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Abstract

Most machine learning tasks are inherently multi-objective. This means that the
learner has to come up with a model that performs well across a number of base
objectives L1, ..., Ly, as opposed to a single one. Since optimizing with respect
to multiple objectives at the same time is often computationally expensive, the
base objectives are often combined in an ensemble Y, _; AL, thereby reducing
the problem to scalar optimization. The mixture weights A\ are set to uniform
or some other fixed distribution, based on the learner’s preferences. We argue
that learning with a fixed distribution on the mixture weights runs the risk of
overfitting to some individual objectives and significantly harming others, despite
performing well on an entire ensemble. Moreover, in reality, the true preferences
of a learner across multiple objectives are often unknown or hard to express as a
specific distribution. Instead, we propose a new framework of Agnostic Learning
with Multiple Objectives (ALMO), where a model is optimized for any weights in
the mixture of base objectives. We present data-dependent Rademacher complexity
guarantees for learning in the ALMO framework, which are used to guide a
scalable optimization algorithm and the corresponding regularization. We present
convergence guarantees for this algorithm, assuming convexity of the loss functions
and the underlying hypothesis space. We further implement the algorithm in a
popular symbolic gradient computation framework and empirically demonstrate
on a number of datasets the benefits of ALMO framework versus learning with a
fixed mixture weights distribution.

1 Motivation

Machine learning is inherently a multi-objective task [Jin, 2006, Jin and Sendhoff, 2008]. In most
real-world problems, a learner is required to find a model with strong performance across multiple
objectives L1, ..., L,. Committing to a single objective L}, often fails to capture the full complexity
of the underlying problem and causes models to overfit to that individual objective [Kendall et al.,
2018].

For example, the BLEU score [Papineni et al., 2002] is commonly selected as a single objective
for model training and evaluation in machine translation literature. However, it overfits to short
sentences, because it is focused on word-based n-gram precision [Duh et al., 2012]. Thus, it is often
agreed upon in the research community that machine translation models need to perform well not just
in terms of the BLEU score, but also for other metrics that measure various aspects of translation
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beyond the n-gram similarity, for example, METEOR [Lavie and Agarwal, 2007], which measures
synonym matching, or RIBES [Isozaki et al., 2010] which accounts for deviation in word order.

A well-studied approach to working with multiple correlated objectives such as those just discussed
is to estimate a Pareto-efficient frontier and seek a solution that lies on that frontier [Jin and Sendhoff,
2008, Sener and Koltun, 2018, Shah and Ghahramani, 2016, Marler and Arora, 2004]. While this
approach can provide a rigorous description of the trade-offs between multiple correlated objectives,
the estimation of the Pareto-efficient frontier is computationally expensive [Duh et al., 2012, Godfrey
et al., 2007] and scales poorly with the number of base objectives. Moreover, optimization along
the Pareto-efficient frontier typically requires computing multiple gradients for each step, which is
challenging to adapt to large-scale problems. Additionally, even when the Pareto frontier is computed,
some selection criterion is needed to choose a point on that frontier. In Section 3, we prove that our
solution is actually guaranteed to be Pareto-optimal, thus lying on the frontier. Our algorithms hence
provides a theoretical justification for selecting one of the possibly many points on the frontier.

In short, despite the multi-objective nature of machine learning, working with a vector of multiple
objectives at the same time turns out to be computationally challenging. For that reason, researchers
often combine the set of base objectives {L1, ..., L, } into a weighted ensemble £, = Y7 _, Ay Ly,
for some A in the simplex A, essentially making it a scalar function [Jin, 2006]. This allows one
to make use of efficient scalar function optimization algorithms on large-scale problems, typically
using various stochastic gradient descent techniques [Bottou et al., 2018]. However, working
with an ensemble of base objectives raises a natural question: how should we set the mixture
weights Aq,..., A, ? For example, if we define £y = A; - BLEU + A, - METEOR, should we
assume that BLEU and METEOR are equally important and set the mixture weights to be uniform
A1 = Az = 1/2? Or should we say that METEOR is significantly more important than BLEU for a
particular problem and A, should be set higher that \;?

Despite the simplicity of the questions above, there is no clear answer to how to determine the mixture
weights for multi-objective problems. Particularly, this is because there is no straightforward way to
map the requirements of a particular problem that a learner is seeking to solve to a corresponding
distribution of the mixture weights [Van Moffaert et al., 2014]. Thus, the mixture weights are
usually assigned to uniform by default. However, in many cases the uniform ensemble of objectives
can do more harm than good. This is simply because fitting models with the uniform mixture
weights can significantly hurt some of the individual objectives in the mixture. For many machine
learning applications (e.g., vision or speech), a significant decrease in performance on one objective
is intolerable even if the performance on the uniform average of objectives is improved.

One can argue that if the uniform combination of objectives is not the natural target, then we should
just set mixture weights for every problem separately based on the relative importance of each of the
base losses. However, this is still not satisfactory, because the learner’s preferences are often shifting
over time, they may be unobservable in some cases or even unknown. It is also often the case in the
machine learning industry that when several parties develop a model for a particular multi-objective
problem, their preferences for the base objectives are conflicting with each other.

