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Abstract. The multi-armed bandit problem for a gambler is to decide
which arm of a K-slot machine to pull to maximize his total reward in
a series of trials. Many real-world learning and optimization problems
can be modeled in this way. Several strategies or algorithms have been
proposed as a solution to this problem in the last two decades, but, to our
knowledge, there has been no common evaluation of these algorithms.

This paper provides a preliminary empirical evaluation of several multi-
armed bandit algorithms. It also describes and analyzes a new algorithm,
POKER (Price Of Knowledge and Estimated Reward) whose performance
compares favorably to that of other existing algorithms in several exper-
iments. One remarkable outcome of our experiments is that the most
naive approach, the e-greedy strategy, proves to be often hard to beat.

1 Introduction

In many real-world situations, decisions are made in order to maximize some
expected numerical reward. But decisions, or the actions they generate, do not
just bring in more reward, they can also help discover new knowledge that could
be used to improve future decisions. Such situations include clinical trials [11]
where different treatments need to be experimented with while minimizing pa-
tient losses, or adaptive routing efforts for minimizing delays in a network [4].
The questions that arise in all these cases are related to the problem of balancing
reward maximization based on the knowledge already acquired and attempting
new actions to further increase knowledge, which is known as the exploitation
vs. exploration tradeoff in reinforcement learning.

The multi-armed bandit problem, originally described by Robins [19], is an
instance of this general problem. A multi-armed bandit, also called K-armed
bandit, is similar to a traditional slot machine (one-armed bandit) but in general
has more than one lever. When pulled, each lever provides a reward drawn from
a distribution associated to that specific lever. Initially, the gambler has no
knowledge about the levers, but through repeated trials, he can focus on the
most rewarding levers.

This paper considers the opague bandit problem where a unique reward is
observed at each round, in contrast with the transparent one where all rewards
are observed [14]. To our knowledge, there is no empirical comparison for the



transparent bandit problem either. More formally, the opaque stochastic K-
armed bandit (bandit for short) can be seen as a set of real distributions B =
{R1,..., Rk}, each distribution being associated to the rewards brought in by
a specific lever.? Let 1, ..., ux be the mean values associated to these reward
distributions. The gambler plays iteratively one lever at each round and observes
the associated reward. His objective is to maximize the sum of the collected
rewards. The horizon H is the number of rounds that remains to be played. The
bandit problem is formally equivalent to a one-state Markov Decision Process
(MDP), but the general study of MDPs goes beyond the scope of this paper.

A different version of the bandit problem has been studied by [10,23,9, 8]
where the reward distributions are assumed to be known to the player. This
problem is not about balancing exploration and exploitation, it admits an opti-
mal solution based on the so-called Gittins indices. This paper deals with bandit
problems found in practice where the assumption about the prior knowledge of
the payoffs typically does not hold (see for example section 4).

The regret p after T rounds is defined as the difference between the reward
sum associated to an optimal strategy and the sum of the collected rewards
p=Tu*— Zthl 7+ where p* is the maximal reward mean, p* = max{u}, and
7; the reward at time . A strategy whose average regret per round tends to zero
with probability 1 for any bandit problem when the horizon tends to infinity is a
zero-regret strategy. Intuitively, zero-regret strategies are guaranteed to converge
to an optimal strategy, not necessarily unique, if enough rounds are played.

The problem of determining the best strategy for the gambler is called the
multi-armed bandit problem. Many strategies or algorithms have been proposed
as a solution to this problem in the last two decades, but, to our knowledge, there
has been no common evaluation of these algorithms. This paper provides the
first preliminary empirical evaluation of several multi-armed bandit algorithms.
It also describes and analyzes a new algorithm, POKER (Price Of Knowledge
and Estimated Reward) whose performance compares favorably to that of other
existing algorithms in several experiments.

The paper is organized as follows. We first present an overview of several ban-
dit strategies or algorithms (Section 2), then introduce a new algorithm, POKER
(Section 3), and describe our experiments with both an artificially generated
dataset and a real networking dataset. The results of an empirical evaluation of
several bandit algorithms, including POKER are reported in Section 4.

2 Bandit algorithms overview

The exploration vs. exploitation tradeoff is often studied under more general
models such as MDPs. We have restricted this overview to methods that apply to
the stateless case, specific to the bandit problem. There is, however, a significant
amount of literature dealing with MDPs, see [17, 6] for a review. Slowly changing
worlds have also been considered in [22, 3].

