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Abstract

This paper examines two-stage techniques for
learning kernels based on a notion of alignment.
It presents a number of novel theoretical, al-
gorithmic, and empirical results for alignment-
based techniques. Our results build on previous
work by Cristianini et al.(2001), but we adopt
a different definition of kernel alignment and
significantly extend that work in several direc-
tions: we give a novel and simple concentration
bound for alignment between kernel matrices;
show the existence of good predictors for ker-
nels with high alignment, both for classification
and for regression; give algorithms for learning a
maximum alignment kernel by showing that the
problem can be reduced to a simple QP; and re-
port the results of extensive experiments with this
alignment-based method in classification and re-
gression tasks, which show an improvement both
over the uniform combination of kernels and over
other state-of-the-art learning kernel methods.

1. Introduction

Kernel-based algorithms have been used with great
success in a variety of machine learning applications
(Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini,
2004). But, the choice of the kernel, which is crucial to
the success of these algorithms, has been traditionally en-
tirely left to the user. Rather than requesting the user to
select a specific kernel, learning kernel algorithms require
the user only to specify a family of kernels. This family
of kernels can be used by a learning algorithm to form a
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combined kernel and derive an accurate predictor. This is
a problem that has attracted a lot of attention recently, both
from the theoretical point of view and from the algorithmic,
optimization, and application perspective.

Different kernel families have been studied in the past, in-
cluding hyperkernels (Ong et al., 2005), Gaussian kernel
families (Micchelli & Pontil, 2005), or non-linear families
(Bach, 2008; Cortes et al., 2009b). Here, we consider more
specifically a convex combination of a finite number of ker-
nels, as in much of the previous work in this area.

On the theoretical side, a number of favorable guarantees
have been derived for learning kernels with convex combi-
nations (Srebro & Ben-David, 2006; Cortes et al., 2009a),
including a recent result ofCortes et al.(2010) which gives
a margin bound for L1 regularization with only a logarith-
mic dependency onp, the number of kernelsp: R(h) ≤
R̂ρ(h)+O(

√
(R2/ρ2)(log p)/m). Here,R denotes the ra-

dius of the sphere containing the data,ρ the margin, andm
the sample size.

In contrast, the results obtained for learning kernels in ap-
plications have been in general rather disappointing. In
particular, achieving a performance superior to that of the
uniform combination of kernels, the simplest approach re-
quiring no additional learning, has proven to be surpris-
ingly difficult (Cortes, 2009). Most of the techniques used
in these applications for learning kernels are based on the
same naturalone-stage method, which consists of minimiz-
ing an objective function both with respect to the kernel
combination parameters and the hypothesis chosen, as for-
mulated byLanckriet et al.(2004).

This paper explores atwo-stagetechnique and algorithm
for learning kernels. The first stage of this technique con-
sists oflearning a kernelK that is a convex combination
of p kernels. The second stage consists of usingK with
a standard kernel-based learning algorithm such as sup-
port vector machines (SVMs) (Cortes & Vapnik, 1995) for
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classification, or KRR for regression, to select a prediction
hypothesis. With this two-stage method we obtain better
performance than with the one-stage methods on several
datasets.

Note that an alternative two-stage technique consists of first
learning a prediction hypothesishk using each kernelKk,
and then learning the best linear combination of these hy-
potheses. But, such ensemble-based techniques make use
of a richer hypothesis space than the one used by learning
kernel algorithms such as (Lanckriet et al., 2004).

Different methods can be used to determine the convex
combination parameters definingK from the training sam-
ple. A measure of similarity between the base kernelsKk,
k ∈ [1, p], and the target kernelKY derived from the la-
bels can be used to determine these parameters. This can
be done by using either the individual similarity of each
kernelKk with KY , or globally, from the similarity be-
tween convex combinations of the base kernels andKY .
The similarities we consider are based on the natural notion
of kernel alignmentintroduced byCristianini et al.(2001),
though our definition differs from the original one. We note
that other measures of similarity could be used in this con-
text. In particular, the notion of similarity suggested by
Balcan & Blum(2006) could be used if it could be com-
puted from finite samples.

We present a number of novel theoretical, algorithmic,
and empirical results for the alignment-based two-stage
techniques. Our results build on previous work by
Cristianini et al.(2001; 2002); Kandola et al.(2002a), but
we significantly extend that work in several directions.

We discuss the original definitions of kernel alignment by
these authors and adopt a related but different definition
(Section2). We give a novel concentration bound show-
ing that the difference between the alignment of two ker-
nel matrices and the alignment of the corresponding kernel
functions can be bounded by a term inO(1/

√
m) (Sec-

tion 3). Our result is simpler and directly bounds the differ-
ence between the relevant quantities, unlike previous work.
We also show the existence of good predictors for kernels
with high alignment, both for classification and for regres-
sion. These results correct a technical problem in classifica-
tion and extend to regression the bounds ofCristianini et al.
(2001). In Section4, we also give an algorithm for learning
a maximum alignment kernel. We prove that the mixture
coefficients can be obtained efficiently by solving a simple
quadratic program (QP) in the case of a convex combina-
tion, and even give a closed-form solution for them in the
case of an arbitrary linear combination. Finally, in Sec-
tion 5, we report the results of extensive experiments with
this alignment-based method both in classification and re-
gression, and compare our results withL1 andL2 regu-
larized learning kernel algorithms (Lanckriet et al., 2004;

Cortes et al., 2009a), as well as with the uniform kernel
combination method. The results show an improvement
both over the uniform combination and over the one-stage
kernel learning algorithms in all datasets. We also observe
a strong correlation between the alignment achieved and
performance.

2. Alignment definitions

The notion of kernel alignment was first introduced by
Cristianini et al.(2001). Our definition of kernel alignment
is different and is based on the notion of centering in the
feature space. Thus, we start with the definition of center-
ing and the analysis of its relevant properties.

