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Abstract

This paper examines two-stage techniques for
learning kernels based on a notion of alignment.
It presents a number of novel theoretical, al-
gorithmic, and empirical results for alignment-
based techniques. Our results build on previous
work by Cristianini et al.(2007), but we adopt

a different definition of kernel alignment and
significantly extend that work in several direc-
tions: we give a novel and simple concentration
bound for alignment between kernel matrices;
show the existence of good predictors for ker-
nels with high alignment, both for classification
and for regression; give algorithms for learning a
maximum alignment kernel by showing that the
problem can be reduced to a simple QP; and re-
port the results of extensive experiments with this
alignment-based method in classification and re-
gression tasks, which show an improvement both
over the uniform combination of kernels and over
other state-of-the-art learning kernel methods.

combined kernel and derive an accurate predictor. This is
a problem that has attracted a lot of attention recentlyy bot
from the theoretical point of view and from the algorithmic,
optimization, and application perspective.

Different kernel families have been studied in the past, in-
cluding hyperkernels@ng et al, 2005, Gaussian kernel
families Micchelli & Pontil, 2005, or non-linear families
(Bach 2008 Cortes et al.20098. Here, we consider more
specifically a convex combination of a finite number of ker-
nels, as in much of the previous work in this area.

On the theoretical side, a number of favorable guarantees
have been derived for learning kernels with convex combi-
nations Grebro & Ben-Davig2006 Cortes et al.20093,
including a recent result @fortes et al(2010 which gives

a margin bound for L1 regularization with only a logarith-
mic dependency op, the number of kernelg: R(h) <
R,(h)+0(\/(R2/p?)(log p)/m). Here,R denotes the ra-
dius of the sphere containing the datahe margin, andn

the sample size.

In contrast, the results obtained for learning kernels in ap
plications have been in general rather disappointing. In
particular, achieving a performance superior to that of the

uniform combination of kernels, the simplest approach re-
) ) quiring no additional learning, has proven to be surpris-
Kernel-based algorithms have been used with greahgly difficult (Cortes 2009. Most of the techniques used
success in a variety of machine learning applicationsp these applications for learning kernels are based on the
(Scholkopf & Smola 2002 Shawe-Taylor & Cristianini  same naturadne-stage methgavhich consists of minimiz-
2004. But, the choice of the kernel, which is crucial to jng an objective function both with respect to the kernel

tirely left to the user. Rather than requesting the user tqny|ated byLanckriet et al(2004.

select a specific kernel, learning kernel algorithms requir ) )
the user only to specify a family of kernels. This family ThiS paper explores awo-stagetechnique and algorithm

of kernels can be used by a learning algorithm to form &r learning kernels. The first stage of this technique con-
sists oflearning a kernelK that is a convex combination

Appearing inProceedings of th@7t" International Conference o0f p kernels. The second stage consists of udihgvith
on Machine LearningHaifa, Israel, 2010. Copyright 2010 by the a standard kernel-based learning algorithm such as sup-
author(s)/owner(s). port vector machines (SVMsLprtes & Vapnik 1995 for

1. Introduction
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classification, or KRR for regression, to select a predictio Cortes et al. 20093, as well as with the uniform kernel

hypothesis. With this two-stage method we obtain bettecombination method. The results show an improvement
performance than with the one-stage methods on severabth over the uniform combination and over the one-stage
datasets. kernel learning algorithms in all datasets. We also observe
a strong correlation between the alignment achieved and

Note that an alternative two-stage technique consistssf fir
performance.

learning a prediction hypothesig using each kernek,
and then learning the best linear combination of these hy-

potheses. But, such ensemble-based techniques make weAlignment definitions
of a richer hypothesis space than the one used by learni

kernel algorithms such ak4nckriet et al, 2004). "Phe notion of kernel alignment was first introduced by

Cristianini et al(200J). Our definition of kernel alignment
Different methods can be used to determine the conveis different and is based on the notion of centering in the
combination parameters definiig from the training sam- feature space. Thus, we start with the definition of center-
ple. A measure of similarity between the base ker#gls  ing and the analysis of its relevant properties.