3 Several algorithms have also been designed for the non-stochastic bandit problem 3]
where much weaker assumptions are made about the levers’ rewards, but this paper
will focus on the stochastic bandit problem which has been studied the most so far.



2.1 The e-greedy strategy and semi-uniform variants

e-greedy is probably the simplest and the most widely used strategy to solve the
bandit problem and was first described by Watkins [24]. The e-greedy strategy
consists of choosing a random lever with e-frequency, and otherwise choosing the
lever with the highest estimated mean, the estimation being based on the rewards
observed thus far. e must be in the open interval (0, 1) and its choice is left to the
user. Methods that imply a binary distinction between exploitation (the greedy
choice) and exploration (uniform probability over a set of levers) are known as
semi-uniform methods.

The simplest variant of the e-greedy strategy is what we will refer to as the
e-first strategy. The e-first strategy consists of doing the exploration all at once
at the beginning. For a given number T' € N of rounds, the levers are randomly
pulled during the €T first rounds (pure exploration phase). During the remaining
(1 —€)T rounds, the lever of highest estimated mean is pulled (pure exploitation
phase). Here too, € must be in the open interval (0, 1) and its choice is left to the
user. The e-first strategy has been analyzed within the PAC framework by [7]
and [16]. Even-Dar et al. show in [7] that a total of O (£ log (4)) random pulls
suffices to find an a-optimal arm with probability at least 1—¢. This result could
be interpreted as an analysis of the asymptotic behavior of the e-first strategy.

In its simplest form the e-greedy strategy is sub-optimal because asymptoti-
cally, the constant factor e prevents the strategy from getting arbitrarily close to
the optimal lever. A natural variant of the e-greedy strategy is what we will call
here the e-decreasing strategy. The e-decreasing strategy consists of using a
decreasing e for getting arbitrarily close to the optimal strategy asymptotically
(the e-decreasing strategy, with an e function carefully chosen, achieves zero re-
gret). The lever with the highest estimated mean is always pulled except when
a random lever is pulled instead with an e; frequency where ¢ is the index of
the current round. The value of the decreasing €; is given by €¢; = min {1, <
where ¢y > 0. The choice of ¢ is left to the user. The first analysis of the e-
decreasing strategy seems to be by Cesa-Bianchi and Fisher [5] for an algorithm
called GREEDYMIX. GREEDYMIX slightly differs from the e-decreasing strategy
as just presented because it uses a decreasing factor of log(t)/t instead of 1/t.
Cesa-Bianchi and Fisher prove, for specific families of reward distributions, a
O(log(T)?) regret for GREEDYMIX where T is the number of rounds. This result
is improved by Auer et al. [1] who achieve a O(log(T')) regret for the e-decreasing
strategy as presented above with some constraint over the choice of the value €.
Four other strategies are presented in [1] beside e-decreasing. Those strategies
are not described here because of the level of detail this would require. We chose
the e-decreasing strategy because the experiments by [1] seem to show that, with
carefully chosen parameters, e-decreasing is always as good as other strategies.

A variant of the e-decreasing algorithm is introduced in [20]. The lever of
highest estimated mean is always pulled except when the least-taken lever is
pulled with a probability of 4/(4+m?) where m is the number of times the least-
taken lever has already been pulled. In the following, we refer to this method as
the LeastTaken strategy. Used as such, the LEASTTAKEN method is likely to
provide very poor results in situations where the number of levers K is significant
compared to the horizon H. Therefore, as for the other methods, we introduce
an exploration parameter €y > 0 such that the probability of selecting the least-
taken lever is 4ep/(4+m?). The choice of ¢ is left to the user. The LEASTTAKEN



method is only introduced as a heuristic (see [21]), but it is clear that this
method, modified or not, is a zero-regret strategy.

2.2 The SoftMax strategy and probability matching variants

The SoftMax strategy consists of a random choice according to a Gibbs dis-
tribution. The lever k is chosen with probability px = ef*/7/ 3"  €F/T where
fi; is the estimated mean of the rewards brought by the lever i and 7 € R* is
a parameter called the temperature. The choice of 7’s value is left to the user.
SOFTMAX appears to have been proposed first in [15]. More generally, all meth-
ods that choose levers according to a probability distribution reflecting how likely
the levers are to be optimal, are called probability matching methods.