Given these challenges of working with a fixed mixture-weight distribution, we argue that the natural
goal of a learner with multiple objectives {L1, ..., L,} has an agnostic nature. That is, a learner
wishes to obtain a model that performs well for any possible combination of mixture weights in the
ensemble £ = > ¥ _, \.Ly. Such a goal is also risk-averse, since a model that is robust against any
combination of ensemble weights is also robust against their worst (adversarial) combination.

Thus, we propose a new framework of Agnostic Learning with Multiple Objectives (ALMO) inspired
by the Agnostic Federated Learning algorithm [Mohri et al., 2019], where the underlying model is
optimized for any possible distribution of the mixture weights in the ensemble £y = Y1 _; ALk
Instead of optimizing the model for a fixed distribution of Ay, . .., Ay, with the high risk of over-fitting
to a subset of the base objectives, we define the agnostic loss function that ensures that the model
performs well against any mixture, including the worst-case mixture values. Thus, the ALMO
framework closely matches the learning setting used by most real-world ML practitioners, who often
seek to deploy a model that is robust against any mixture of base objectives and that does not need to
be frequently retrained when the base objective preferences shift.

We give data-dependent generalization bounds based on the Rademacher complexity of the underlying
loss functions, which are then used to define the optimization algorithm and the regularization for the



problem. We suggest an efficient optimization algorithm for the ALMO setting that is inspired by
the generalization bounds derived in this paper. The algorithm can be applied in a straightforward
manner across multiple tasks, since it is based on stochastic gradient descent and can be implemented
in popular symbolic gradient computation platforms, including TENSORFLOW [Abadi et al., 2016],
KERAS [Chollet et al., 2015] or PYTORCH [Paszke et al., 2019].

We conducted a series of experiments on several datasets that demonstrate the benefits of the ALMO
framework versus learning with a uniform mixture weights distribution. The experiments also show
that the ALMO framework provides a generally robust model that performs better than baselines
on metrics that are not even included in the original set of base objectives. Moreover, while the
algorithm’s convergence bound holds for convex hypothesis spaces, we show that the ALMO
framework provides robust models even for non-convex hypothesis classes, such as Deep Neural
Networks.

The rest of the paper is structured as follows. In Section 2, we formally describe the ALMO framework,
define the agnostic multi-objective loss function, and discuss the connection of our solution to the
Pareto-optimal frontier. In Section 3, we derive the sample-dependent Rademacher complexity
bounds for the ALMO framework. In Section 4, we put forward a stochastic gradient-descent-based
algorithm inspired by the generalization bounds. In Section 5, we describe our experimental setting
and provide empirical results.

2 Learning Scenario

In this section, we introduce the formal learning scenario of the ALMO framework. We define the
agnostic loss function and argue that by optimizing this loss, the learner obtains a model that is robust
against any mixture weights distribution in the ensemble £y = > 7 _; ALy

We consider the supervised learning setting, in which the learner receives a labeled sample S =
((x1,91), -+, (Xm, Ym)) drawn i.i.d. from some distribution D over X x ), where X’ denotes the
input space and ) denotes the output space. Let H be the hypothesis space and [: YV x V) — R,
a loss function. The loss of h € H for a labeled instance (x,y) is £(h(x),y), and its expected loss
L(h) = E(g4)~p [{(h(z),y)]. In a standard supervised learning scenario, the goal of the learner is
to find a hypothesis with small expected loss.

However, as discussed in the previous section, the majority of learning applications require optimizing
over a number of objectives (loss functions) at the same time. In such cases, the learner has access to
a set of p base loss functions {l1,...,1,}. Forany h € H, these base loss functions have expectations
{L1(h), ..., Ly(h)}, where Vk: Ly (h) = Eq yyop [lx(h(7),y)]. The goal of the learner is to
obtain a hypothesis h € H that performs well across any weighted combination of the expected base
losses L (h) = > 1y AeLi(h), for some A € A,

In this paper, we focus on a scenario where the base loss functions come from different functional
families. However, another scenario where the base losses represent the application of a single loss
function on different output domains i.e. multi-task learning is also relevant to our work. Particularly,
Kendall et al. [2018] work in a setting where the base losses are the applications of Gaussian likelihood
on distinct domains. Thus, they learn the /o parameter as mixture weights in the linear ensemble
of Gaussian densities. The work of Chen et al. [2018] points out that when the same objective
function is applied to different domains, it can have different magnitudes, which is a challenge for
gradient-based optimization methods. They suggest the GRADNORM algorithm that dynamically
scales gradients in different output subspaces. GRADNORM can be used as a subroutine in our
optimization problem, however, directly normalizing the base losses was sufficient for experiments in
this paper.

We assume that the learner has a defined boundary set of preferences over the mixture of objectives
that can be described by a convex subset A C A,,. However, the true mixture coefficients A within A
are unknown. Thus, the learner seeks a solution that is favorable for any possible A € A. Therefore,
we define the agnostic multi-objective loss L (h) associated to a predictor h € H and a subset
A C A, as follows:

La(h) = I/{leafﬁ,\(h)- (D



The goal of the learner is to find hy € H solution of the following optimization problem:

zréi% La(h). (2)

To determine the best hypothesis, a sample estimate of the agnostic multi-objective loss £ (h) is
needed. Thus, we define the empirical agnostic multi-objective loss L (h) as follows:

R 2 N D 1™
La(h) = r@(’; ALy (h) = max kz_:l Ae— ; O (h(4), i) 3)

We will show in Section 3 that, with high probability, £4 (k) is bounded by £ (h) and other terms
depending on the Rademacher complexity of the underlying function class.