k€1, p], and the target kerneky derived from the la-

bels can be used to determine these parameters. This cani. Centering kernels

be done by using either the individual similarity of each o ] ) o
kernel K with Ky, or globally, from the similarity be- Let D be t_he distribution accordm_g to which tralnmg
tween convex combinations of the base kernels ARd ~ @nd test points are drawn. Centering a feature mapping
The similarities we consider are based on the natural notioff : ¥ — H consists of replacing it by —FE,[®], where

of kernel alignmenintroduced byCristianini et al(200), = denotes the expected value dfwhenz is drawn ac-
though our definition differs from the original one. We note €0rding to the distributiorD. Centering a positive definite

that other measures of similarity could be used in this conSymmetric (PDS) kernel functioR : X' x X' — R consists
text. In particular, the notion of similarity suggested by Of centering any feature mappidgassociated td<. Thus,

Balcan & Blum (2006 could be used if it could be com- the/centered kerndK . associated td< is defined for all
puted from finite samples. x,z' € X by

We present a number of novel theoretical, algorithmic, K.(z,z') = (®(x) — E[@])T(‘I’(f) — E[2])

and empirical results for the alignment-based two-stage , , , ,
techniques. Our results build on previous work by (2, 2") = g[K(x’x )= E[K(x’x ) +z%/[K(x,x )]
Cristianini et al.(200% 2002; Kandola et al(20023, but

we significantly extend that work in several directions. This also shows that the definition does not depend on

the choice of the feature mapping associate&toSince
We discuss the original definitions of kernel alignment bYKC(x,x’) is defined as an inner produck’, is also a
these authors and adopt a related but different definitioPDS kernel. Note also that for a centered kerhgl,
(Section2). We give a novel concentration bound show- E. . [K.(z,2')] = 0. Thatis, centering the feature map-
ing that the difference between the alignment of two ker-ping implies centering the kernel function.
nel matrices and the alignment of the corresponding kernel . L , .
functions can be bounded by a term@r(1//m) (Sec- Similar definitions can be given for a finite samfle=
tion 3). Our result is simpler and directly bounds the differ- (1, ... ’_xm_) drawn _accordlng tol: a featur_e v_ectqr
ence between the relevant quantities, unlike previous work® (#7) With i€ [L,m] S thg“ centered by replacing it with
We also show the existence of good predictors for kernelg(xi)_q’g with @ = =5 27, @(xi),.and the kernel matrix
with high alignment, both for classification and for regres- 1< @ssociated td« and the samplé is centered by replac-
sion. These results correct a technical problem in claasific ing it with K. defined foralki, j € [1,m] by
tion and extend to regression the bound€nstianini et al. L& & Lo
(2009). In Section, we also give an algorithm for learning [K];; = Kij— — Y Kij—— > Kij+— > K.
a maximum alignment kernel. We prove that the mixture mis M= m
coefficients can be obtained efficiently by solving a simple _ _
quadratic program (QP) in the case of a convex combinak€t ®=[2(z1), ..., ®(z,)] T and®=[®, ..., 3| ". Then,
tion, and even give a closed-form solution for them in thelt iS not hard to verify thak . = (‘I)__‘I))_(‘_I’_‘I’)T' which
case of an arbitrary linear combination. Finally, in Sec-Shows thatK. is a positive ;enll-detlnmte (PSD) matrix.
tion 5, we report the results of extensive experiments withAISO, as with the kernel function;z > ;" [Ke]i; =0.
this alignment-based method both in classification and re-
gression, and compare our results with and L, regu-  2.2. Kernel alignment
larized learning kernel algorithmédnckriet et al. 2004

i,j=1

We define the alignment of two kernel functions as follows.
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Definition 1. Let K and K’ be two kernel functions defined
over X x X' such that) < E[K2] < +oo and0 < E[K/*]<
+00. Then, thaalignmentbetweenk and K is defined by
E[K K]

p(K,K') = ——mied
E[K?] E[K/]
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In the absence of ambiguity, to abbreviate the notationFigure 1.Alignment values computed for two different definitions
we often omit the variables over which an expectation isof alignment: A = [M]% in black, p = 1 in blue. In this

taken. SincéE[K.K]| < /E[K2] E[K/?] by the Cauchy-
Schwarz inequality, we have( K, K') € [-1, 1]. The fol-
lowing lemma shows more precisely that, K') € [0, 1]
whenK . andK/ are PDS kernels. We denote py-) r the
Frobenius product and by- || » the Frobenius norm.