2.1. Centering kernels

Let D be the distribution according to which training
and test points are drawn. Centering a feature mapping
Φ: X → H consists of replacing it byΦ−Ex[Φ], where
Ex denotes the expected value ofΦ whenx is drawn ac-
cording to the distributionD. Centering a positive definite
symmetric (PDS) kernel functionK : X ×X → R consists
of centering any feature mappingΦ associated toK. Thus,
the centered kernelKc associated toK is defined for all
x, x′ ∈ X by

Kc(x, x′) = (Φ(x) − E
x
[Φ])⊤(Φ(x′) − E

x′

[Φ])

=K(x, x′) − E
x
[K(x, x′)] − E

x′

[K(x, x′)] + E
x,x′

[K(x, x′)].

This also shows that the definition does not depend on
the choice of the feature mapping associated toK. Since
Kc(x, x′) is defined as an inner product,Kc is also a
PDS kernel. Note also that for a centered kernelKc,
Ex,x′[Kc(x, x′)] = 0. That is, centering the feature map-
ping implies centering the kernel function.

Similar definitions can be given for a finite sampleS =
(x1, . . . , xm) drawn according toD: a feature vector
Φ(xi) with i∈ [1, m] is then centered by replacing it with
Φ(xi)−Φ, with Φ = 1

m

∑m
i=1 Φ(xi), and the kernel matrix

K associated toK and the sampleS is centered by replac-
ing it with Kc defined for alli, j ∈ [1, m] by

[Kc]ij = Kij −
1

m

m∑

i=1

Kij −
1

m

m∑

j=1

Kij +
1

m2

m∑

i,j=1

Kij .

LetΦ=[Φ(x1), . . . , Φ(xm)]⊤ andΦ=[Φ, . . . , Φ]⊤. Then,
it is not hard to verify thatKc =(Φ−Φ)(Φ−Φ)⊤, which
shows thatKc is a positive semi-definite (PSD) matrix.
Also, as with the kernel function,1m2

∑m
i,j=1[Kc]ij =0.

2.2. Kernel alignment

We define the alignment of two kernel functions as follows.
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Definition 1. LetK andK ′ be two kernel functions defined
overX ×X such that0 < E[K2

c ] < +∞ and0 < E[K ′
c
2]<

+∞. Then, thealignmentbetweenK andK ′ is defined by

ρ(K, K ′) =
E[KcK

′
c]√

E[K2
c ] E[K ′

c
2]

.

In the absence of ambiguity, to abbreviate the notation,
we often omit the variables over which an expectation is
taken. Since|E[KcK

′
c]|≤

√
E[K2

c ] E[K ′
c
2
] by the Cauchy-

Schwarz inequality, we haveρ(K, K ′)∈ [−1, 1]. The fol-
lowing lemma shows more precisely thatρ(K, K ′) ∈ [0, 1]
whenKc andK ′

c are PDS kernels. We denote by〈·, ·〉F the
Frobenius product and by‖ · ‖F the Frobenius norm.

Lemma 1. For any two PDS kernelsQ andQ′, E[QQ′]≥0.

Proof. Let Ψ be a feature mapping associated toQ andΨ′

a feature mapping associated toQ′. By definition ofΨ and
Ψ′, and using the properties of the trace, we can write:

E
x,x′

[Q(x, x′)Q′(x, x′)]

= E
x,x′

[Ψ(x)⊤Ψ(x′)Ψ′(x′)⊤Ψ′(x)]

= E
x,x′

[
Tr[Ψ(x)⊤Ψ(x′)Ψ′(x′)⊤Ψ′(x)]

]

= 〈E
x
[Ψ(x)Ψ′(x)⊤], E

x′

[Ψ(x′)Ψ′(x′)⊤]〉F = ‖U‖2
F ,

whereU = Ex[Ψ(x)Ψ′(x)⊤].

The following similarly defines the alignment between two
kernel matricesK andK′ based on a finite sampleS =
(x1, . . . , xm) drawn according toD.

Definition 2. Let K ∈ R
m×m and K′ ∈ R

m×m be two
kernel matrices such that‖Kc‖F 6= 0 and ‖K′

c‖F 6= 0.
Then, thealignmentbetweenK andK′ is defined by

ρ̂(K,K′) =
〈Kc,K

′
c〉F

‖Kc‖F ‖K′
c‖F

.

Here too, by the Cauchy-Schwarz inequality,ρ̂(K,K′) ∈
[−1, 1] and in factρ̂(K,K′)≥0 since the Frobenius prod-
uct of any two positive semi-definite matricesK andK′ is
non-negative. Indeed, for such matrices, there exist matri-
cesU andV such thatK = UU⊤ andK′ = VV⊤. The
statement follows from

〈K,K′〉F =Tr(UU⊤VV⊤)=Tr
(
(U⊤V)⊤(U⊤V)

)
≥0.

Our definitions of alignment between kernel functions or
between kernel matrices differ from those originally given
by Cristianini et al.(2001; 2002):

A =
E[KK ′]√

E[K2] E[K ′2]
Â =

〈K,K′〉F
‖K‖F‖K′‖F

,

−1 +1
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Figure 1.Alignment values computed for two different definitions

of alignment:A = [ 1+(1−2α)2

2
]
1

2 in black,ρ = 1 in blue. In this
simple two-dimensional example, a fractionα of the points are at
(−1, 0) and have the label−1. The remaining points are at(1, 0)
and have the label+1.

which are thus in terms ofK andK ′ instead ofKc and
K ′

c and similarly for matrices. This may appear to be a
technicality, but it is in fact a critical difference. Without
that centering, the definition of alignment does not corre-
late well with performance.

To see this, consider the standard case whereK ′ is the
target label kernel, that isK ′(x, x′) = yy′, with y the la-
bel of x andy′ the label ofy′, and examine the follow-
ing simple example in dimension two (X = R

2), where
K(x, x′) = x · x′+1 and where the distribution,D, is de-
fined by a fractionα ∈ [0, 1] of all points being at(−1, 0)
and labeled with−1, and the remaining points at(1, 0) with
label+1.

