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Abstract

Thearea under an ROC curv@@UC) is a criterion used in many appli-
cations to measure the quality of a classification algorithiowever,
the objective function optimized in most of these algorigisthe error
rate and not the AUC value. We give a detailed statisticalyaigof the
relationship between the AUC and the error rate, includiefirst exact
expression of the expected value and the variance of the AUE& fixed
error rate. Our results show that the average AUC is moncédigiin-
creasing as a function of the classification accuracy, aitttie standard
deviation for uneven distributions and higher error ratesdticeable.
Thus, algorithms designed to minimize the error rate maylead to
the best possible AUC values. We show that, under certaidigons,
the global function optimized by the RankBoost algorithmaxactly the
AUC. We report the results of our experiments with RankBdaoseveral
datasets demonstrating the benefits of an algorithm spabifaesigned
to globally optimize the AUC over other existing algorithoystimizing
an approximation of the AUC or only locally optimizing the AU

1 Motivation

In many applications, the overall classification error fiataot the most pertinent perfor-
mance measure, criteria suchaderingor rankingseem more appropriate. Consider for
example the list of relevant documents returned by a seargme for a specific query.
That list may contain several thousand documents, but,datjze, only the top fifty or so
are examined by the user. Thus, a search engine’s rankihg diticuments is more critical
than the accuracy of its classification of all documents &sa@t or not. More gener-
ally, for a binary classifier assigning a real-valued scoredch object, a better correlation
between output scores and the probability of correct diaasibn is highly desirable.

A natural criterion or summary statistic often used to meastue ranking quality of a clas-

sifier is thearea under an ROC curvgdUC) [8].1 However, the objective function opti-
mized by most classification algorithms is the error raterastdhe AUC. Recently, several
algorithms have been proposed for maximizing the AUC vabgally [4] or maximizing
some approximations of the global AUC value [9, 15], but, @meral, these algorithms do
not obtain AUC values significantly better than those olediby an algorithm designed to
minimize the error rates. Thus, it is important to deternthme relationship between the
AUC values and the error rate.

*This author’s new address is: Google Labs, 1440 Broadwayww Nerk, NY 10018,
corinna@google.com.

1The AUC value is equivalent to the Wilcoxon-Mann-Whitnegtistic [8] and closely related to
the Gini index [1]. It has been re-invented under the name-ofdasure by [11], as already pointed
out by [2], and slightly modified under the name of Linear Raglby [13, 14].
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Figure 1:An example of ROC curve. The line connectifty 0) and(1, 1), corresponding to random
classification, is drawn for reference. The true positivengtive) rate is sometimes referred to as the
sensitivity(resp.specificity in this context.

In the following sections, we give a detailed statisticalgnis of the relationship between
the AUC and the error rate, including the first exact expoessif the expected value and

the variance of the AUC for a fixed error ra&teWe show that, under certain conditions, the
global function optimized by the RankBoost algorithm is @kathe AUC. We report the
results of our experiments with RankBoost in several désas®d demonstrate the benefits
of an algorithm specifically designed to globally optimite tAUC over other existing
algorithms optimizing an approximation of the AUC or onlg#dly optimizing the AUC.

2 Definition and properties of the AUC

TheReceiver Operating Characteristi¢ROC) curves were originally developed in signal
detection theory [3] in connection with radio signals, aaddbeen used since then in many
other applications, in particular for medical decisionking. Over the last few years, they
have found increased interest in the machine learning atedrdaning communities for
model evaluation and selection [12, 10, 4, 9, 15, 2].

The ROC curve for a binary classification problem plots the fositive rate as a function
of the false positive rate. The points of the curve are obthiny sweeping the classifica-
tion threshold from the most positive classification valoghte most negative. For a fully
random classification, the ROC curve is a straight line coting the origin to(1, 1). Any
improvement over random classification results in an ROQeat least partially above
this straight line. Fig. (1) shows an example of ROC curvee AWC is defined as the area
under the ROC curve and is closely related to the rankingityua the classification as
shown more formally by Lemma 1 below.

Consider a binary classification task with positive examples and negative examples.
We will assume that a classifier outputs a strictly orderstiftir these examples and will
denote byl x the indicator function of a seX’.

