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Abstract

In many applications, good ranking is a highly desirabldgrenance for
a classifier. The criterion commonly used to measure thamgrguality
of a classification algorithm is the area under the ROC cut#3). To
report it properly, it is crucial to determine an intervalawinfidence for
its value. This paper provides confidence intervals for thEC/Aased
on a statistical and combinatorial analysis using only $ngarameters
such as the error rate and the number of positive and negataraples.
The analysis is distribution-independent, it makes noragtion about
the distribution of the scores of negative or positive exi@spThe results
are of practical use and can be viewed as the equivalent f@ éfthe
standard confidence intervals given in the case of the eater rThey
are compared with previous approaches in several stantiasifcation
tasks demonstrating the benefits of our analysis.

1 Motivation

In many machine learning applications, the ranking quafta classifier is critical. For
example, the ordering of the list of relevant documentsrretd by a search engine or
a document classification system is essential. The critasiolely used to measure the
ranking quality of a classification algorithm is the areaemah ROC curve (AUC). But, to
measure and report the AUC properly, it is crucial to detasnan interval of confidence
for its value as it is customary for the error rate and otheasuees. It is also important to
make the computation of the confidence interval practicaldhying only on a small and
simple number of parameters. In the case of the error raté,istervals are often derived
from just the sample siz#'.

We present an extensive theoretical analysis of the AUC hod ¢hat a similar confidence
interval can be derived for its value using only simple pagters such as the error rateN,
the number of positive examples, and the number of negative examples= N — m.
Thus, our results extend to AUC the computation of confidentervals from a small
number of readily available parameters.

Our analysis is distribution-independentin the senseitihaikes no assumption about the
distribution of the scores of negative or positive examplése use of the error rate helps
determine tight confidence intervals. This contrasts wiistang approaches presented in



the statistical literature [11, 5, 2] which are based eithreweak distribution-independent
assumptions resulting in too loose confidence intervalstrong distribution-dependent
assumptions leading to tight but unsafe confidence interval

We show that our results are of practical use. We also contpara with previous ap-

proaches in several standard classification tasks denatingtthe benefits of our analysis.
Our results are also useful for testing the statistical ifgance of the difference of the
AUC values of two classifiers.

The paper is organized as follows. We first introduce the digfinof the AUC, its con-
nection with the Wilcoxon-Mann-Whitney statistic (Secti@), and briefly review some
essential aspects of the existing literature related todh@putation of confidence intervals
for the AUC. Our computation of the expected value and vagaof the AUC for a fixed
error rate requires establishing several combinatorettities. Section 4 presents some
existing identities and gives the proof of novel ones uskfuthe computation of the vari-
ance. Section 5 gives the reduced expressions for the edpealue and variance of the
AUC for a fixed error rate. These can be efficiently computedl @sed to determine our
confidence intervals for the AUC (Section 6). Section 7 regire result of the comparison
of our method with previous approaches, including empiirieaults for several standard
tasks.

2 Definition and Properties of the AUC

TheReceiver Operating Characteristi¢ROC) curves were originally introduced in signal
detection theory [6] in connection with the study of radigrsls, and have been used
since then in many other applications, in particular for lnalddecision-making. Over the
last few years, they have found increased interest in thdhmadearning and data mining
communities for model evaluation and selection [14, 13,27,186, 3]. The ROC curve for
a binary classification problem plots the true positive est@ function of the false positive
rate. The points of the curve are obtained by sweeping tlsiization threshold from the
most positive classification value to the most negative. &fully random classification,
the ROC curve is a straight line connecting the origin(tol). Any improvement over
random classification results in an ROC curve at least pigréibove this straight line. The
AUC is defined as the area under the ROC curve.

Consider a binary classification task with positive examples and negative examples.
Let C be a fixed classifier that outputs a strictly ordered list fogse examples. Let
x1,...,Tsm bDe the output o on the positive examples angd, . . ., y, its output on the
negative examples and denotelhy the indicator function of a seX'. Then, the AUC, A,
associated t@’ is given by:
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which is the value of th&Vilcoxon-Mann-Whitney statist[@¢0]. Thus, the AUC is closely
related to the ranking quality of the classification. It caMewed as a measure based on
pairwise comparisons between classifications of the twssels It is an estimate of the
probability P, that the classifier ranks a randomly chosen positive exalfrigleer than

a negative example. With a perfect ranking, all positiveneples are ranked higher than
the negative ones amdl = 1. Any deviation from this ranking decreases the AUC, and the
expected AUC value for a random ranking is 0.5.