Assume that the hypothesis set H is parameterized by a vector w € W, thus h € H can be denoted
as h,,. The (unregularized) optimization problem of the learner can formulated as follows:

min maxZ/\kE ng(hw(fi)’yi) )
1

Ek (hw)

Given a number of standard assumptions on W, A and the base loss functions, the optimization
problem above is convex, and can be solved using gradient-based algorithms, as we show in Section 4.

2.1 Relationship with the Pareto-Optimal Frontier

In this section, we discuss the connection between the ALMO loss function and the Pareto frontier. In
particular, we will show that the solution of the ALMO loss function is a point on the Pareto-optimal
frontier.

The Pareto-optimal frontier is the set of feasible loss tuples (¢1(h),...,¢,(h)), h € H, that are
not strictly dominated by some other feasible tuple. The function h € H, or the corresponding

tuple (¢1(h),...,¢p(h)), is strictly dominated by h' € H, if {5 (k') < £ (h) for all k € [p] with
¢;(h") < £;(h) for at least one index j € [p].

The following proves a key property of our agnostic solution, when it is unique. Note that the solution
is unique, for example, for strictly convex losses.

Proposition 1. Assume that the agnostic solution is unique, then it is Pareto-optimal.

Proof. Assume that h* € H is a minimizer of the ALMO objective for {¢1,. .., ¢,}. That s, for all
heH,

p p
min £a(h) =D Nple(h*) < 3 Aili(h),
k=1 k=1

for some A* € A. Let &' be a strictly dominating point for h*. That is, Vk € [p], £i(h') < €5 (R*),
with £;(h") < £;(h*) for at least one j € [p]. Then, if A} = 0 for any j such that £;(h") < £;(h*),
then, ¢;(h") = £;(h*) for other indices I and L4 (h') = L (h*). Since the solution is unique, we then
have b’ = h*.

Otherwise, we must have:
p p
kz_:l Nl (W) < kz_:l Nl (™) = min Ly (h),

which, in view of the definition of minimality of h*, implies that A’ is not in H, that
(L1(h), ..., L,(R")) is not a feasible point, and that h* is Pareto-optimal. O

Note that the uniqueness assumption of the theorem can be relaxed. In particular, it is not hard
to show, using the same proof, that it suffices that there is an optimal A\* with A7 # 0 for all j to
guarantee that any agnostic solution is pareto-optimal.
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Figure 1: Illustration of the connection between the ALMO loss and the Pareto-optimal frontier. Left: two
losses in a parameterized function space. The minimum of the ALMO loss is indicated by the purple lines;
middle: the Pareto-optimal frontier. ¢; corresponds to the blue function in the left plot, /2 corresponds to the red
function; right: the optimal frontier indicated in the function space. See text for further explanation.

We illustrate the connection between the Pareto-optimal frontier and the optimizer of the ALMO loss
with the plots in Figure 1 for two losses ¢; and /5. The leftmost plot in Figure 1 illustrates the two
losses, ¢1 in blue and ¢5 in red as a function of the parameterized function space. For a given function
h along the x-axis, the convex combination of the losses A\¢1(h) + (1 — X)¢2(h) attains its maximum
with respect to \ at the value max{¢; (h), ¢2(h)}, circled in violet, with a value of A € {0, 1}. The
darker the violet color, the larger the value of the ALMO objective. The minimum over h € H of
the ALMO objective is attained for 9L (h)/OA = 0, which is at the crossing point 1 (h*) = 2(h*)
of the loss curves indicated by the crossing lines. At a crossing point, any value of \ attains this
minimum, a natural choice is to pick the A corresponding to uniform weights.

In the middle plot we illustrate the corresponding Pareto-optimal frontier of the points ({1, ¢5) in
green and indicate the ALMO solution. Finally, in the rightmost plot we tie back the Pareto-optimal
frontier to the plot of the losses.

3 Learning Guarantees

In this section, we derive learning guarantees for the ALMO framework that rely on the Rademacher
complexity of the family of loss functions and the mixture weights A. The bounds that we show, being
data-dependent, will motivate a scalable algorithm for the minimization of the agnostic multi-objective
loss. The algorithm is presented in Section 4.

Let G denote the family of the losses associated to a hypothesis set H: {G : (x,y) — £(h(z),y) :
VYh € H}. Typically, generalization analysis in similar cases involves bounding the sample
Rademacher complexity of G, that is

E/y\{S(g) p lSUD — Zaz Yi 1 ’ (5)

heH M

where 0;-s, i € [m], are independent uniformly distributed random variables taking values in
{-1,+1}.