The SOFTMAX strategy (also called Boltzmann Exploration) could be mod-
ified in the same way as the e-greedy strategy into decreasing SoftMax where
the temperature decreases with the number of rounds played. The decreasing
SOFTMAX is identical to the SOFTMAX but with a temperature 7, = 79/t that
depends on the index ¢ of the current round. The choice of the value of 7y is left
to the user. The decreasing SOFTMAX is analyzed by Cesa-Bianchi and Fisher
(1998) in [5] with the SOFTMIX algorithm. The SOFTMIX slightly differs from
the decreasing SOFTMAX as just presented since it uses a temperature decreas-
ing with a log(t)/t factor instead of a 1/t factor. The SOFTMIX strategy has
the same guarantees than the GREEDYMIX strategy (see here above). To our
knowledge, no result is known for the 1/t decreasing factor, but results simi-
lar to the e-decreasing strategy are expected. The experiments in [5] show that
GREEDYMIX outperforms SOFTMIX, though not significantly. Therefore, for the
sake of simplicity, only the GREEDYMIX equivalent is used in our experiments
(Section 4).

A more complicated variant of the SOFTMAX algorithm, the Exp3 “expo-
nential weight algorithm for exploration and exploitation” is introduced in [2].
The probability of choosing the lever k at the round of index ¢ is defined by

pi(t) = (1 — 7) b0

Y
SF w0 K =

where w;(t + 1) = w;(t) exp (%:J(S%) if the lever j has been pulled at time ¢

with r;(t) being the observed reward, w; (t+ 1) = w;(t) otherwise. The choice of
the value of the parameter v € (0, 1] is left to the user. The main idea is to divide
the actual gain 7;(t) by the probability p;(¢) that the action was chosen. For a
modified version of Exp3, with v decreasing over time, it is shown by [3], that

a regret of O(y/ KT log(K)) is achieved. The EXP3 strategy was originally pro-
posed by Auer et al. (2002) in [3] along with five variants for the non-stochastic
bandit problem. The other variants are not described here due to the level of
detail required. Note also that the non-stochastic bandit is a generalization of
the stochastic one with weaker assumptions, thus the theoretical guarantees of
Exp3 still apply here.

More specific methods exist in the literature if additional assumptions are
made about the reward distributions. We will not cover the case of boolean
reward distributions (too specific for this paper, see [25] for such methods).



Nevertheless, let us consider the case where Gaussian reward distributions are
assumed; [25] describes a method that explicitly estimates p; = P[u; = p*] under
that assumption. This method was also previously introduced in [18] but limited
to the two-armed bandit. The explicit formula would require a level of details
that goes beyond the scope of this paper and will not be given here. This method
will be referred to in the following as the GaussMatch method.

2.3 The Interval Estimation strategy

A totally different approach to the exploration problem is to attribute to each
lever an “optimistic reward estimate” within a certain confidence interval and
to greedily choose the lever with the highest optimistic mean. Unobserved or
infrequently observed levers will have an over-valued reward mean that will lead
to further exploration of those levers. The more a lever is pulled and the closer its
optimistic reward estimate will be to the true reward mean. This approach called
Interval Estimation (referred as INTESTIM in the following) is due to Kaelbling
(1993) in [12]. To each lever is associated the 100 - (1 — a))% reward mean upper
bound where « is a parameter in (0,1) whose exact value is left to the user. At
each round, the lever of highest reward mean upper bound is chosen. Note that
smaller o values lead to more exploration.

In [12], the INTESTIM algorithm is applied to boolean rewards. Since we
are dealing here with real distributions, we will assume that the rewards are
normally distributed and compute the upper bound estimate according based
on that assumption. Formally, for a lever observed n times with i1 as empirical
mean and ¢ as empirical standard deviation, the o upper bound is defined by
Uy = 1L+ \/Lﬁc_l(l — a) where ¢ is the cumulative normal distribution function

defined by c(t) = \/% fioo exp(—x?/2)dx. Choosing normal distributions is ar-
bitrary but seems reasonable if nothing more is known about the lever reward
distributions. In this paper, this choice is also motivated by the fact that part
of the experiments have been performed with normally distributed levers (see
Section 4).