3 Overview of Related Work

This section briefly describes some previous distributiependent approaches presented
in the statistical literature to derive confidence intesvalr the AUC and compares them
to our method. The starting point for these analyses is adt@giving the variance of the
AUC, A, for a fixed distribution of the scord3, of the positive examples arig, of the
negative examples [10, 1]:

A= A) + (m = 1)(Paay — A?) + (n—1)(Payy — AQ)

mn

)

whereP ., is the probability that the classifier ranks two randomlys#topositive exam-
ples higher than a negative one, @y, the probability that it ranks two randomly chosen
negative examples lower than a positive one. To computeahiance exactly using Equa-
tion 2, the distribution®, andP, must be known.

0% =

Hanley and McNeil [10] argue in favor of exponential distiions, loosely claiming that
this upper-bounds the variance of normal distributiondwirious means and ratios of

variances. They show that for exponential distributiths, = 2; andP,,, = 12%1.
The resulting confidence intervals are of course relatitighyt, but their validity is ques-
tionable since they are based on a strong assumption aleodistiibutions of the positive

and negative scores that may not hold in many cases.

An alternative considered by several authors to the exanpotation of the variance is to
determine instead the maximum of the variance over all ptessontinuous distributions
with the same expected value of the AUC. For all such distidimg, one can fixn and
n and compute the expected AUC and its variance. The maximuiane is denoted by
o2 andis given by [5, 2]

) A(l— A) 1

= < 3
Omaz = 1iim {m,n} ~ 4min{m,n} 3

Unfortunately, this often yields loose confidence intes\allimited practical use.

Our approach for computing the mean and variance of the AlWdGigbution-independent
and inspired by the machine learning literature where aeslyypically center on the error
rate. We require only that the error rate be measured andutertipe mean and variance of
the AUC over all distribution®, andP,, that maintain the same error rate. Our approach
is in line with that of [5, 2] but it crucially avoids consideg the maximum of the vari-
ance. We show that it is possible to compute directly the naehvariance of the AUC
assigning equal weight to all the possible distributionc@urse, one could argue that not
all distributionsP, andP, are equally probable, but since these distributions arklig
problem-dependent, we find it risky to make any general apomon the distributions
and thereby limit the validity of our results. Our approastiurther justified empirically
by the experiments reported in the last section.

4 Combinatorial Analysis

The analysis of the statistical properties of the AUC givéimed error rate requires various
combinatorial calculations. This section describes séwdrthe combinatorial identities
that are used in our computation of the confidence interfalsall g > 0, let X, (k, m, n)

be defined by:
k !/

x=0



whereM =m — (k— )+ 2z, M' =n+ (k— ) — 2z, anda’ = k — «. In previous work,
we derived the following two identities which we used to cangthe expected value of
the AUC [4]:

k
Xo(k,m,n) = Z

=0
To simplify the expression of the variance of the AUC, we necomputeXs (k, m,n).

<n—|—7;1—|—1) Xl(k,m,n)_;(k—x)(ﬂ;—n)+k<n+7:+1)

Proposition 1 Letk, m,n be non-negative integers such that min{m, n}, then:

k
1
Xa(hm,n) = Y- Palkmon.a) (") )
x=0 z

where P, is the following 4th-degree polynomial; (k, m,n,z) = (k — z)/12(—2z3 +
222(2m — n + 2k — 4) + 2(=3m? + 3nm + 3m — 5km — 2k? + 2 + k + nk + 6n) +
(3(k — 1)m? — 3nm(k — 1) + 6km + 5m + k?m + 8n + 8 — Ink + 3k + k% + k%n)).
Proof.  The computation ofX, is based on a recurrence relation giviAg in func-
tion of Xy and X;. Using the absorption identity commonly used in combiriagoj9],
X (k,m,n) can be rewritten asy ¢ _, 2% (M) (M) = ¢, Ma(M-H (M), which, af-
ter the change of variable — = — 1 and the substitutions of the expressions férand
M’, leads to

;O(m k422 +2)(z + 1) <m - B} D+ 2x> <" + ((’Z‘_ll))‘_? - 1> (©)

The second-degree polynomial in this expression can benebegas:
(m—k+2z+2)(z+1)=22"+(m—k+4)z+ (m—k+2)

Thus, we have the following recurrence relation:

Xo(k,m,n) =2Xa2(k—1,m,n—1)+(m—k+4)X1(k—1,m,n—1)+(m—k+2)Xo(k, m,n—1)