Lemma 1. For any two PDS kernel@ and@’, E[QQ’]> 0.

Proof. Let ¥ be a feature mapping associatedx@and ¥’
a feature mapping associatedja By definition of & and
¥’, and using the properties of the trace, we can write:

E Q(,2)Q (")
E V@@V (@) ¥ (@)

[T 0 ()W () W' (o')W ()]

x!

= (B[¥(2)¥'(2) '], E[¥(«") (") ")) r = |[UI3,

x/

whereU = E, [¥(2)¥'(z)T]. O
The following similarly defines the alignment between two
kernel matrice and K’ based on a finite samplg¢ =
(z1,...,zy,) drawn according td.

Definition 2. Let K € R™*™ and K’ € R™*™ be two

kernel matrices such thatK.||r # 0 and ||K.||r # 0.
Then, thealignmentbetweerK andK' is defined by

~ <K07K/>F
PKK) = el
1Kl rlIKEN

Here too, by the Cauchy-Schwarz inequalitfK, K') €
[-1,1] and in factp(K, K’) > 0 since the Frobenius prod-
uct of any two positive semi-definite matricBsandK’ is
non-negative. Indeed, for such matrices, there exist matr
cesU andV such thatk = UUT andK’ = VV . The
statement follows from

(K, K)p=Tr(UU'VV)=Tr (U'V)T(UTV)) >0.

Our definitions of alignment between kernel functions or
between kernel matrices differ from those originally given
by Cristianini et al. (2001, 2002:
E[KK']
E[K?|E[K"?

(K. K')r

i- KK
IR

simple two-dimensional example, a fractiarof the points are at
(—1,0) and have the label 1. The remaining points are ét, 0)

and have the labe}-1.

which are thus in terms of and K’ instead ofK,. and

K! and similarly for matrices. This may appear to be a
technicality, but it is in fact a critical difference. Withb
that centering, the definition of alignment does not corre-
late well with performance.

To see this, consider the standard case whetas the
target label kernel, that i&’(z, z') = yy’', with y the la-
bel of x andy’ the label ofy’, and examine the follow-
ing simple example in dimension twot(= R?), where
K(z,2") =« - 2’+1 and where the distributior), is de-
fined by a fractionx € [0, 1] of all points being at—1,0)
and labeled with-1, and the remaining points ét, 0) with
label+1.

Clearly, for any value ofv € [0, 1], the problem is separable
for example with the simple vertical line going through the
origin and one would expect the alignment tolbeHow-
ever, the alignmem is never equal to one except for= 0
or o = 1 and, even for the balanced case where- 1/2,

its value isA = 1/\/5 ~ .707 < 1. In contrast, with our
definition,p(K, K') =1 for all a« € [0, 1], see Figurd..

This mismatch betweeA (or /Al) and the performance val-
ues can also be frequently seen in experiments. Our em-
pirical results in several tasks (not included due to lack
of space) show thatl measured on the test set does not
correlate well with the performance achieved. Instances
of this problem have also been noticed lgila (2003
andPothin & Richard(2008 who have suggested various
(input) data translation methods, and Gyistianini et al.
(2002 who observed an issue for unbalanced data sets. The

idefinitions we are adopting are general and require center-

ing for both kernelg< and K.