Lemma 1 ([8]) Letc be a fixed classifier. Lety, . .., z,, be the output of on the positive
examples ang, .. ., y, its output on the negative examples. Then, the AUC, A, adsdci
to cis given by:

o Z:il Z?:l 1Ii>y]‘

a mn

that is the value of th@vilcoxon-Mann-Whitney statisti{8].

A 1)

Proof. The proofis based on the observation that the AUC value istlxde probability
P(X > Y) whereX is the random variable corresponding to the distributiothefout-
puts for the positive examples afidthe one corresponding to the negative examples [7].
The Wilcoxon-Mann-Whitney statistic is clearly the exmies of that probability in the
discrete case, which proves the lemma [8]. O

Thus, the AUC can be viewed as a measure based on pairwisedsons between classi-
fications of the two classes. With a perfect ranking, all fiesiexamples are ranked higher
than the negative ones ard= 1. Any deviation from this ranking decreases the AUC.

2An attempt in that direction was made by [15], but, unforteha the authors’ analysis and the
result are both wrong.
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Figure 2:For a fixed number of erros, there may be:, 0 < z < k, false negative examples.

3 The Expected Value of the AUC

In this section, we compuiexactlythe expected value of the AUC over all classifications
with a fixed number of errors and compare that to the error rate

Different classifiers may have the same error rate but @iffeAUC values. Indeed, for a
given classification thresholt] an arbitrary reordering of the examples with outputs more
thané clearly does not affect the error rate but leads to diffe/dth€ values. Similarly,
one may reorder the examples with output less thaithout changing the error rate.

Assume that the number of errdess fixed. We wish to compute the average value of the
AUC over all classifications wittk errors. Our model is based on the simple assumption
that all classifications or rankings witherrors are equiprobable. One could perhaps argue
that errors are not necessarily evenly distributed, exgimples with very high or very low
ranks are less likely to be errors, but we cannot justify dniakes in general.

For a given classification, there may bd) < x < k, false positive examples. Since the
number of errors is fixed, there ake- x false negative examples. Figure 3 shows the cor-
responding configuration. The two regions of examples widlssification outputs above
and below the threshold are separated by a vertical linealgdrenz, the computation of
the AUC, A, as given by Eq. (1) can be divided into the following thregga

AL+ Az + A

A== =3 with 2
mn
Ay = the sum over all pairgr;, y;) with 2; andy; in distinct regions;
Ay = the sum over all pairsr;, y;) with z; andy; in the region above the threshold;
As = the sum over all pairgz;, y;) with z; andy; in the region below the threshold.

The first term,A,, is easy to compute. Since there &ne — (k — z)) positive examples
above the threshold and— = negative examples below the threshodd,is given by:

Ay = (m = (k- 2))(n —z) ®3)

To computeAs, we can assign to each negative example above the thresipalsitéon
based on its classification rank. Let position one be thepisttion above the threshold
and leta; < ... < a, denote the positions in increasing order of theegative examples
in the region above the threshold. The total number of examgplassified as positive is
N =m — (k — x) 4+ z. Thus, by definition ofd,,

Ay =) (N —a;) = (z— i) 4

i=1

where the first termV — «; represents the number of examples ranked higher thaittthe
example and the second term- i discounts the number of negative examples incorrectly
ranked higher than thih example. Similarly, let} < ... < «},_, denote the positions of
thek — x positive examples below the threshold, counting positionsverse by starting
from the threshold. Thems is given by:

’
x

Ay =) (N —af)) = (' = j) (5)
j=1
with N’ = n — x + (k — ) andz’ = k — 2. Combining the expressions df;, A,, and
As leads to:
A4 As + Az 14 (k=22 +k Olimi o+ 300 0))

mn 2mn mn

A

(6)



Lemma 2 For a fixedz, the average value of the AU s given by:

<A>w=1—ﬁTm )

Proof. The proof is based on the computation of the average valués of «; and

Z;”,:l o’ for a givenz. We start by computing the average vakiea; >, for a given
i, 1 <14 < z. Consider all the possible positions fer . .. a;_; anda; 41 . . . @, when the
value ofq; is fixed at sayy; = I. We havei <1 < N — (x — i) since there need to be at
leasti — 1 positions beforey; and N — (z — i) above. There ark— 1 possible positions for
a1 ...a;_1 andN — [ possible positions fot; ;1 . .. a,. Since the total number of ways

of choosing thex positions fora; . .. o, out of NV is (N) the average value o; >, is:

DM vy )

< @i >p= ™ (8)
Thus,
z (x—1) 7 (1—1\ (N—1 N-l
< Zaz >, = Zz 1Zl % (N) l(z 1)( ) Zl 1121(]1[)( )( ) (9)
Using the classical identitys>, ., _, (;*)(,.) = (“}"), we can write:
e o 2 lGO) N D () eV )
LermTEmT T o oz W
Similarly, we have:
<Za 5= TR (11)

Replacing< 7, a; >, and< ZFl o > in Eq. (6) by the expressions given by
Eq. (10) and Eqg. (11) leads to:
(k—22)2+k—a(N+1)—2/(N' +1) 1
2mn B 2
which ends the proof of the lemma. ]

Note that Eq. (7) shows that the average AUC value for a givensimply one minus the
average of the accuracy rates for the positive and negdtisses.

z k—x
4

<A>,=1+ . (12)

Proposition 1 Assume that a binary classification task withpositive examples and
negative examples is given. Then, the expected value ofXiedfover all classifications
with & errors is given by:

gl _(n—m)2(m+n+1)< k Z’;é(’”j”)) (13)
m+n 4dmn )

T

x

Proof. Lemma 2 gives the average value of the AUC for a fixed value. dfo compute
the average over all possible valuespfve need to weight the expression of Eq. (7) with

the total number of possible classifications for a giwverThere are(];]) possible ways of

choosing the positions of themisclassified negative examples, and similé@’)}) possible

ways of choosing the positions of thé = k — = misclassified positive examples. Thus, in
view of Lemma 2, the average AUC is given by:

S (AN - e
Sh_o (D)

<A>= (14)
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Figure 3:Mean (left) and relative standard deviation (right) of tHé@\as a function of the error rate.
Each curve corresponds to a fixed ratia-oE n/(n + m). The average AUC value monotonically
increases with the accuracy. Fer= m, as for the top curve in the left plot, the average AUC
coincides with the accuracy. The standard deviation deesewith the accuracy, and the lowest
curve corresponds @ = m.

This expression can be simplified into Eq. (83ing the following novel identities:

<n+m+1> (15)
0 i

(k—x)(n;—n)+k<n+o:+1> (16)
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that we obtained by using Zeilberger’s algorithand numerous combinatorial 'trickd”]

From the expression of Eqg. (13), it is clear that the averad€ Aalue is identical to the
accuracy of the classifier only for even distributions=€ m). Forn # m, the expected
value of the AUC is a monotonic function of the accuracy, sige @3)(left). For a fixed
ratio of n/(n + m), the curves are obtained by increasing the accuracy frptn + m)
to 1. The average AUC varies monotonically in the range of aagubetweer).5 and
1.0. In other words, on average, there seems nothing to be gaingesigning specific
learning algorithms for maximizing the AUC: a classificatialgorithm minimizing the
error rate also optimizes the AUC. However, this only holasthe average AUC. Indeed,
we will show in the next section that the variance of the AU@igas not null for any ratio
n/(n + m) whenk # 0.

4 The Variance of the AUC

Let D = mn + W, a = Zle o, a = Z?l:l O{/j- anda = a + oa/. Then, by

Eq. (6),mnA = D — a. Thus, the variance of the AUG2(A), is given by:
(mn)’c*(A) = <(D—-a)’—-(<D>-<a>)’> (17)
= <D’>—-<D>+4+<a’>-<a>20<aD>—-<a><D>)

As before, to compute the average of a tekhover all classifications, we can first deter-
mine its average: X >, for a fixedz, and then use the functidr defined by:

k N\ (N’
E:Jﬁzo (m) (m/) Y
k N N/ (18)
z:mzo (m)(m/)
and< X >= F(< X >,). A crucial step in computing the exact value of the variarfce o
the AUC is to determine the value of the terms of the type? >,=< (>, a;)? >,.

F(Y) =

3An essential difference between Eq. (14) and the expresgi@m by [15] is the weighting by
the number of configurations. The authors’ analysis leadmtto the conclusion that the average
AUC is identical to the accuracy for all raties/(n + m), which is false.

“We thank Neil Sloane for having pointed us to Zeilbergergathm and Maple package.