However, the agnostic multi-objective loss £ (h) contains a maximum over A\ € A, which causes
additional complication. For the proper analysis, we need to extend the definition of the sample
Rademacher complexity by including the A\ terms as follows:

(g A) 2z lsup Z )\k— Z oili(h )] . (6)

heH v

By using DA%S (G, \) in the theorem below, we show the connection between the theoretical and
empirical agnostic multi-objective losses L4 (h) and £ (h). The theorem below is based on common
steps in Rademacher complexity bound proofs [Koltchinskii and Panchenko, 2002, Hoffman et al.,
2018, Mohri et al., 2012]. Additionally, for the theorem below, we assume that V(z, y), (2’,y') €
X x Y, Yh e H:||(h(z'),y") — (h(x),y)|| < Dy. This holds for all bounded hypothesis classes.

For example, for the case of binary classification Dy = O(v/C'), where C is the number of classes.



Theorem 2. If the loss functions (), are My-Lipschitz and bounded by M, then for any ¢ > 0 and
0 > 0, with probability at least 1 — 0, the following inequality holds for Vh € H and V) € A:

La(h) < La(h) + 2%5(G, >\)+M6+DHZ)\kMk ilog {'Aﬂ o
k=1

where A, is an minimum e-cover of A.

The proof of Theorem 2 is given in Appendix B.1 The bound in Theorem 2 is a function of A. To make
it uniform with respect to A, we first observe that when ¢}, are M},-Lipschitz, by a direct application
of Talagrand’s contraction Lemma [Ledoux and Talagrand, 1991], the following holds:

p
$(G:0) <Y M MR (H) ®)
k=1

Thus, the only terms that are A-dependent in the bound are of the form Y % _, A, Mj,. This naturally
leads us to control the complexity by imposing a regularization of the form 22:1 A My < B, which
leads to the following generalization bound for the agnostic multi-objective loss.

Theorem 3. Let the loss functions ¢, be My-Lipschitz and bounded by M. Assume YA € A :
Sh_i MMy < B, then for any € > 0 and 6 > 0, with probability at least 1 — §, the following
inequality holds for Vh € H.:

~

Lalh) < Ea(h) + 2% () + Me+ 8Dy | o1 log [AH . ©)

The bound of Theorem 3 shows that, with high probability, the agnostic multi-objective loss L (h) is
bounded by the empirical agnostic multi-objective loss L A (h) and the sample-dependent complexity
terms. The bound suggests that the learner in the ALMO framework should seek to find a hypothesis
h € “H that provides the best trade-off between the empirical loss L A(h) and the Rademacher
complexity. This means that the learner seeking to minimize £ (h) should minimize its empirical

estimate £, A(h) and apply a regularization to control the complexity terms. The bound suggests that
the regularization should connect the properties of the constraint set A and the Lipschitz properties
of each individual base loss function in the form ZZ=1 A My, < . This means that the ALMO
algorithm should control the Mj,-weighted norm of the mixture weights vector A. Note that, for
the cases where it is nontrivial to estimate the individual Lipschitz constants My, our theory allows
us to use a simplified regularization ||Al|, < S for some g-norm || - ||,, which will also control
> _ Ak My, for bounded loss functions.

4 Algorithm

In this section, we describe the algorithm for the ALMO framework and the regularization inspired
by the learning guarantees derived in Section 3. Moreover, we derive the convergence guarantees
for the algorithm, which demonstrate that it scales well to large problems. To emphasize that for the
optimization purpose w € YW and A € A are real-valued vectors, we will use bold symbols for the
pair (w, A).

4.1 Regularization
The generalization bounds of Section 3 suggest minimizing the agnostic empirical loss L A(h), while

controlling for the complexity of hypothesis class H. This naturally translates into the following
regularized minimization problem in the ALMO framework:

P
i Ly(h h e My, 10

min | max A(h) + Bl ||H+52; kM, (10)

where (1, B2 > 0 are regularization parameters and || - || is a norm defined on the hypothesis space

‘H. Note that, since LA)\ (h) is linear in \, we have replaced maxxea by maxxcconv(a)-



Algorithm 1 ALMO. Initialize: wg € W, A € o7
A. Set step size Y, Yaw-

fort € [1,T] do
wy < Iy |wi—1 — YwwL(Wi_1, At—l)}
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Figure 2: DNN training dynamics of mixture weights
A, on MNIST. Weights are logged at the end of each
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Given a number of commonly used assumptions, the regularized problem in Equation 10 is convex.
Assuming that the base loss functions 1, . .., ¢, are convex in the first argument ensures that £ (h)

is convex as well. Since the norm A4 is convex, then Ly (h) + B1]|k|7 is a convex function of h.
The maximum over X of convex functions is a convex function itself. Thus, for a convex hypothesis
space H the problem in Equation 10 is convex.

4.2 Optimization

The optimization problem of Equation 10 can be solved using projected gradient descent or more
generally any mirror descent algorithm [Nemirovsky and Yudin, 1983]. For large-scale problems, we
suggest to use the Stochastic Mirror-Prox gradient descent algorithm [Juditsky et al., 2011]. For the
specific optimization problem presented in this paper, the Mirror-Prox algorithm admits a simplified
form and can be implemented in common machine learning software that relies on symbolic gradient
computation.

