnT 1
2 2(k+1)2 g

V3L'? 4+ 2D Lk + \/E(gd\ﬂ

Regr(A) < eLT + H*D?T + R(z.)

+ LT2nD

Since z. is at least e away from the boundary, it follows from [Abernethy and Rakhlin, 2009] that
R(ze) < wvlog(l/e).

18



Now, leaving only the T, k, 1, 4, and € terms yields an expression of the form:

nTd?

62k?

Fky,6,€) = €T + = log(Lfe) + 8T + k +
n

k124
+Tn {lJrkJr ]

—1000

Now, if we assume a priori that k = Q(1) as T — oo and take e = T' as in the statement, then

we only care about the terms

1 ) nTd> k'/2d
610g(1/6)+5 TH+k+ 5272 +Tnk +Tn 5
Plugging in the stated terms for 7, k, and ¢ yields the result. O
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