Clearly, for any value ofα∈ [0, 1], the problem is separable
for example with the simple vertical line going through the
origin and one would expect the alignment to be1. How-
ever, the alignmentA is never equal to one except forα = 0
or α = 1 and, even for the balanced case whereα = 1/2,
its value isA = 1/

√
2 ≈ .707 < 1. In contrast, with our

definition,ρ(K, K ′)=1 for all α∈ [0, 1], see Figure1.

This mismatch betweenA (or Â) and the performance val-
ues can also be frequently seen in experiments. Our em-
pirical results in several tasks (not included due to lack
of space) show that̂A measured on the test set does not
correlate well with the performance achieved. Instances
of this problem have also been noticed byMeila (2003)
andPothin & Richard(2008) who have suggested various
(input) data translation methods, and byCristianini et al.
(2002) who observed an issue for unbalanced data sets. The
definitions we are adopting are general and require center-
ing for both kernelsK andK ′.

The notion of alignment seeks to capture the correlation
between the random variablesK(x, x′) andK ′(x, x′) and
one could think it natural, as for the standard correlation
coefficients, to consider the following definition:

ρ′(K, K ′) =
E[(K − E[K])(K ′ − E[K ′])]√

E[(K − E[K])2] E[(K ′ − E[K ′])2]
.

However, centering the kernel values is not directly relevant
to linear predictions in feature space, while our definition
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of alignment,ρ, is precisely related to that. Also, as already
shown in Section2.1, centering in the feature space implies
the centering of the kernel values, sinceE[Kc] = 0 and
1

m2

∑m
i,j=1[Kc]ij = 0 for any kernelK and kernel matrix

K. Conversely, however, centering of the kernel does not
imply centering in feature space.

3. Theoretical results

This section establishes several important properties of the
alignmentsρ and its empirical estimatêρ: we give a con-
centration bound of the form|ρ − ρ̂| ≤ O(1/

√
m), and

show the existence of good prediction hypotheses both for
classification and regression, in the presence of high align-
ment.

3.1. Concentration bound

Our concentration bound differs from that of
Cristianini et al. (2001) both because our definition of
alignment is different and because we give a bound
directly on the quantity of interest|ρ− ρ̂|. Instead,
Cristianini et al.give a bound on|A′−Â|, whereA′6=A can
be defined fromA by replacing each Frobenius product
with its expectation over samples of sizem.

The following proposition gives a bound on the essential
quantities appearing in the definition of the alignments.
The proof is given in a longer version of this paper.

Proposition 1. Let K andK′ denote kernel matrices as-
sociated to the kernel functionsK andK ′ for a sample of
sizem drawn according toD. Assume that for anyx∈X ,
K(x, x)≤R2 andK ′(x, x)≤R2. Then, for anyδ>0, with
probability at least1−δ, the following inequality holds:

∣∣∣∣
〈Kc,K

′
c〉F

m2
− E[KcK

′
c]

∣∣∣∣ ≤
18R4

m
+ 24R4

√
log 2

δ

2m
.

Theorem 1. Under the assumptions of Proposition1, and
further assuming that the conditions of the Definitions1-2
are satisfied forρ(K, K ′) andρ̂(K,K′), for anyδ>0, with
probability at least1−δ, the following inequality holds:

|ρ(K, K ′) − ρ̂(K,K′)| ≤ 18β

[
3

m
+ 4

√
log 6

δ

2m

]
,

with β = max(R4/E[K2
c ], R4/E[K ′

c
2
]).

Proof. To shorten the presentation, we first simplify the no-
tation for the alignments as follows:

ρ(K, K ′) =
b√
aa′

and ρ̂(K,K′) =
b̂√
ââ′

,

with b = E[KcK
′
c], a = E[K2

c ], a′ = E[K ′
c
2
] and sim-

ilarly, b̂ = (1/m2)〈Kc,K
′
c〉F , â = (1/m2)‖Kc‖2, and

â′ = (1/m2)‖K′
c‖2. By Proposition1 and the union

bound, for anyδ > 0, with probability at least1− δ, all
three differencesa − â, a′ − â′, andb − b̂ are bounded by

α = 18R4

m + 24R4

√
log 6

δ

2m . Using the definitions ofρ and
ρ̂, we can write:

|ρ(K, K ′) − ρ̂(K,K′)|

=
∣∣∣

b√
aa′ −

b̂√
ââ′

∣∣∣ =
∣∣∣
b
√

ââ′ − b̂
√

aa′
√

aa′ââ′

∣∣∣

=
∣∣∣
(b − b̂)

√
ââ′ − b̂(

√
aa′ −

√
ââ′)√

aa′ââ′

∣∣∣

=
∣∣∣
(b − b̂)√

aa′ − ρ̂(K,K′)
aa′ − ââ′

√
aa′(

√
aa′ +

√
ââ′)

∣∣∣.

Sinceρ̂(K,K′) ∈ [0, 1], it follows that

|ρ(K, K ′)− ρ̂(K,K′)| ≤ |b − b̂|√
aa′ +

|aa′ − ââ′|√
aa′(

√
aa′ +

√
ââ′)

.

Assume first that̂a ≤ â′. Rewriting the right-hand side to
make the differencesa − â anda′ − â′ appear, we obtain:

|ρ(K, K ′) − ρ̂(K,K′)|

≤ |b − b̂|√
aa′

+
|(a − â)a′ + â(a′ − â′)|√

aa′(
√

aa′ +
√

ââ′)

≤ α√
aa′

[
1 +

a′ + â√
aa′ +

√
ââ′

]

≤ α√
aa′

[
1 +

a′
√

aa′ +
â√
ââ′

]

≤ α√
aa′

[
2 +

√
a′

a

]
=

[
2√
aa′

+
1

a

]
α.

We can similarly obtain
[

2√
aa′

+ 1
a′

]
α whenâ′≤ â. Both

bounds are less than or equal to3max(α
a , α

a′ ).