Assuming that the hypothesis set H is parameterized by a vector w € W, we can simplify the notation

to emphasize that the optimization is performed over (w, ). Let L(w) = L 3" U(hy (2;), yi),
then L(w, ) = > ¥_, ALi(w). It is sufficient to present the algorithm for the unregularized
problem
min max L(w, A), (11)
weWw AeA

which can be extended in a straightforward manner to include the regularization term for w and .
Specifically, when a convex regularization term is added to the loss, without changing the constraint
sets W and A, the problem is still convex.

Note that the problem above admits a game-theoretic interpretation. This is a two-player adversarial
game, in which the first player chooses A € A to maximize the objective in Equation 11, while the
second player chooses w € WV to minimize the loss. Thus, solving the optimization problem above
provides the equilibrium of the two-player game.

Let Vw L(w, A) be the gradient of the loss function L(w, X) with respect to w and VL(w, A) be
the gradient with respect to A. Let dw L(w, A) and 65 L(w, A) be the unbiased stochastic estimates
of these gradients with respect to w and A. The Mirror-Prox descent adapted to the learning with
multiple objectives problem obtains stochastic gradient estimates dyw L(w, A) and dx L(w, ) at each
step t € [1,T] and then updates (wy, A;). After each update, the projections ITyy and II5 onto W
and A respectively are computed. If A = A, then we can efficiently compute these projections
[Duchi et al., 2008]. The pseudocode for the ALMO optimization algorithm is given in Algorithm 1.

4.3 Convergence Guarantees

We can show favorable convergence guarantees for the ALMO algorithm using a number of common
assumptions, including the convexity of L(w, A) in the first argument.



Theorem 4. [See Appendix B.2 for the proof.] For (w,\) — L(w,X) convex in its first argu-
ment, assume the following: Yw € W YA € A: ||wll2 < D, || A2 < Da, |[VwL(w,A)]l2 <
Gw, IVAL(W,X)||2 < Gx. Let the variance of unbiased stochastic gradients be bounded by o2,

2 4 ; _ 1 _2Dw — 1 _ 2Dy ;
and o3 respectively. Then, for step sizes w VT Jor 4G, and 7y VT ol the following

convergence guarantees hold:

1
— mi W — 2 2 /52 2
E meaxL(wT,)\) min max L( ,)\)] < \F<3DW\/JW + G2, + 3D/ 05 +g>\>~ (12)

weW AeA

S Experiments

The experiments presented in this section illustrate the benefits of the ALMO framework combined
with the generalization guarantees derived in Section 3 and the stochastic algorithm in Section 4.
Our experiments serve to illustrate the application of our novel agnostic learning formulation and to
support the claim that our algorithm provides more robust results than training with a fixed mixture
of base objectives. We present results for convex models and deep neural networks to demonstrate
that our algorithm performs well even for non-convex hypothesis classes. The ALMO optimization
algorithm is implemented in TENSORFLOW [Abadi et al., 2016] and KERAS [Chollet et al., 2015].

For the base losses /1, ..., {,, we use a variety of common training loss functions, each having its
own advantages and drawbacks. For example, the Zero-One loss function often results in robust
models when the data contains outliers, but it underperforms when the data is concentrated near
decision surface [Zhao et al., 2010]. The opposite usually applies to the hinge loss function. To solve
a complex machine learning problem, the learner would wish to combine multiple loss functions,
making use of their strengths and mitigating weaknesses. For the experiments, each base objective ¢
(see Appendix, Table 3) is normalized so that M} < 1 and hence M = 1.

For every dataset, we train a model by minimizing the empirical agnostic multi-objective loss L
objective and we benchmark it against p models trained with each individual k-th base loss function
for k € [1, p]. We also include a model trained with fixed uniform mixture weights A\, = 1/p. Note,
we do not include techniques based on searching the Pareto-efficient solutions for the mixture of
losses, since the end goal of these frameworks is distinct from that of ALMO, in particular, a specific
point still needs to be subsequently selected on the Pareto curve. For the connection between the two
frameworks, see the discussion in Section 2.

The models are compared on MNIST [LeCun and Cortes, 2010], Fashion-MNIST [Xiao et al.,
2017] and ADULT [Dua and Graff, 2017] datasets with standard feature preprocessing techniques
applied. We report results for two model architectures: a logistic regression and a neural network
with dimensions 1024-512-128. For both models, we run hyper-parameter tuning with a parameter
grid size 50 on a validation set, which is 20% of the training data.

We report the average values of the cross-entropy, zero-one, hinge and 1-norm losses in Tables 1 and
2. We also report the AUC (area under the ROC curve), which was not included in the training losses.
The standard deviations are obtained by retraining every model 3 times.

Experimental results support our claim that the ALMO framework improves the model for the worst
performing loss. The hinge loss is often observed with a significant loss value and, as illustrated in
Figure 2, the corresponding A attains a high value. In the appendix, we provide results from training
on just one loss at a time and discuss the improvements of ALMO as compared to that baseline.