Many variants of INTESTIM have been proposed in the generalized model of
MDPs. 32 different algorithms are discussed in [17] (IEQL+ may be the most
well known of the introduced variant). But in the simpler stateless situation, all
these variants are equivalent to INTESTIM.

To our knowledge, no theoretical results are known about the INTESTIM
algorithm for the real-valued bandit problem (as opposed to the simpler boolean-
valued bandit where the rewards could take only the values 0 and 1). In its
simplest form, as just presented, INTESTIM is clearly not a zero-regret strategy
(it suffices to consider the case where the optimal lever has been initially very
poorly estimated), but a proper control of the parameter « could make this
strategy achieve zero regret.

3 The POKER strategy

The “Price of Knowledge and Estimated Reward” (POKER) strategy relies on
three main ideas: pricing uncertainty, exploiting the lever distribution, and tak-
ing into account the horizon.



The first idea is that a natural way of balancing exploration and exploitation
is to assign a price to the knowledge gained while pulling a particular lever. This
idea has been already used in the bandit literature. In particular, the notion
of “value of information” has been intensively studied in several domains and
goes far beyond the scope of this paper. In the bandit literature, it is sometimes
referred to as “exploration bonuses” [17,6]. The objective is to quantify the
uncertainty in the same units as the rewards.

The second idea is that the properties of unobserved levers could potentially
be estimated, to a certain extent, from the levers already observed. This is par-
ticularly useful when there are many more levers than rounds. Most of the work
on the bandit problem is centered on an asymptotic viewpoint over the number
of rounds, but we believe that in many practical situations, the number of rounds
may be significantly smaller than the number of levers (see next section).

The third observation is that the strategy must explicitly take into account
the horizon H, i.e., the number of rounds that remains to be played. Indeed, the
amount of exploration clearly depends on H, e.g., for H = 1, the optimal strategy
is reduced to pure exploitation, that is to choosing the lever with the highest
estimated reward. In particular, the horizon value can be used to estimate the
price of the knowledge acquired.

3.1 Algorithm

Let pu* = max;{u;} be the highest reward mean and let jy be the index of the
best reward mean estimate: jo = argmax{i; }. We denote by ii* the reward mean
i

of jo. By definition of p*, u* > p;, = p*. p* — 1* measures the reward mean
improvement. We denote the expected reward improvement by §,, = E[pu* — ii*].

At each round, the expected gain when pulling lever i is given by the prod-
uct of the expected reward mean improvement, J,, and the probability of an
improvement P[u; — g* > §,]. Over a horizon H, the knowledge gained can be
exploited H times. Thus, we can view Py, > 1* 4+ §,]0, H as an estimate of the
knowledge acquired if lever ¢ is pulled. This leads us to define the lever pricing
formula for the POKER strategy as:

pi = fi + Pl > 1" + 6,10, H, (2)

where p; is the price associated to the lever i by the casino (or the value of
lever ¢ for the gambler). The first term, f;, is simply the estimated reward mean
associated to the lever ¢, the second term an estimate of the knowledge acquired
when lever ¢ is pulled.

Let us also examine how the second term is effectively computed. Let fi;, >
--+ > [i;, be the ordered estimated means of the levers already observed. We
chose to define the estimated reward improvement by 6, = (i, — i )/+/q- The

index choice f(q) = /q is motivated by its simplicity and the fact that it ensures
both f(q) — oo (variance minimization) and f(q)/q — 0 (bias minimization)
when ¢ — oo. Empirically, it has also been shown to lead to good results (see
next section).

Let N(z,pu,0) = \/21777 exp ((12;‘;)2) be the normal distribution. Let 7i; be

the mean estimate, o; be the standard deviation estimate and n; the number of




pulls for the lever i, the probability P[u; > fi* + ¢,] can be approximated by

o0

O o (B +6,) = N (wﬁ ”—) da. (3)

v 546, Vi

This would be the exact probability if fi; followed a normal distribution. Note
that the central limit theorem guarantees that, in the limit, the mean estimate
; of the reward distribution is normally distributed.

Algorithm 1 shows the pseudocode of the procedure POKER which takes three
arguments: the reward function r : [1, K] — R, the number of levers K € N* and
the number of rounds to be played T' € N*. In the pseudocode, nli] represents
the number of times lever ¢ has been pulled. u[é] (resp. o[i]), the reward mean
(resp. the estimate of the reward standard deviation) of the lever 7, is used as

r[i]

a shortcut for Tr (resp roli] _ r[i]?

nld  n[i]?
taken over the set of levers previously pulled.