3.2. Existence of good predictors

For classification and regression tasks, the target kernel is
based on the labels and defined byKY (x, x′) = yy′, where
we denote byy the label of pointx andy′ that ofx′. This
section shows the existence of predictors with high accu-
racy both for classification and regression when the align-
mentρ(K, KY ) between the kernelK andKY is high.

In the regression setting, we shall assume that the labels
have been first normalized by dividing by the standard de-
viation (assumed finite), thusE[y2] = 1. In classification,
y=±1. Leth∗ denote the hypothesis defined for allx ∈ X ,

h∗(x) =
Ex′ [y′Kc(x, x′)]√

E[K2
c ]

.
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Observe that by definition ofh∗, Ex[yh∗(x)] = ρ(K, KY ).

For anyx ∈ X , defineγ(x) =
√

Ex′ [K2
c (x,x′)]

Ex,x′ [K2
c (x,x′)] and Γ =

maxx γ(x). The following result shows that the hypothesis
h∗ has high accuracy when the kernel alignment is high and
Γ not too large.1

Theorem 2 (classification). Let R(h∗) = Pr[yh∗(x) < 0]
denote the error ofh∗ in binary classification. For any
kernelK such that0<E[K2

c ]<+∞, the following holds:

R(h∗) ≤ 1 − ρ(K, KY )/Γ.

Proof. Note that for allx ∈ X ,

|yh∗(x)| = |y E
x′

[y′Kc(x, x′)]|/
√

E[K2
c ]

≤
√

Ex′ [y′2] Ex′ [K2
c (x, x′)]√

E[K2
c ]

=

√
Ex′ [K2

c (x, x′)]√
E[K2

c ]
≤Γ.

In view of this inequality, and the fact thatEx[yh∗(x)] =
ρ(K, KY ), we can write:

1 − R(h∗) = Pr[yh∗(x) ≥ 0] = E[1{yh∗(x)≥0}]

≥ E[
yh∗(x)

Γ
1{yh∗(x)≥0}]

≥ E[
yh∗(x)

Γ
] = ρ(K, KY )/Γ,

where1ω is the indicator variable of an eventω.

A probabilistic version of the theorem can be straightfor-
wardly derived by noting that by Markov’s inequality, for
anyδ>0, with probability at least1−δ, |γ(x)| ≤ 1/

√
δ.

Theorem 3 (regression). Let R(h∗) = Ex[(y − h∗(x))2]
denote the error ofh∗ in regression. For any kernelK such
that0<E[K2

c ]<+∞, the following holds:

R(h∗) ≤ 2(1 − ρ(K, KY )).

Proof. By the Cauchy-Schwarz inequality, it follows that:

E
x
[h∗2(x)] = E

x

[
Ex′ [y′Kc(x, x′)]2

E[K2
c ]

]

≤ E
x

[
Ex′ [y′2] Ex′ [K2

c (x, x′)]

E[K2
c ]

]

=
Ex′ [y′2] Ex,x′ [K2

c (x, x′)]

E[K2
c ]

= E
x′

[y′2] = 1.

Using again the fact thatEx[yh∗(x)] = ρ(K, KY ), the er-
ror of h∗ can be bounded as follows:

E[(y − h∗(x))2] = E
x
[h∗(x)2] + E

x
[y2] − 2 E

x
[yh∗(x)]

≤ 1 + 1 − 2ρ(K, KY ).

1A version of this result was presented byCristianini et al.
(2001; 2002) for the so-called Parzen window solution and non-
centered kernels, but their proof implicitly relies on the fact that

maxx

ˆ Ex′ [K
2(x,x′)]

Ex,x′ [K2(x,x′)]

˜ 1

2 =1 which holds only ifK is constant.

4. Algorithms

This section discusses two-stage algorithms for learning
kernels in the form of linear combinations ofp base ker-
nelsKk, k∈ [1, p]. In all cases, the final hypothesis learned
belongs to the reproducing kernel Hilbert space associated
to a kernelKµ =

∑p
k=1 µkKk, where the mixture weights

are selected subject to the conditionµ ≥ 0, which guaran-
tees thatK is a PDS kernel, and a condition on the norm of
µ, ‖µ‖ = Λ>0, whereΛ is a regularization parameter.

In the first stage, these algorithms determine the mixture
weightsµ. In the second stage, they train a kernel-based
algorithm, e.g., SVMs for classification, or KRR for re-
gression, in combination with the kernelKµ, to learn a
hypothesish. Thus, the algorithms differ only by the first
stage, whereKµ is determined, which we briefly describe.

Uniform combination (unif): this is the most straight-
forward method, which consists of choosing equal mixture
weights, thus the kernel matrix used isKµ = Λ

p

∑p
k=1 Kk.

Nevertheless, improving upon the performance of this
method has been surprisingly difficult for standard (one-
stage) learning kernel algorithms (Cortes, 2009).

Independent alignment-based method (align): this is
a simple but efficient method which consists of using the
training sample to independently compute the alignment
between each kernel matrixKk and the target kernel matrix
KY = yy⊤, based on the labelsy, and to choose each mix-
ture weightµk proportional to that alignment. Thus, the
resulting kernel matrix is:Kµ ∝ ∑p

k=1 ρ̂(Kk,KY )Kk.

Alignment maximization algorithms (alignf): the in-
dependent alignment-based method ignores the correlation
between the base kernel matrices. The alignment max-
imization method takes these correlations into account.
It determines the mixture weightsµk jointly by seeking
to maximize the alignment between the convex combi-
nation kernelKµ =

∑p
k=1 µkKk and the target ker-

nel KY = yy⊤, as suggested byCristianini et al.(2001);
Kandola et al.(2002a) and later studied byLanckriet et al.
(2004) who showed that the problem can be solved as a
QCQP. In what follows, we present even more efficient al-
gorithms for computing the weightsµk by showing that the
problem can be reduced to a simple QP. We also examine
the case of a non-convex linear combination, where compo-
nents ofµ can be negative, and show that the problem then
admits a closed-form solution. We start with this linear
combination case and partially use that solution to obtain
the solution of the convex combination.