The resulting model is robust and avoids selecting a specific set of mixture weights for training. It
also performs better than the baseline in terms of AUC on all datasets, while AUC was not used
for training. Additionally, the ALMO algorithm can be used as a tool for the selection of base
objectives (e.g., AutoML), as ALMO during training increases the mixture weights for the worst
performing base losses, while the others are decreasing (see Figure 2). As expected, losses trained
with a higher mixture weight show an improvement compared to the uniform case. Even for cases like
cross-entropy in the DNN-MNIST configuration (see Table 2), the algorithm balances the 1-norm loss,
and AUC shows a more robust model. Note the significant improvement in AUC for the DNN-Adult
dataset, which may be related to the dramatic decrease of the hinge loss. Finally, as shown in both
tables, ALMO does not select to optimize the 1-norm loss, assigns it a low mixture weight and does
not improve over uniform.



Table 1: Comparison of loss functions for logistic regression model on the test set.

MNIST Fashion MNIST Adult
Uniform ALMO Uniform ALMO Uniform ALMO

Cross-entropy  0.1412 0.0726 0.1011 0.0716 0.680 0.501

(std) (0.0004)  (0.0005) (0.0002) (0.0002) (0.002)  (0.008)
Zero-one 0.143 0.114 0.1836  0.1789  0.224 0.214
(std) (0.003)  (0.002)  (0.0005) (0.0008) (0.002)  (0.002)
Hinge 0.839 0.711 0.633 0.695 0.967 0.518
(std) (0.003)  (0.005)  (0.009)  (0.011)  (0.004)  (0.021)
1-norm 02349  0.6587  0.488 0.672 0.250 0.871
(std) (0.001)  (0.007)  (0.008)  (0.005)  (0.003)  (0.056)
AUC 00801  0.9877 09776 _ 09794  0.3291  0.8321
(std) (0.0002)  (0.0002) (0.0007) (0.0001) (0.0018)  (0.0003)

Table 2: Comparison of loss functions for DNN model on the test set.

MNIST Fashion MNIST Adult
Uniform ALMO Uniform ALMO Uniform ALMO

Cross-entropy  0.044 0.045 0.0700 0.0614 0.673 0.460

(std) (0.003)  (0.005)  (0.0005) (0.0009) (0.001)  (0.003)
Zero-one 0.0158  0.0153  0.114 0.110 0.149 0.159
(std) (0.0004)  (0.0002) (0.003)  (0.004)  (0.002)  (0.002)
Hinge 0.631 0.752 0.661 0.547 0.914 0.389
(std) (0.002)  (0.041)  (0.004)  (0.008)  (0.001)  (0.006)
1-norm 0.436 0.313 0.435 0.554 0.153 0.845
(std) (0.002)  (0.038)  (0.006)  (0.0010) (0.001)  (0.022)
AUC 0.9986 09993 00883  0.9911  0.3092  0.8840
(std) (0.0002)  (0.0001) (0.0002) (0.0005) (0.0004) (0.0031)

6 Conclusion

We introduced a new framework (ALMO) for multi-objective learning that is robust against any
mixture distribution of the base objectives, hence avoiding the subjective step of selecting mixture
coefficients for multi-loss training. We have given a detailed theoretical analysis and a learning
algorithm motivated by the theory. The algorithm is based on stochastic gradient descent, therefore
applicable to a wide range of large-scale domains and can be easily implemented in popular computa-
tional frameworks. The experiments show that the ALMO framework builds more robust models for
a variety of objectives in different machine learning problems. The agnostic framework introduced
here is directly applicable and beneficial not only to standard supervised learning settings, but also to
other scenarios where a learner is seeking to combine multiple objectives, such as transfer learning
and domain adaptation.

Broader Impact

This paper presents a novel approach for learning with multiple losses. The algorithm is robust in
the sense that it optimizes for the most adversarial mixture of the included losses. It furthermore
demonstrates good performance on losses not included in the optimization. This is an important
problem from a fairness perspective, where multiple losses are often at play and different interest
groups may disagree on what loss to optimize for. An illustrative example is the analysis of the
COMPAS tool for predicting recidivism by Angwin et al. [2019] demonstrating how different interest
groups would have wanted to optimize for different losses. Not all losses can be optimized for
simultaneously, as proven by Kleinberg et al. [2017], but to the extent that this is possible, our
algorithm provides a step in the direction of guarding against the most unfavorable condition.
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A Losses

Table 3 lists the losses used for training.

Table 3: Base loss functions used for experiments.

Base loss function  ¢(h(x),y)

0, ifyh(x)>0

Zero- lh =

ero-One ! {1, if yh(z) < 0

. 0, ifyh(z) > 1
H l =

mnee 2 {max((), 1 —yh(z)), ifyh(x)>1
Norm ¢ I3 = |[h(z) =yl
Cross-Entropy s =log(1 + exp(—yh(x)))

B Proof of Theorems

B.1 Proof of Theorem 2

If the loss functions ¢;, are M}-Lipschitz and bounded by M, then for any € > 0 and § > 0, with
probability at least 1 — 4, the following inequality holds for Vh € H and VA € A:

ﬁ,\(h) < E,\(h) + ng(g /\) +M€+DHZ/\kMk 710g |:|1}|6:| (13)

where A, is an minimum e-cover of A.