Unwrapping the recurrence and usikg(0, m,n) = 0 for all m andn yield:

k
Xo(k,m,n) = 27 (m—k+3+40)X1(k—i,m,n—1d)+ (m—k+i+1)Xo(k—i,m,n—1i)]
i=1
Xo and X are both given as a sum. Thus, determinkigrequires the calculation of two
double sums that can be treated in the following way (cas€\f

k ki k k
i . +n—i+1 i1 . m+n—1+1
2 N(m — k 1 mn =N "o —k 1

Z (m +i+ )Z( . > . (m +i+ )Z( v >

i=1 x=0

The new expression foX, becomes:

KXok, m,m) =32 YOS (o)t + (k-i42)) -2 (m e 1) )

which requires the computation of terms of the tyge;_, 92=1("™*"~"*1), for ¢ =
0,1,2, or, after the change of variable— x — 4, of the following termsY; (k, m,n, z) =
Z;c;é jagr—i—1 (7”*"*].1‘”-7'), for ¢ = 0,1,2. Equation 7, combined with the identities
of the following Lemma 1 and the change of variaples j + 1 lead to Equation 5. [



Lemma 1 The following identities hold foY; (k, m,n,z), ¢ = 0,1, 2:

o Yo(k,m,n,x) =Y 075 (")

hd Yl(ka m, nv'r) = Zf;ol(Z] - (I - 1))(m+@+1)

J

o Ya(k,m,nx) = YO0 (452 - (42 — 6)j + (@ — 1)(w — 3)) (")

J

Proof.  Using the upper negation identity [9],

i, (z—1)—m—-n-1
Yo(k,m,n,x) = Z(Il)j( ST ) 8
o =2 ; (8)
7=0

Given this expression, the first statement of the lemmavidlfvom the application of the
identity related to partial sums of binomial series [9, p6]L&he two other statements of
the lemma are proved similarly using the upper negatiortiggjesnd that of the partial sum
of binomial series. ]

5 Expectation and Variance of the AUC

This section presents the expression of the expectatiomaahce of the AUC for a fixed
error ratek /N assuming that all classifications or rankings witarrors are equiprobable.
For a given classification, there may bd) < x < k, false positive examples. Since the
number of errors is fixed, there até= k — z false negative examples. The expressign
discussed in the previous section representgttiemoment ofr over all classifications
with exactlyk errors. In previous work, we gave the exact expression oétipectation of
the AUC for a fixed number of erro¥s

Proposition 2 ([4]) Assume that a binary classification task with positive examples
and n negative examples is given. Then, the expected value ofUlde A, over all
classifications witlk errors is given by:

[ P (n—m>2<m+n+1>< ko Z’;—é(’”;*”))
)

m+n 4mn m-+n Zi:o (m+"+1

x

Note that the two sums in this expression cannot be furthgplfied since they are known
not to admit a closed form [9]. We also gave the expressioh@fariance of the AUC in
terms of the functior’ defined for allY” by:

Yo (DY
F(Y) = k  (M\ M\
( Zz:O ( x ) ( x’ )

The following proposition reproduces that result:

9)

Proposition 3 ([4]) Assume that a binary classification task with positive examples

and n negative examples is given. Then, the variance of the AUgver all classifica-
x k—x x k—=x

tions with & errors is given by:o2(A) = F((1 — =2)2) — F((1 — = =))2 ¢

F( mm2+n(kfz)2+(m(m+1)mﬁl~;11(nn;7r$)(kfz))72m(k7m)(m+n+l) )

Because of the products of binomial terms, the computatfothe variance using this
expression is inefficient even for relatively small valuésroandn. This expression can
however be reduced using the identities presented in theguesection which leads to
significantly more efficient computations that we have besngiin all our experiments.



Corollary 1 ([4]) Assume that a binary classification task withpositive examples and
negative examples is given. Then, the variance of the AU®er all classifications with
k errors is given byUQ(A) _ (m+n+1)(m+n)(m+n—1)T((m+n—2)Z4—(2m—n+3k—10)Z3)+
72m2n?2
(m4n+1) (m+n)T(m? —nm+3km—5m-+2k* —nk+12—9k) Z» (m+nt1)2(m—n)*Z32
48m?2n?2 - 16m2n2 -

— With:

(m+n+1)Q1 Z1 + kQo
72m?2n? 144m?2

Zk*i (7n+n+1711)
Zi = St ey T =3((m n)? +m+n) + 2, and:
=0 x
Qo= (m+n+1)Tk* + ((=3n> +3mn + 3m + DT — 12(3mn +m +n) — 8)k + (—=3m? +
Tm + 10n + 3nm + 10)T — 4(3mn+m+n+ 1)

Q1 = Tk® + 3(m — )Tk® + ((—=3n* + 3mn — 3m + 8)T — 6(6mn + m + n))k + (—3m? +
7(m +mn) + 3mn)T — 2(6mn + m + n)