A round is played at each iteration through the loop of lines 2 — 14. The
computation of the price for each lever is done at lines 7 — 12. The estimates
of the mean and standard deviation of each lever are computed in lines 8 — 9.
Note that if the lever has not been observed yet, then the set of levers already
observed is used to provide a priori estimates. The price is computed at line 10.
The initialization of the algorithm has been omitted to improve readability. The
initialization simply consists of pulling twice two random levers so that iy and
11 are well-defined at line 4.

). Ek,n[k]>0 denotes the empirical mean

Algorithm 1 Poker(r, K,T)

1: for i = 0 to K do n[i] < r[i] < r2[i]] < 0 end for
2: fort=1to T do

3 g« [{i,r[i] > 0}

4: io « argmax{p[i]} 5 i1 < j such that |{i, u[i] > p[j]}| = /g

5: 6y« (ulio] — plia]) /v/@ 5 w* — argmax{puli]}

6:  Pmaz < —00 j imax + UNDEFINED

7: fori=1to K do R

8: if nfi] > 0 then p «— pfi] else p «— Ey yk)>o0[p[k]] endif

9: if n[i] > 1 then o — o[i] else o «— Ek,n[k]>1[0[k“ endif
. oo 0 _oli]

10: p<—u+5u(T—t)fM*+6uN(x,u[z],m) dx

11: if p > Prmae then pomas «— P, tmaz — ¢ endif

12: end for

13: T T(imaz) 5 n[lmaz]+: 1 5 T[imaz]+: TS TZ[imaz]+: 7'2

14: end for

Algorithm 1 gives an offfine presentation of POKER, but POKER is in fact
intrinsically an online algorithm. The horizon value T—¢ (line 10 in Algorithm 1)
could simply be set to a constant value. Notice that the amount of exploration has
to be controlled in some way. Most of the algorithms presented in section 2 have
an exploration tuning parameter. We believe that the horizon is an intuitive and



practical exploration control parameter, especially compared to the 7 parameter
for the SOFTMAX or the o parameter of INTESTIM.

It is easy to see that POKER is a zero-regret strategy. The proof is very
technical however and requires more space than we can afford here. The following
gives a sketch of the proof.

3.2 POKER is a Zero-Regret Strategy - Sketch of the Proof

Let us consider a game played by POKER where rounds are indexed by ¢ such
as t = 1 refers to the first round and ¢t = H refers to the last round. The proof
has two parts: first, an argument showing that all levers are pulled a significant
number of times; then, using the first part, establishing the fact that a “bad”
lever cannot be pulled too frequently.

Let m;(t) be the number of times the lever 7 has been pulled till round ¢ and
assume that all rewards are bounded by R > 0. Then, by Hoeffding’s inequality,

2
Pl > +6,] < exp(—2mi(t)%) fori=1,..., K. Since fi* > [i;, this implies
2

that: P [u; > 0" 4+ 0,] < exp(—2mi(t)%) fori=1,...,K.

Now, it is clear that m;(H) tends to infinity on average when H tends to
infinity. Just consider that p;(t) at fixed ¢ tends to infinity when H tends to
infinity. The same argument shows also that for any € > 0, m;(e¢H) tends to

infinity when H tends to infinity.

2

Let mpy be such that exp(—QmH%)éuH < r/2. Given the asymptotic be-
havior of m; just discussed, there exists ¢1 such that for all ¢, m;(t1) > mpy with
probability ¢. Let » > 0 be a given regret. Assume that for a given lever distri-
bution, playing POKER implies that there exists a lever ¢ and a constant o > 0
such that m;(H) > aH (frequent lever assumption) and u; < u* —r (poor lever
assumption) for any H. Let ¢ be such a lever. The existence of i is the negation
of the zero-regret property. Choose H large enough such that tﬁl < a.