Proof. For any A € A and sample S = {(21,y1),...,(@m,Ym)}, let U(S) = supycqy La(h) —
L (h). Let S” be a sample different from .S by only one point (2',y’), then

v(s) - w(9) = sup [La(h) = LA(B)] — sup [£A(h) = Lx(1)]

< sup [La(h) — L)\ (h) — LA(h) + EA(h)]
heH

— sup [Lx(h) — Lo(h)]
heH

prMfZ@ YD =D N > (i) )]

heH 2 k=1 i—1

= — sup Z Ak (O (P2, 97)) — L (h(i), vi)

m heH |

%wzymw<nwkmmmm

hE’Hk 1

I /\

P
— sup MM Dy
m heH ;

Dy &
—Z)\kMk.
m k=1

IN

IN

By McDiarmid’s inequality, for any 6 > 0 with probability at least 1 — § for any h € H:

. ~ u 1 1
< - — .
Lx(h) < La(h) +E [SEE L(h) — LA(h)] + Dy kZ:l A My / 5 log
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The inequality above holds for a particular value of A fixed in advance. Using the union over the
minimum e-cover A, with probability at least 1 — § forany A € A, and h € H:

p
~ ~ 1 |Ac]
h) < La(h) +E h) — Lx(h DEAMU—I )
Lx(h) < Lx(h) + [sggﬁk() Lx(h)] + Hk:l kM| 5~ log =

Using the definition of the minimum e-cover, and also recalling that E [ supj, ¢4, £2(h) — L (h)] <
ﬁs(g, A), with probability at least 1 — § forany A € A and h € H:

P
—~ ~ /1 A

k=1

A
5

p
~ 1
k=1

B.2 Proof of Theorem 4

For L(w, ) convex in the first argument, assume Vw € W,V € A : |[w]j2 < Dy, ||All2 <

Da, IVwL(w, A2 < Gw, [[VAL(W,A)||l2 < Ga. Let the variance of unbiased stochastic gra—

dients be bounded by o2, and o3 respectively. If the step sizes are yy = \/1» \/%

1 2Dy

™= 7 T /o2 +00 then the following convergence guarantees apply for the ALMO algorithm:
1
E r)r\lg/}\(L(wT, A) — v{/rg\r/lv r)[\lEaXL(W )\)} < ﬁ <3DW\/U\2~ + G2 + 3Dy /o3 + g?\) (14)
Proof.

RV = R D) = g v )~ S, B )

< L A) — min L(w, X
< o 2w ) g Lo,

=  max [L(WT, A) — L(w, )\T)}
AeA,weW

1
< = L(
= ;Anszéw[Z (i)~ L)

The last inequality follows from the convexity in w. Given the resulting inequality above, the next
step is to bound the difference L(w, \) — L(w, A;) for each ¢ € [1, T'], using the standard techniques
in convex optimization proofs.

L(wg, A) — L(w, Ap) tsA) — L(w, Ap) + L(wye, Ae) — L(w, Ay)
— A)VaL(we, Ay) + (Wi — W)V L(wi, Ap)
— A)0AL(wi, Ae) + (W — W)Iw LWy, A¢)
— X)(VAL(Wi, A) — O3 L(wye, Ar))

— W) (VwL(we, Ar) — dwL(We, Ar))

+ + IANIA
»992
<

E
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Given the bound on L(wy, X\) — L(w, A;) we can obtain the following series of inequalities:

Ae%l,?v)éw {ZL Wi, A) = L(w, Ae)
T
<\ Jpax ;(A — A)OAL(We, M) + (Wy — W) L(wye, Ap)
A

T
+max Y A(VAL(Wi, Ar) = O3 L(we, Ar)) = W(Vw L(Wi, Ap) — 0w L(Wi, Ar))

AEA,WEW i
B
T
+ Z )\t(V)\L(Wt, At) — (5}\L(Wt, At)) — Wt<va(Wt, At) — 5WL(Wt, )\t))
t=1

c

To complete the proof, we need to bound each of the terms A, B, C' in the sum above and take
expectation. First, we show the bounds on A as follows:

T _
E A— X)L A
[Ae%f}v}éwg( )0 L (W, t)_

and

T -

which can be obtained in a similar way. Consider the following series of inequalities:
(Wt — W)(SWL(Wt, >\t)
T

1
TZIIW w13 + 7o 0w L(wi, A)I5 = [[Wi — wdw L(we, Ar) — wll3
Wt 1

| /\

27 ZIIW Wil + v llow L(we, A1 = [[wesr — w3

1
= Wllwl — w3 — Wiy — wif + 2 Z 16w L(we, Ao)|3
1
Sﬁllwl w3+ ZII(S L(ws, )13
2Ry

IN

e + *Z 16w L(we, Ad) 13

2R
TW + Z 16w L(W, At) — Ve L(We, At) + Ve L(wi, A |12

IN

Taking the maximum of both sides with respect to w and the expectation yields

T
1 [/ 4D?
E [Aeﬁfi’éw;(wf — W)dw L(wy, )‘t)} < 2( wa +vwlog, +1wTGs, )
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and a repeating the same steps for A we obtain

T
1/4D% 9 9
E |:/\€I/{}3v>éw tz::l(A — )\t)(SAL(Wt7 >\t):| < 5 <’y)\ + ’VATO'A + WATQ/\

Next, we bound B in the following way:

T T

AGIK}%V)@W; AVAL(We, A) — 62 L(We, Ap)) < Ryl ; AVAL(We, Ap) — OrL(we, Ap)||2

After we take expectation of both sides, we get

T
— <
E L\GII{(}?‘])&W;)\(V,\L(M,&) 5AL(wt,)\t))} < DaVToy

and in a completely similar way we can derive that

T
E Léﬁlﬁ‘v}é W t; W(VwL(wi, Ar) — 6w L(wy, At))] < DwVToy, (15)

For the term C, it directly follows from the unbiased stochastic gradients that E[C] = 0. If we

combine the bounds on A, B, C that we derived above and let the step sizes be vy = % \/%
UW w
O

_ 1 _ 2Dy . . .
and v = VY=ol we immediately obtain the final result.
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Table 4: Comparison of logistic regression models trained with individual losses for the MNIST dataset.