Lemma 3 For a fixedz, the average of_;_, «;)? is given by:

N +1
<a?>,= %(3]\&0 + 22+ N) (19)
Proof. By definition ofa, < a2 >,= b+ 2c with:
b=< Zaf > =< Z i >, (20)
i=1 1<i<j<z

Reasoning as in the proof of Lemma 2, we can obtain:

Y X PG pB0) (VDN +1a
o -yl -

To compute, we start by computing the average valueod; cv; >, for a given pair(, )

with ¢ < 5. As in the proof of Lemma 2, consider all the p035|ble posgiofay ... a1,

Qiq1...q5-1, anda;yg ... a, Wheng; is fixed ata; = [, ande; is fixed ata; = 1.

There arel — 1 possible positions for the; ...«;_1, I’ — | — 1 possible positions for
Qit1...a-1, andN — I’ possible positions fot; 1 . . . a,. Thus, we have:

Yicteren—@y WD (2D (D

b=

(21)

< Qi >p= N (22)
(=)
and -1\ (I'=1—-1\ (N=-U
_ Zl<l/ ll/ Zm1+m2+m3(—;)2 (m1 )( mo )( ms ) (23)
Using the identity™,., . vma—oo () (50D (N) = (V72), we obtain:
_ (N + 1)(3]\721— 2)x(zx —1) (24)
Combining Eq. (21) and Eq. (24) leads to Eq. (19). O

Proposition 2 Assume that a binary classification task withpositive examples and
negative examples is given. Then, the variance of the Al®er all classifications with
k errors is given by:

z 4 k- z | k—z
PP(A) = F((1— ) - F((1 - 2R (25)
F(me +nk—2)2+(mm+ Dz +nn+1)(k—2)) —22(k —x)(m +n+ 1))
12m?2n?

Proof. Eg. (18) can be developed and expressed in ternig @, a, anda’:
(mn)?0?(A) = F([D— <a+ad >,*)— F(D- <a+ad >,)*+
F(<a®>>, —<a>2)+F(<a?>, —<d >2) (26)
The expressions fox a >, and< o’ >, were given in the proof of Lemma 2, and
that of < a? >, by Lemma 3. The following formula can be obtained in a similar
way: < a’? >,= %(3N’x’ + 22" + N'). Replacing these expressions in Eq. (26)
and further simplifications give exactly Eq. (25) and prdwe proposition.

The expression of the variance is illustrated by Fig. (§iti which shows the value of
one standard deviation of the AUC divided by the correspumdiean value of the AUC.
This figure is parallel to the one showing the mean of the AU@.(E3)(left)). Each line

is obtained by fixing the ratia/(n + m) and varying the number of errors from 1 to the
size of the smallest class. The more uneven class distitmitiave the highest variance,
the variance increases with the number of errors. Theseaigms contradict the inexact
claim of [15] that the variance is zero for all error rateshweven distributions = m. In
Fig. (3)(right), the even distributiom = m corresponds to the lowest dashed line.



Dataset Size | #of | P AUCsplit[4] RankBoost
Attr. (%) Accuracy (%) | AUC (%) Accuracy (%) | AUC (%)

Breast-Wpbc 194 33 23.7 69.5 £ 10.6 59.3 £ 16.2 65.5 + 13.8 80.4 + 8.0
Credit 653 15 453 81.0+7.4 94.5 + 2.9
lonosphere 351 34 35.9 89.6 + 5.0 89.7 £ 6.7 83.6 £ 10.9 98.0 + 3.3
Pima 768 8 34.9 72.5+5.1 76.7 £ 6.0 69.7 £ 7.6 84.8 + 6.5
SPECTF 269 43 20.4 67.3 93.4
Page-blocks | 5473 10 10.2 96.8 + 0.2 95.1 £6.9 92.0 £ 2.5 98.5+ 1.5
Yeast (CYT) | 1484 8 31.2 71.1 + 3.6 73.3 £ 4.0 45.3 +£ 3.8 78.5+ 3.0

Table 1:Accuracy and AUC values for several datasets from the U@érvepository. The values
for RankBoost are obtained by 10-fold cross-validatione Values for AUCsplit are from [4].