4.1. Alignment maximization algorithm - linear
combination

We can assume without loss of generality that the cen-
tered base kernel matricesKkc are independent since oth-
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erwise we can select an independent subset. This condi-
tion ensures that‖Kµc‖F >0 for an arbitraryµ and that
ρ̂(Kµ,yy⊤) is well defined (Definition2). By the prop-
erties of centering,〈Kµc,KY c〉F = 〈Kµc,KY 〉F . Thus,
since‖KY c‖F does not depend onµ, alignment maximiza-
tion can be written as the following optimization problem:

max
µ∈M

ρ̂(Kµ,yy⊤) = max
µ∈M

〈Kµc,yy⊤〉F
‖Kµc‖F

, (1)

whereM = {µ : ‖µ‖2 = 1}. A similar set can be de-
fined via norm-1 instead of norm-2. As we shall see,
however, the problem can be solved in the same way
in both cases. Note that, by definition of centering,
Kµc = UmKµUm with Um = I−11⊤/m, thus,Kµc=∑p

k=1 µkUmKkUm=
∑p

k=1 µkKkc. Leta denote the vec-
tor (〈K1c,yy⊤〉F , . . . , 〈Kpc,yy⊤〉F )⊤ andM the matrix
defined byMkl =〈Kkc,Klc〉F , for k, l ∈ [1, p]. Note that
since the base kernels are assumed independent, matrixM

is invertible. Also, in view of the non-negativity of the
Frobenius product of PSD matrices shown in Section2.2,
the entries ofa andM are all non-negative. Observe also
that M is a symmetric PSD matrix since for any vector
X = (x1, . . . , xm)⊤ ∈ R

m,

X⊤MX=

m∑

k,l=1

xkxl Tr[KkcKlc]=Tr
[ m∑

k,l=1

xkxlKkcKlc

]

=Tr
[
(

m∑

k=1

xkKkc)(

m∑

l=1

xlKlc)
]

= ‖
m∑

k=1

xkKkc‖2
F ≥ 0.

Proposition 2. The solutionµ⋆ of the optimization prob-
lem(1) is given byµ⋆ = M

−1
a

‖M−1a‖ .

Proof. With the notation introduced, problem (1) can be

rewritten asµ⋆ = argmax‖µ‖2=1
µ

⊤
a√

µ⊤Mµ

. Thus, clearly,

the solution must verifyµ⋆⊤a≥ 0. We will square the ob-
jective and yet not enforce this condition since, as we shall
see, it will be verified by the solution we find. Therefore,
we consider the problem

µ
⋆ = argmax

‖µ‖2=1

(µ⊤a)2

µ⊤Mµ
= argmax

‖µ‖2=1

µ
⊤aa⊤

µ

µ⊤Mµ
.

In the final equality, we recognize the general Rayleigh
quotient. Letν = M1/2

µ andν
⋆ = M1/2

µ
⋆, then

ν
⋆ = argmax

‖M−1/2ν‖2=1

ν
⊤[

M−1/2aa⊤M−1/2
]
ν

ν⊤ν
.

Therefore, the solution is

ν
⋆ = argmax

‖M−1/2ν‖2=1

[
ν
⊤M−1/2a

]2

‖ν‖2
2

= argmax
‖M−1/2ν‖2=1

[[
ν

‖ν‖

]⊤
M−1/2a

]2

.

Thus,ν⋆ ∈ Vec(M−1/2a) with ‖M−1/2
ν

⋆‖2 = 1. This
yields immediatelyµ⋆ = M

−1
a

‖M−1a‖ , which verifiesµ⋆⊤a =

a⊤M−1a/‖M−1a‖ ≥ 0 sinceM andM−1 are PSD.

4.2. Alignment maximization algorithm - convex
combination

In view of the proof of Proposition2, the alignment maxi-
mization problem with the setM′ = {‖µ‖2 = 1∧µ ≥ 0}
can be written as

µ
∗ = argmax

µ∈M′

µ
⊤aa⊤

µ

µ⊤Mµ
. (2)

The following proposition shows that the problem can be
reduced to solving a simple QP.

Proposition 3. Letv⋆ be the solution of the following QP:

min
v≥0

v⊤Mv − 2v⊤a. (3)

Then, the solutionµ∗ of the alignment maximization prob-
lem (2) is given byµ⋆ = v⋆/‖v⋆‖.

Proof. Note that the objective function of problem (2) is
invariant to scaling. The constraint‖µ‖=1 only serves to
enforce0<‖µ‖<+∞. Thus, using the same change of
variable as in the proof of Proposition2, we can instead
solve the following problem from which we can retrieve
the solution via normalization:

ν
⋆ = argmax

0<‖M−1/2
ν‖2<+∞

M
−1/2

ν≥0

[
ν

‖ν‖ · (M−1/2a)

]2

.

Equivalently, we can solve the following problem for any
finite λ>0:

max
M

−1/2
u≥0

‖u‖=λ

[
u · M−1/2a

]2
.

Observe that forM−1/2u ≥ 0 the inner product is non-
negative:u ·M−1/2a = M−1/2u ·a ≥ 0, since the entries
of a are non-negative. Furthermore, it can be written as
follows:

u · M−1/2a=−1

2
‖u−M−1/2a‖2+

1

2
‖u‖2+

1

2
‖M−1/2a‖2

=−1

2
‖u−M−1/2a‖2+

λ2

2
+

1

2
‖M−1/2a‖2.

Thus, the problem becomes equivalent to the minimization:

min
M

−1/2
u≥0

‖u‖=λ

∥∥u− M−1/2a
∥∥2

. (4)

Now, we can omit the condition on the norm ofu since (4)
holds for arbitrary finiteλ > 0 and since neitheru = 0 or
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any infinite normu can be the solution even without this
condition. Thus, we can now consider instead:

min
M−1/2u≥0

∥∥u− M−1/2a
∥∥2

.