The probability that the lever i is played at least once in the interval is [¢1, H|
is expressed by the probability that the price p; be the highest price, formally

2

P[3t > t1 : pi(t) > p*(¢)]. The inequality exp(—2mH%)6uH < r/2 implies that
(the quantifier and argument ¢ are omitted for simplicity):

P[pizp*]gP[ﬁi+g—ﬁ*>O}. (4)

Since all levers have already been pulled at least mpy times by definition of ¢4,
by Hoeffding’s inequality (using the fact that p; + 5 — u* < —%) the probability
of that event is bounded as follows:

r2

~ r ~k ~ ~xk * r
P[Mi+§_ﬂ >O}§P[Mi_ﬂ >pi =t SGXP[—mHQ—RQ]' (5)
Thus, the lever 7 has a probability greater than ¢ of not verifying m;(H) > oH
for H large enough. Additionally, by choosing H large enough, the probability
q can be made arbitrarily close to 1. This conclusion contradicts the uniform
existence (for any H) of the lever i. POKER is a zero-regret strategy.



4 Experiments

This section describes our experiments for evaluating several strategies for the
bandit problem using two datasets: an artificially generated dataset with known
and controlled distributions and a real networking dataset.

Many bandit methods requires all levers to be pulled once (resp. twice) before
the method actually begins in order to obtain an initial mean (resp. a variance)
estimate. In particular, INTESTIM requires two pulls per lever, see [17]. However
this pull-all-first initialization is inefficient when a large number of levers is
available because it does not exploit the information provided by the known lever
distribution (as discussed in the second idea of POKER here above). Therefore, in
our experiments, the mean and variance of unknown levers, whenever required,
are estimated thanks to the known lever distribution. In order to obtain a fair
comparison, the formula in use is always identical to the formula used in POKER.

4.1 Randomly Generated Levers

The first dataset is mainly motivated by its simplicity. Since normal distribu-
tions are perhaps the most simple non-trivial real distributions, we have chosen
to generate normally distributed rewards. This choice also fits the underlying
assumptions for the algorithms INTESTIM and GAUSSMATCH.

The dataset has been generated as follows: all levers are normally distributed,
the means and the standard deviations are drawn uniformly from the open in-
terval (0,1). The objective of the agent is to mazimize the sum of the rewards.
The dataset was generated with 1000 levers and 10 000 rounds. The bandit
strategies have been tested in three configurations: 100 rounds, 1000 rounds,
10 000 rounds which correspond to the cases of less rounds than levers, as many
rounds as levers, or more rounds than levers. Although we realize that most of
the algorithms we presented were designed for the case where the number of
rounds is large compared to the number of lever, we believe (see here below or
[4]) that the configuration with more levers than rounds is in fact an important
case in practice. Table 1 (columns R-100, R-1k and R-10k) shows the results
of our experiments obtained with 10 000 simulations. Note that the numbers
following the name of the strategies correspond to the tuning parameter values
as discussed in section 2.

4.2 URLs Retrieval Latency

The second dataset corresponds to a real-world data retrieval problem where
redundant sources are available. This problem is also commonly known as the
Content Distribution Network problem (CDN) (see [13] for a more extensive
introduction). An agent must retrieve data through a network with several re-
dundant sources available. For each retrieval, the agent selects one source and
waits until the data is retrieved?. The objective of the agent is to minimize the
sum of the delays for the successive retrievals.

4 We assume that the agent could try only one source at a time, in practice he will
only be able to probe simultaneously a very limited number of sources.
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Table 1. Experimental results for several bandit algorithms. The strategies are com-
pared in the case of several datasets. The R-z datasets corresponds to a maximization
task with random Gaussian levers (the higher the score, the better). The N-z datasets
corresponds to a minimization task with levers representing retrieval latencies (the
lower the score, the better). The numbers following the strategy names are the tuning
parameters used in the experiments.

Strategies | R-100 | R-1k | R-10k || N-130 | N-1.3k
POKER 0.787 | 0.885 0.942 203 132
e-greedy, 0.05 0.712 | 0.855 0.936 733 431
e-greedy, 0.10 0.740 | 0.858 | 0.916 731 453
e-greedy, 0.15 0.746 | 0.842 0.891 715 474
e-first, 0.05 0.732 | 0.906 | 0.951 735 414
e-first, 0.10 0.802 | 0.893 | 0.926 733 421
e-first, 0.15 0.809 | 0.869 | 0.901 725 411
e-decreasing, 1.0 0.755 | 0.805 0.851 738 411
e-decreasing, 5.0 0.785 0.895 0.934 715 413
e-decreasing, 10.0 0.736 0.901 0.949 733 417
LEASTTAKEN, 0.05 0.750 0.782 0.932 747 420
LEASTTAKEN, 0.1 0.750 0.791 0.912 738 432
LEASTTAKEN, 0.15 0.757 | 0.784 | 0.892 734 441
SorTMAX, 0.05 0.747 | 0.801 0.855 728 410
SorFTMAX, 0.10 0.791 0.853 | 0.887 729 409
SorTMAX, 0.15 0.691 0.761 0.821 727 410
Exr3, 0.2 0.506 | 0.501 0.566 726 541
Exp3, 0.3 0.506 | 0.504 | 0.585 725 570
Exp3, 0.4 0.506 | 0.506 | 0.594 728 599
GAUSSMATCH 0.559 | 0.618 | 0.750 327 194
INTESTIM, 0.01 0.725 | 0.806 | 0.844 305 200
INTESsTIM, 0.05 0.736 | 0.814 | 0.851 287 189
INTESTIM, 0.10 0.734 0.791 0.814 276 190