5 Experimental Results

Proposition 2 above demonstrates that, for uneven disiwits; classifiers with the same
fixed (low) accuracy exhibit noticeably different AUC vafueThis motivates the use of
algorithms directly optimizing the AUC rather than doingisdirectly via minimizing the
error rate. Under certain conditions, RankBoost [5] canibe/@d exactly as an algorithm
optimizing the AUC. In this section, we make the connectietmizen RankBoost and
AUC optimization, and compare the performance of RankBtm$ivo recent algorithms
proposed for optimizing an approximation [15] or locallytiogizing the AUC [4].

The objective of RankBoost is to produce a ranking that mimés the number of incor-
rectly ordered pairs of examples, possibly with differesgts assigned to the mis-rankings.
When the examples to be ranked are simply two disjoint Se¢sobjective function mini-

mized by RankBoost is
rloss szn i<y, (27)

i=1 j=1

which is exactly one minus the Wilcoxon-Mann-Whitney stti¢i. Thus, by Lemma 1, the
objective function maximized by RankBoost coincides with AUC.

RankBoost's optimization is based on combining a number e&kwankings. For our
experiments, we chose as weak rankings threshold rankérsive range{0, 1}, similar

to the boosted stumps often used by AdaBoost [6]. We usedbtisalfedThird Methodof
RankBoost for selecting the best weak ranker. Accordingitornethod, at each step, the
weak threshold ranker is selected so as to maximize the Aliteofveighted distribution.
Thus, with this method, the global objective of obtaining test AUC is obtained by
selecting the weak ranking with the best AUC at each step.

Furthermore, the RankBoost algorithm maintains a perf®e50% distribution of the
weights on the positive and negative examples. By Propositj for even distributions,
the mean of the AUC is identical to the classification accur&or threshold rankers like
step functions, or stumps, there is no variance of the AUGhaemean of the AUC is equal
to the observed AUC. That is, instead of viewing RankBoostgdscting the weak ranker
with the best weighted AUC value, one can view it as seledtiegweak ranker with the
lowest weighted error rate. This is similar to the choiceneflbest weak learner for boosted
stumps in AdaBoost. So, for stumps, AdaBoost and RankBdfist dnly in the updat-
ing scheme of the weights: RankBoost updates the positampies differently from the
negative ones, while AdaBoost uses one common scheme ftwdhgroups.

Our experimental results corroborate the observationRlaatkBoost is an algorithm op-
timizing the AUC. RankBoost based on boosted stumps ob#lil values that are sub-
stantially better than those reported in the literaturealgorithms designed to locally or
approximately optimize the AUC. Table 1 compares the resaflRankBoost on a number
of datasets from the UC Irvine repository to the results regubby [4]. The results for

RankBoost are obtained by 10-fold cross-validation. FarkBmost, the accuracy and the
best AUC values reported on each line of the table corresfmtitt same boosting step.

RankBoost consistently outperforms AUCsplit in a comparisased on AUC values, even
for the datasets such as Breast-Wpbc and Pima where thegaathins obtain similar ac-
curacies. The table also lists results for the UC Irvine @sdproval and SPECTF heart
dataset, for which the authors of [15] report results cquoesling to their AUC optimiza-
tion algorithms. The AUC values reported by [15] are no bdtian92.5% for the Credit



Approval dataset and onlg7.5% for the SPECTF dataset, which is substantially lower.
From the table, it is also clear that RankBoost is not an eat@ minimization algorithm.
The accuracy for the Yeast (CYT) dataset is as lowiH5.

6 Conclusion

A statistical analysis of the relationship between the AlUKlug and the error rate was
given, including the first exact expression of the expectdderand standard deviation of
the AUC for a fixed error rate. The results offer a better us@erding of the effect on the
AUC value of algorithms designed for error rate minimizatid=or uneven distributions

and relatively high error rates, the standard deviatiomefAUC suggests that algorithms
designed to optimize the AUC value may lead to substanttadtger AUC values. Our

experimental results using RankBoost corroborate thiscla

In separate experiments we have observed that AdaBoosvashsignificantly better er-
ror rates than RankBoost (as expected) but that it also keads/C values close to those
achieved by RankBoost. It is a topic for further study to ekphlnd understand this prop-
erty of AdaBoost. A partial explanation could be that, juke|RankBoost, AdaBoost
maintains at each boosting round an equal distribution@fatbights for positive and neg-
ative examples.
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