The change of variableu = M1/2v leads to:
minv≥0

∥∥M1/2v − M−1/2a
∥∥2

. This is a standard least-
square regression problem with non-negativity constraints,
a simple and widely studied QP for which several families
of algorithms have been designed. Expanding the terms,
we obtain the equivalent problem:

min
v≥0

v⊤Mv − 2v⊤a .

Note that this QP problem does not require a matrix in-
version ofM. Also, it is not hard to see that this prob-
lem is equivalent to solving a hard margin SVM problem,
thus, any SVM solver can also be used to solve it. A sim-
ilar problem with the non-centered definition of alignment
is treated byKandola et al.(2002b), but their optimization
solution differs from ours and requires cross-validation.

5. Experiments

This section compares the performance of several learn-
ing kernel algorithms for classification and regression. We
compare the algorithmsunif, align, andalignf, from
Section4, as well as the following one-stage algorithms:

Norm-1 regularized combination (l1-svm): this algo-
rithm optimizes the SVM objective

min
µ

max
α

2α
⊤1− α

⊤Y⊤KµYα

subject to:µ ≥ 0, Tr[Kµ] ≤ Λ, α⊤y = 0,0 ≤ α ≤ C ,

as described byLanckriet et al.(2004). Here,Y is the di-
agonal matrix constructed from the labelsy andC is the
regularization parameter of the SVM.

Norm-2 regularized combination (l2-krr): this algo-
rithm optimizes the kernel ridge regression objective

min
µ

max
α

− λα
⊤

α − α
⊤Kµα + 2α

⊤y

subject to:µ ≥ 0, ‖µ − µ0‖2 ≤ Λ ,

as described inCortes et al.(2009a). Here,λ is the regular-
ization parameter of KRR, andµ0 is an additional regular-
ization parameter for the kernel selection.

In all experiments, the error measures reported are for 5-
fold cross validation, where, in each trial, three folds are
used for training, one used for validation, and one for test-
ing. For the two-stage methods, the same training and vali-
dation data is used for both stages of the learning. The reg-
ularization parameterΛ is chosen via a grid search based

Table 1.Error measures (top) and alignment values (bottom) for
(A) unif, (B) one-stagel2-krr or l1-svm, (C) align and
(D) alignfwith kernels built from linear combinations of Gaus-
sian base kernels. The choice ofγ0, γ1 is listed in row labeledγ,
andm is the size of the dataset used. Shown with±1 standard
deviation (in parentheses) measured by 5-fold cross-validation.

KINEMAT . IONOSPH. GERMAN SPAMBASE SPLICE

m 1000 351 1000 1000 1000
γ -3, 3 -3, 3 -4, 3 -12, -7 -9, -3

A
.138(.005) .467(.085) 25.9(1.8) 18.7(2.8) 15.2(2.2)
.158(.013) .242(.021) .089(.008) .138(.031) .122(.011)

B
.137(.005) .457(.085) 26.0(2.6) 20.9(2.80) 15.3(2.5)
.155(.012) .248(.022) .082(.003) .099(.024) .105(.006)

C
.125(.004) .445(.086) 25.5(1.5) 18.6(2.6) 15.1(2.4)
.173(.016) .257(.024) .089(.008) .140(.031) .123(.011)

D
.115(.004) .442(.087) 24.2(1.5) 18.0(2.4) 13.9(1.3)
.176(.017) .273(.030) .093(.009) .146(.028) .124(.011)

REGRESSION CLASSIFICATION

on the performance on the validation set, while the regular-
ization parametersC andλ are fixed since only the ratios
C/Λ andλ/Λ matter. Theµ0 parameter is set to zero in
Section5.1, and is chosen to be uniform in Section5.2.

5.1. General kernel combinations

In the first set of experiments, we consider combina-
tions of Gaussian kernels of the formKγ(xi,xj) =
exp(−γ‖xi − xj‖2), with varying bandwidth parame-
ter γ ∈ {2γ0 , 2γ0+1, . . . , 21−γ1 , 2γ1}. The valuesγ0

and γ1 are chosen such that the base kernels are suf-
ficiently different in alignment and performance. Each
base kernel is centered and normalized to have trace
equal to one. We test the algorithms on several
datasets taken from the UCI Machine Learning Repos-
itory (http://archive.ics.uci.edu/ml/) and Delve datasets
(http://www.cs.toronto.edu/∼delve/data/datasets.html).

Table1 summarizes our results. For classification, we com-
pare against thel1-svm method and report the misclassi-
fication percentage. For regression, we compare against
thel2-krr method and report RMSE. In general, we see
that performance and alignment are well correlated. In all
datasets, we see improvement over the uniform combina-
tion as well as the one-stage kernel learning algorithms.
Note that although thealign method often increases the
alignment of the final kernel, as compared to the uniform
combination, thealignf method gives the best alignment
since it directly maximizes this quantity. Nonetheless,
align provides an inexpensive heuristic that increases the
alignment and performance of the final combination kernel.

To the best of our knowledge, these are the first kernel com-
bination experiments for alignment with general base ker-
nels. Previous experiments seem to have dealt exclusively
with rank-1 base kernels built from the eigenvectors of a
single kernel matrix (Cristianini et al., 2001). In the next
section, we also examine rank-1 kernels, although not gen-
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Table 2.The error measures (top) and alignment values (bottom) for kernels built with rank-1 feature based kernels on four domain
sentiment analysis domains. Shown with±1 standard deviation as measured by 5-fold cross-validation.