Proof. The expression of the variance given in Proposition 3 reguiihe computation
of X,(k,m,n), ¢ =0,1,2. Using the identities giving the expressionsXaf and X; and
Proposition 1, which provides the expressiokaf o2 (A) can be reduced to the expression
given by the corollary. ]

6 Theory and Analysis

Our estimate of the confidence interval for the AUC is based smple and natural as-
sumption. The main idea for its computation is the followidgssume that a confidence
interval E = [e1, eo] is given for the error rate of a classifiérover a samples, with the
confidence level — e. This interval may have have been derived from a binomialehofi
C, which is a standard assumption for determining a confideneeval for the error rate,
or from any other model used to compute that interval. Fowargerror ratee € F, or
equivalently for a given number of misclassifications, we sae the expectation and vari-
ance computed in the previous section and Chebyshev'satiggto predict a confidence
interval A, for the AUC at the confidence levél— €. Since our equiprobable model for
the classifications is independent of the model used to ctarthe interval of confidence
for the error rate, we can udé and A., e € F, to compute a confidence interval of the
AUC at the level(1 — €)(1 — ¢').

Theorem 1 Let C' be a binary classifier and let be a data sample of siz& with m
positive examples andnegative examplesy = m + n. LetE = [ey, e5] be a confidence
interval for the error rate ofC' over S at the confidence level — . Then, for anye/,
0 < ¢ <1, we can compute a confidence interval for the AUC value ofldssitierC' at
the confidence levél — €)(1 — €') that depends only oa €', m, n, and the intervalF.

Proof. Letk; = Ne; andks; = Ney be the number of errors associated to the error rates
e1 andes, and let/i be the interval i = [k1, k2]. For a fixedk € Ik, by Propositions

2 and Corollary 1, we can compute the exact value of the eapenfE[A] and variance
o2(Ay) of the AUC Ay,. Using Chebyshev’s inequality, for aiye Ix and anye;, > 0,

A
P <|Ak — E[A]] > L\@’“)) < ek (10)
whereE[A,] ando (Ay) are the expressions given in Propositions 2 and Corollamhich
depend only ok, m, andn. Leta; andas be defined by:
o(Ak)
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Figure 1:Comparison of the standard deviations for three differegthmds with: (a)n = n = 500;

(b) m = 400 andn = 200. The curves are obtained by computing the expected AUC aisteihdard
deviations for different values of the error rate using theximum-variance approach (Eq. 3), our
distribution-independent method, and the distributiepehdent approach of Hanley [10].

a1 andas only depend ok (i.e., one; andes), and onk, m, andn. LetI4 be the
confidence interval defined by = |1, as] and lete, = ¢’ for all k € Ix. Using the
fact that the confidence interval is independent of our equiprobability model for fixéd-
AUC values and the Bayes' rule:

P(Acly) = Y PAcls|K=kPK=k) (12)
kER

> > PA€ls|K=FkPK =k) (13)
kelx

> (1-¢)) PE=k>(1-¢)(1—¢) (14)

kelx
where we used the property of Eq. 10 and the definitions ofrtteevalsl; andl,. Thus,
14 constitutes a confidence interval for the AUC valueCbét the confidence levell —
€)(1—¢€).
In practice, the confidence intervalis often determined as a result of the assumption that
C follows a binomial law. This leads to the following theorem.

Theorem 2 Let C be a binary classifier, les' be a data sample of siz€ with m positive
examples and negative examplegy = m + n, and letky be the number of misclassifica-
tions ofC' on S. Assume that’ follows a binomial law, then, for ang 0 < ¢ < 1, we can
compute a confidence interval of the AUC value of the clasgifiat the confidence level
1 — e that depends only of kg, m, andn.

Proof.  Assume thatC follows a binomial law with coefficienp. Then, Chebyshev’s
inequality yields:

p(l—p) 1
— > < <
P(|C —E[C]| > n) < N S INig (15)
__ (ko _ 1 ko 1 0 H
Thus,E = [ o=y ¥t o 175)1\7] forms a confidence interval for the

error rate ofC at the confidence leva)1 — ¢. By Theorem 1, we can compute for the
AUC value a confidence interval at the leyél (1 —v/1 —¢€))(1-(1—v1—¢)) =1—¢
depending only om, m, n, and the intervaF, i.e., kg, N = m + n, ande. O
For largeN, we can use the normal approximation of the binomial law temeine a finer
interval E. Indeed, for largeV,

P(|C — E[C]] > n) < 28(2V/Nn) (16)