In order to simulate the retrieval latency problem under reproducible con-
ditions, we have used the home pages of more than 700 universities as sources.
The home pages have been retrieved roughly every 10 min for about 10 days
(~1300 rounds), the retrieval latency being recorded each time in milliseconds®.
Intuitively each page is associated to a lever, and each latency is associated to a
(negative) reward. The bandit strategies have been tested in two configurations:
130 rounds and 1300 rounds (corresponding respectively to 1/10" of the dataset
and to the full dataset). Table 1 (columns N-130 and N-1.3k) shows the results
which correspond to the average retrieval latencies per round in milliseconds.
The results have been obtained through 10 000 simulations (ensuring that the
presented numbers are significant). The order of the latencies was randomized
through a random permutation for each simulation.

4.3 Analysis of the Experimental Results

Let us first examine the e-greedy strategy and its variants. Note that all e-
greedy variants have similar results for carefully chosen parameters. In particular,

5 The dataset has been published under a public domain license, making it ac-
cessible for further experiments in the same conditions. It can be accessed from

sourceforge.net/projects/bandit.
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making the e decrease does not significantly improve the performance. The ¢
(the real parameter of the e-decreasing strategy) also seems to be less intuitive
than the e parameter of the e-greedy strategy. Although very different from the
e-greedy, the SOFTMAX strategy leads to very similar results. But its ExXp3
variant seems to have a rather poor performance, its results are worse than any
other strategy independently of the parameters chosen. The reason probably lies
in the fact that the EXP3 has been designed to optimize its asymptotic behavior
which does not match the experiments presented here.

The two “pricing” strategies POKER and INTESTIM significantly outperform
all of the other strategies on the networking dataset, by a factor of 2 for IN-
TESTIM and a factor of 3 for POKER. Against the random generated dataset,
INTESTIM performs significantly worse than the other strategies, a rather unex-
pected result since the generated dataset perfectly fits the INTESTIM assump-
tions, while POKER is always as good as the best strategy for any parameter.
We do not have yet proofs to justify the “good” behavior of the two pricing
methods on the networking dataset, but this seems related to the “shape” of the
networking data. The networking data proves to be very peaky with latencies
that cover a wide range of values from 10 ms to 1000 ms with peaks to 10000 ms.
With that data, exploration needs to be carefully handled because trying a new
lever could prove to be both a major improvement or a major cost. It seems that
strategies with a dynamic approach for the level of exploration achieve better
results than those where the amount of exploration is fixed a priori.

5 Conclusion

In the case where the lever reward distributions are normally distributed, sim-
ple strategies with no particular theoretical guarantees such as e-greedy tend to
be hard to beat and significantly outperform more complicated strategies such
as EXP3 or Interval Estimation. But, the ranking of the strategies changes sig-
nificantly when switching to real-world data. Pricing methods such as Interval
Estimation or POKER significantly outperform naive strategies in the case of
the networking data we examined. This empirical behavior was rather unex-
pected since the strategies with the best asymptotic guarantees do not provide
the better results, and could not have been inferred from a simple comparison
of the theoretical results known so far. Since this is, to our knowledge, the first
attempt to provide a common evaluation of the most studied bandit strategies,
the comparison should still be viewed as preliminary. Further experiments with
data from different tasks might lead to other interesting observations. We have
made the experimental data we used publicly available and hope to collect, with
the help of other researchers, other datasets useful for benchmarking the bandit
problem that could be made available from the same web site.
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