BOOKS DVD ELEC KITCHEN

unif
1.442 ± .015 1.438 ± .033 1.342 ± .030 1.356 ± .016
.029 ± .005 .029 ± .005 .038 ± .002 .039 ± .006

l2-krr
1.414 ± .020 1.420 ± .034 1.318 ± .031 1.332 ± .016
.031 ± .004 .031 ± .005 .042 ± .003 .044 ± .007

align
1.401 ± .035 1.414 ± .017 1.308 ± .033 1.312 ± .012
.046 ± .006 .047 ± .005 .065 ± .004 .076 ± .008

BOOKS DVD ELEC KITCHEN

unif
25.8 ± 1.7 24.3 ± 1.5 18.8 ± 1.4 20.1 ± 2.0
.030 ± .004 .030 ± .005 .040 ± .002 .039 ± .007

l1-svm
28.6 ± 1.6 29.0 ± 2.2 23.8 ± 1.9 23.8 ± 2.2
.029 ± .012 .038 ± .011 .051 ± .004 .060 ± .006

align
24.3 ± 2.0 21.4 ± 2.0 16.6 ± 1.6 17.2 ± 2.2
.043 ± .003 .045 ± .005 .063 ± .004 .070 ± .010

REGRESSION CLASSIFICATION

erated from a spectral decomposition.

5.2. Rank-1 kernel combinations

In this set of experiments we use the sentiment analysis
dataset fromBlitzer et al.(2007): books, dvd, electronics
andkitchen. Each domain has 2,000 examples. In the re-
gression setting, the goal is to predict a rating between 1
and 5, while for classification the goal is to discriminate
positive (ratings≥ 4) from negative reviews (ratings≤ 2).
We use rank-1 kernels based on the 4,000 most frequent bi-
grams. Thekth base kernel,Kk, corresponds to thek-th
bigram countvk, Kk =vkv

⊤
k . Each base kernel is normal-

ized to have trace 1 and the labels are centered.

Thealignf method returns a sparse weight vector due to
the constraintµ ≥ 0. As is demonstrated by the perfor-
mance of thel1-svm method (Table2) and also previously
observed byCortes et al.(2009a), a sparse weight vector
µ does not generally offer an improvement over the uni-
form combination in the rank-1 setting. Thus, we focus
on the performance ofalign and compare it tounif and
one-stage learning methods. Table2 shows thatalign sig-
nificantly improves both the alignment and the error per-
centage overunif and also improves somewhat over the
one-stagel2-krr algorithm. Although the sparse weight-
ing provided byl1-svm improves the alignment in certain
cases, it does not improve performance.

6. Conclusion

We presented a series of novel theoretical, algorithmic, and
empirical results for a two-stage learning kernel algorithm
based on a notion of alignment. Our experiments show a
consistent improvement of the performance over previous
learning kernel techniques, as well as the straightforward
uniform kernel combination, which has been difficult to
surpass in the past. These improvements could suggest a
better one-stage algorithm with a regularization term tak-
ing into account the alignment quality of each base kernel,
a topic for future research.
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A. Proof of Proposition 1

The proof relies on a series of lemmas shown below.

Proof. By the triangle inequality and in view of Lemma4,
the following holds:

∣∣∣∣
〈Kc,K

′
c〉F

m2
− E[KcK

′
c]

∣∣∣∣ ≤
∣∣∣∣
〈Kc,K

′
c〉F

m2
− E

[ 〈Kc,K
′
c〉F

m2

]∣∣∣∣ +
18R4

m
.

Now, in view of Lemma3, the application of McDiarmid’s

inequality to〈Kc,K′

c〉F

m2 gives for anyǫ>0:

Pr

[∣∣∣∣
〈Kc,K

′
c〉F

m2
− E

[ 〈Kc,K
′
c〉F

m2

]∣∣∣∣ > ǫ

]
≤

2 exp[−2mǫ2/(24R4)2].

Settingδ to be equal to the right-hand side yields the state-
ment of the proposition.

We denote by1 ∈ R
m×1 the vector with all entries equal

to one, and byI the identity matrix.

Lemma 2. The following properties hold for centering ker-
nel matrices:

1. For any kernel matrixK ∈ R
m×m, the centered ker-

nel matrixKc can be given by

Kc =

[
I− 11⊤

m

]
K

[
I − 11⊤

m

]
. (5)

2. For any two kernel matricesK andK′,

〈Kc,K
′
c〉F = 〈K,K′

c〉F = 〈Kc,K
′〉F . (6)

Proof. The first statement can be shown straightforwardly
from the definition ofKc given by (1). The second state-
ment follows from

〈Kc,K
′
c〉F = Tr

[[
I − 11⊤

m

]
K

[
I − 11⊤

m

]

[
I− 11⊤

m

]
K′

[
I− 11⊤

m

]]
,

the fact that[I − 1
m11⊤]2 = Ic = [I − 1

m11⊤], and the
trace propertyTr[AB] = Tr[BA], valid for all matrices
A,B ∈ R

m×m.

For a functionf of the sampleS, we denote by∆(f) the
differencef(S′)− f(S), whereS′ is a sample differing
from S by just one point, say them-th point isxm in S and
x′

m in S′.

Lemma 3. Let K andK′ denote kernel matrices associ-
ated to the kernel functionsK andK ′ for a sample of size
m according to the distributionD. Assume that for any
x ∈ X , K(x, x) ≤ R2 andK ′(x, x) ≤ R2. Then, the fol-
lowing perturbation inequality holds when changing one
point of the sample:

1

m2
|∆(〈Kc,K

′
c〉F )| ≤ 24R4

m
.

Proof. By Lemma2, we can write:

〈Kc,K
′
c〉F = 〈Kc,K

′〉F

= Tr

[[
I− 11⊤

m

]
K

[
I − 11⊤

m

]
K′

]

= Tr

[
KK′ − 11⊤

m
KK′ − K

11⊤

m
K′ +

11⊤

m
K

11⊤

m
K′

]

= 〈K,K′〉F − 1⊤(KK′ + K′K)1

m
+

(1⊤K1)(1⊤K′1)

m2
.

The perturbation of the first term is given by

∆(〈K,K′〉F ) =

m∑

i=1

∆(KimK′
im) + ∆(

∑

i6=m

KmiK
′
mi).