NAME m+n mn AUC -k Oindep Oa Odep Omax

+n m+n
pima 368 063 0.70 0.24 0.0297 0.0440 0.0269 0.0392
yeast 700 0.67 0.63 0.26 0.0277 0.0330 0.0215 0.0317
credit 303 054 0.87 0.13 0.0176 0.0309 0.0202 0.0281

internet-ads 1159 0.17 0.85 0.05 0.0177 0.0161 0.0176 8.025
page-blocks 2473 0.10 0.84 0.03 0.0164 0.0088 0.0161 0.0234
ionosphere 201 037 085 0.13 0.0271 0.0463 0.0306 0.0417

Table 1:Accuracy and AUC values for AdaBoost [8] and estimated stathdeviations for several
datasets from the UC Irvine repositorgindep is a distribution-independent standard deviation ob-
tained using our method (Theorem 2} is given by Eq. (2) with the values of, Pz, andP .y,
derived from data.oqep is the distribution-dependent standard deviation of Hafil®], which is
based on assumptions that may not always haldx is defined by Eq. (3). All results were obtained
on a randomly selected test set of sizet n.

—z2 - —VI—¢ - —VI—¢
with ®(u) = [ <Lz, Thus, B = [h — 2002 k20075

confidence interval for the error rate at the confidence lgteF e.

)] is the

For simplicity, in the proof of Theorem 2, was chosen to be a constaat & ¢) but, in
general, it can be another function/ofeading to tighter confidence intervals. The results
presented in the next section were obtained with= ag exp((k — ko)?/2a?), whereag
anda; are constants selected so that the inequality 14 be verified.

7 Experiments and Comparisons

The analysis in the previous section provides a principlethad for computing a confi-
dence interval of the AUC value of a class@rat the confidence levél — ¢ that depends
only onk,n andm. As already discussed, other expressions found in theststatiliter-
ature lead to either too loose or unsafely narrow confidenizals based on question-
able assumptions on the probability functidds and P, [10, 15]. Figure 1 shows a
comparison of the standard deviations obtained using thénman-approach (Eq. 3), the
distribution-dependent expression from [10], and ourritistion-independent method for
various error rates. For, = n = 500, our distribution-independent method consistently
leads to tighter confidence intervals (Fig. 1 (a)). It alsadieto tighter confidence inter-
vals for AUC values more tharY5 for the uneven distributiom» = 400 andn = 200
(Fig. 1 (b)). For lower AUC values, the distribution-depentlapproach produces tighter
intervals, but its underlying assumptions may not hold.

A different comparison was made using several datasetiabi@from the UC Irvine repos-
itory (Table 1). The table shows that our estimates of thedsted deviationsdjqep) are in
general close to or tighter than the distribution-depenstemdard deviatiose, of Hanley
[10]. This is despite we do not make any assumption about iftakaitions of positive
and negative examples. In contrast, Hanley's method isdbarespecific assumptions
about these distributions. Plots of the actual rankingitlistion demonstrate that these
assumptions are often violated however. Thus, the relatyaod performance of Han-
ley’'s approach on several data sets can be viewed as farsuétod is not general. Our
distribution-independent method provides tight confideimt¢ervals, in some cases tighter
than those derived from 4, in particular because it exploits the information prowidsy
the error rate. Our analysis can also be used to determihe At/C values produced by



two classifiers are statistically significant by checkinthé& AUC value of one falls within
the confidence interval of the other.

8 Conclusion

We presented principled techniques for computing usefafidence intervals for the AUC
from simple parameters: the error rate, and the negativepanilive sample sizes. We
demonstrated the practicality of these confidence intetwalcomparing them to previous
approaches in several tasks. We also derived the exactsskpneof the variance of the
AUC for a fixedk, which can be of interest in other analyses related to the AUC

The Wilcoxon-Mann-Whitney statistic is a general meastite® quality of a ranking that
is an estimate of the probability that the classifier rankaralomly chosen positive ex-
ample higher than a negative example. One could argue toataay at the top or the
bottom of the ranking is of higher importance. This, howeeentrarily to some belief,
is already captured to a certain degree by the definition @Wilcoxon-Mann-Whitney
statistic which penalizemoreerrors at the top or the bottom of the ranking. It is how-
ever an interesting research problem to determine how tarfracate this bias in a stricter
way in the form of a score-specific weight in the ranking measa weighted Wilcoxon-
Mann-Whitney statistic, or how to compute the correspogéixpected value and standard
deviation in a general way and design machine learning #gos to optimize such a mea-
sure. A preliminary analysis suggests, however, that thailzdion of the expectation and
the variance are likely to be extremely complex in that caSeally, it could also be in-
teresting but difficult to adapt our results to the distribotdependent case and compare
them to those of [10].
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