Model / Metric  Zero-one  Hinge Cross-entropy  AUC

One Loss 0.0747 - - -

(std) (0.0001) - - -

Hinge - 0.0656 - -

(std) - (0.0002) - -
Uniform 0.1187 0.5550 0.0911 0.9859
(std) (0.0020)  (0.0005)  (0.0005) (0.0004)
ALMO 0.1030 0.9228 0.0489 0.9905
(std) (0.0020)  (0.0050)  (0.0005) (0.0002)
A 0.0000 0.0478 0.8042 -

Table 5: Comparison of logistic regression models trained with individual losses for the Fashion-MNIST dataset.

Model / Metric ~ Zero-one  Hinge Cross-entropy  AUC

Zero-one 0.1603 - - -

(std) (0.0005) - - -

Hinge - 0.0958 - -

(std) - (0.0006) - -
Uniform 0.1814 0.5431 0.0932 0.9786
(std) (0.0005)  (0.0035) (0.0002) (0.0003)
ALMO 0.1774 0.4078 0.0683 0.9800
(std) (0.0008)  (0.0011)  (0.0002) (0.0001)
A 0.0000 0.1043 0.6410 -

C Additional Experiments

In this section, we present additional baseline studies to further highlight the benefits of the proposed
ALMO algorithm. As baselines, we train with just one loss at a time and compare the ALMO
performance to this per-loss optimal performance. This experimental setup is the same as the one
detailed in the main section, but the realizations of the split of the data differs, which accounts for the
small performance differences as compared to the tables in the main section.

In these tables, the boldfaced numbers indicate the performance of a classifier trained just for that
loss. The ALMO algorithm often achieves a performance close to these values, without sacrificing
any loss significantly. The mean values of the corresponding (un-normalized) A-s are also reported to
illustrate the weight ALMO assigns to the given loss. In a few cases, especially on the Adult dataset,
the ALMO algorithm appears to be performing even slightly better than the baseline. We attribute
this discrepancy to the non-convexity of the optimization problem and the small size of the Adult
dataset.
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Table 6: Comparison of logistic regression models trained with individual losses for the Adult dataset.

Model / Metric  Zero-one  Hinge Cross-entropy  AUC
Zero-one 0.1849 - - -

(std) (0.0007) - - -

Hinge - 0.4146 - -

(std) - (0.0001) - -
Uniform 0.2001 0.8624 0.6320 0.8378
(std) (0.0008)  (0.0067)  (0.0033) (0.0004)
ALMO 0.1938 0.4085 0.4232 0.8409
(std) (0.0020)  (0.0021)  (0.0080) (0.0003)
A 0.0000 0.1317 0.0000 -

Table 7: Comparison of DNN models trained with individual losses for the MNIST dataset.

Model / Metric ~ Zero-one  Hinge Cross-entropy  AUC
Zero-one 0.0215 - - -

(std) (0.0022) - - -

Hinge - 0.0132 - -

(std) - (0.0002) - -
Uniform 0.0168 0.6255 0.0437 0.9984
(std) (0.0013)  (0.0031)  (0.0008) (0.0004)
ALMO 0.0143 0.0092 0.0397 0.9996
(std) (0.0001)  (0.0001)  (0.0040) (0.0001)
A 0.0001 0.3893 0.1905 -

Table 8: Comparison of DNN models trained with individual losses for the Fashion-MNIST dataset.

Model / Metric ~ Zero-one  Hinge Cross-entropy  AUC
Zero-one 0.1137 - - -

(std) (0.0010) - - -

Hinge - 0.0595 - -

(std) - (0.0016) - -
Uniform 0.1111 0.6603 0.0695 0.9889
(std) (0.0025)  (0.0030)  (0.0005) (0.0006)
ALMO 0.1077 0.1085 0.0374 0.9908
(std) (0.0035)  (0.0030)  (0.0008) (0.0005)
A 0.0000 0.1779 0.5199 -

Table 9: Comparison of DNN models trained with individual losses for the Adult dataset.

Model / Metric  Zero-one  Hinge Cross-entropy  AUC
Zero-one 0.1564 - - -

(std) (0.0018) - - -

Hinge - 0.5349 - -

(std) - (0.0176) - -
Uniform 0.1483 0.9123 0.6707 0.8093
(std) 0.0003 0.0001 0.0005 (0.0108)
ALMO 0.1450 0.3043 0.4437 0.8716
(std) 0.0020 0.0000 0.0000 (0.0021)
A 0.0000 0.0000 0.0000 -
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