By the Cauchy-Schwarz inequality, for anyi, j ∈ [1, m],
|Kij | = |K(xi, xj)|≤

√
K(xi, xi)K(xj , xj)≤R2. Thus,

1

m2
|∆(〈K,K′〉F )| ≤ 2m − 1

m2
(2R4) ≤ 4R4

m
.

Similarly, for the first part of the second term, we obtain

1

m2

∣∣∣∣∆
(

1⊤KK′1

m

)∣∣∣∣ =

∣∣∣∣∆
( m∑

i,j,k=1

KikK
′
kj

m3

)∣∣∣∣

=

∣∣∣∣∆
(∑m

i,k=1 KikK
′
km +

∑
i,j 6=m KimK′

mj

m3

)
+

∆

(∑
k 6=m,j 6=m KmkK

′
kj

m3

)∣∣∣∣

≤ m2 + m(m − 1) + (m − 1)2

m3
(2R4)

≤ 3m2 − 3m + 1

m3
(2R4) ≤ 6R4

m
.

Similarly, we have:

1

m2

∣∣∣∣∆
(

1⊤K′K1

m

)∣∣∣∣ ≤
6R4

m
, (7)

and it can be shown that

1

m2

∣∣∣∣∆
(

(1⊤K1)(1⊤K′1)

m2

)∣∣∣∣ ≤
8R4

m
. (8)

Combining these last four inequalities leads directly to the
statement of the lemma.
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Because of the diagonal terms of the matrices,
1

m2 〈Kc,K
′
c〉F is not an unbiased estimate ofE[KcK

′
c].

However, as shown by the following lemma, the estimation
bias decreases at the rateO(1/m).

Lemma 4. Under the same assumptions as Lemma3, the
following bound on the difference of expectations holds:

∣∣∣∣ E
x,x′

[Kc(x, x′)K ′
c(x, x′)] − E

S

[ 〈Kc,K
′
c〉F

m2

]∣∣∣∣ ≤
18R4

m
.

Proof. To simplify the notation, unless otherwise specified,
the expectation is taken overx, x′ drawn according to the
distributionD.

The key observation used in this proof is that

E
S
[KijK

′
ij ] = E

S
[K(xi, xj)K

′(xi, xj)] = E[KK ′], (9)

for i, j distinct. For expressions such asES [KikK
′
kj ] with

i, j, k distinct, we obtain the following:

E
S
[KikK

′
kj ] = E

S
[K(xi, xk)K ′(xk, xj)] = E

x′

[E
x
[K] E

x
[K ′]].

(10)
Let us start with the expression ofE[KcK

′
c]:

E[KcK
′
c] = E

[(
K − E

x′

[K] − E
x
[K] + E[K]

)

(
K ′ − E

x′

[K ′] − E
x
[K ′] + E[K ′]

)]
. (11)

After expanding this expression, applying the expectation
to each of terms, and simplifying, we obtain:

E[KcK
′
c] = E[KK ′] − 2 E

x

[
E
x′

[K] E
x′

[K ′]
]
+ E[K] E[K ′].

〈Kc,K
′
c〉F can be expanded and written more explicitly as

follows:

〈Kc,K
′
c〉F

= 〈K,K′〉F − 1⊤KK′1

m
− 1⊤K′K1

m
+

1⊤K′11⊤K1

m2

=
m∑

i,j=1

KijK
′
ij −

1

m

m∑

i,j,k=1

(KikK
′
kj + K′

ikKkj)+

1

m2
(

m∑

i,j=1

Kij)(

m∑

i,j=1

K′
ij).

To take the expectation of this expression, we shall use the
observations (9) and (10) and similar identities. Counting
terms of each kind, leads to the following expression of the

expectation:

E
S

[ 〈Kc,K
′
c〉F

m2

]

=

[
m(m − 1)

m2
− 2m(m − 1)

m3
+

2m(m − 1)

m4

]
E[KK ′]

+

[−2m(m− 1)(m − 2)

m3
+

2m(m − 1)(m − 2)

m4

]

E
x

[
E
x′

[K] E
x′

[K ′]
]

+

[
m(m − 1)(m − 2)(m − 3)

m4

]
E[K] E[K ′]

+

[
m

m2
− 2m

m3
+

m

m4

]
E
x
[K(x, x)K ′(x, x)]

+

[−m(m − 1)

m3
+

2m(m − 1)

m4

]
E[K(x, x)K ′(x, x′)]

+

[−m(m − 1)

m3
+

2m(m − 1)

m4

]
E[K(x, x′)K ′(x, x)]

+

[
m(m − 1)

m4

]
E
x
[K(x, x)] E

x
[K ′(x, x)]

+

[
m(m − 1)(m − 2)

m4

]
E
x
[K(x, x)] E[K ′]

+

[
m(m − 1)(m − 2)

m4

]
E[K] E

x
[K ′(x, x)].

Taking the difference with the expression ofE[KcK
′
c]

(Equation 11), using the fact that terms of form
Ex[K(x, x)K ′(x, x)] and other similar ones are all
bounded byR4 and collecting the terms gives
∣∣∣∣E[KcK

′
c] − E

S

[ 〈Kc,K
′
c〉F

m2

]∣∣∣∣ ≤
3m2 − 4m + 2

m3
E[KK ′]

− 2
4m2 − 5m + 2

m3
E
x

[
E
x′

[K] E
x′

[K ′]
]

+
6m2 − 11m + 6

m3
E[K] E[K ′] + γ,

with |γ| ≤ m−1
m2 R4. Using again the fact that the expecta-

tions are bounded byR4 yields
∣∣∣∣E[KcK

′
c] − E

S

[ 〈Kc,K
′
c〉F

m2

]∣∣∣∣ ≤
[

3

m
+

8

m
+

6

m
+

1

m

]
R4

≤ 18

m
R4,

and concludes the proof.