The notion of alignment seeks to capture the correlation
between the random variablés(z, z’) and K’ (x, ') and
one could think it natural, as for the standard correlation
coefficients, to consider the following definition:

. E[(K - E[K])(K’ — E[KT)
PR = B B — BK T

However, centering the kernel values is not directly rehéva
to linear predictions in feature space, while our definition
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of alignmenty, is precisely related to that. Also, as alreadya’ = (1/m?)||K.||?>. By Propositionl and the union
shown in Sectio.1, centering in the feature space implies bound, for anyd > 0, with probability at leastl — 4, all
the centering of the kernel values, sinE@i.] = 0 and  three differences — @, «’ — @', andb — b are bounded by
oz 2or -1 [Kclij = 0 for any kerneli and kernel matrix B 18R4 + oapty /e Using the definitions of and
K. Conversely, however, centering of the kernel does no 2m

0, we can write:
imply centering in feature space.

. |p(K7 K/) _ﬁ(KvK/”
3. Theoretical results

b b ‘ B ’b 2a — bvad
Tlr_ns section esga_bllshes _sgv?ral |mportant prppemelse)ft " ad 20| wa'aa!
alignmentsp and its empirical estimatg: we give a con- W ;- ;
centration bound of the forrp — 5| < O(1/y/m), and _|=bva — b(Vad' - Va@)
show the existence of good prediction hypotheses both for R aa’aa’
classification and regression, in the presence of high-align _|b=0) (K, K') aa’ —aa’
ment. ad’ P /aa/( fad + /aa/) ’
3.1. Concentration bound Sincep(K,K’) € [0, 1], it follows that
Our concentration bound differs from that of b—| laa’ — @d|

-~ |
Cristianini et al. (200) both because our definition of [P(K, K') (K, K')| £ ——= 4+ ———F———.
alignment is different and because we give a bound a ad'(Vaa’ + Vad)
directly on the quantity of interesto—pl. Instead, Assume first thafi < @’. Rewriting the right-hand side to
Cristianini et algive a bound onA’—A|, whereA’#A can  make the differences — @ anda’ — @’ appear, we obtain:
be defined fromA by replacing each Frobenius product

with its expectation over samples of size Ip(K,K") — p(K,K')|
The following proposition gives a bound on the essential b—b |(a—a)d +a(d —a)|
guantities appearing in the definition of the alignments. = Vad Vad (Vad +Vaa)
The proofis given in a longer version of this paper. 0 T o+
Proposition 1. Let K and K’ denote kernel matrices as- < = |1+ Jad \/AT/]
sociated to the kernel functiorf§ and K’ for a sample of a a,a * aa
sizem drawn according taD. Assume that for any € X, < _“ + + ]
K(x,z)<R?andK’(z, )< R% Then, for any > 0, with - WVad | Vad  Vaad
probability at leastl — 4, the following inequality holds: a | o D) 1
S ~ 2 + — | = |: - =+ E:| Q.
K. K 18R! log 3 vae | o
KeKolr _pig.x| < 4 24RY [ 2835
m2 2m

We can similarly obtair{& + %} a when@’ <@. Both

Theorem 1. Under the assumptions of Propositiénand bounds are less than or equaBlaax(, 2). O

further assuming that the conditions of the Definitidn2
are satisfied fop(K, K') andp(K, K’), for anyé > 0, with
probability at leastl — 4, the following inequality holds:
5 For classification and regression tasks, the target kesnel i
[log § based on the labels and definedy (z, ') = yy', where
2 ' we denote by the label of point andy’ that ofz’. This
. ) section shows the existence of predictors with high accu-
with § = max(RY/E[K7], RY/E[K["]). racy both for classification and regression when the align-

mentp(K, Ky ) between the kernél” and Ky is high.
Proof. To shorten the presentation, we first simplify the no-

tation for the alignments as follows:

3.2. Existence of good predictors

(K, K') — 5K, K')| < 188| 2 +4
m

In the regression setting, we shall assume that the labels
have been first normalized by dividing by the standard de-

b ~ b viation (assumed finite), thus[y?] = 1. In classification,
AN N —
KK = Vaa and p(K,K') = vaa' y==+1. Leth* denote the hypothesis defined foralE X,
with b = E[K.K!], a = E[K?], a _ Euly'K.(z,2)]

E[K!?] and sim-
1/m

ilarly, b = (1/m2)(K¢,K.)p, @ ? 2)|K¢|?, and h(@) = E[K?2]
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Observe that by definition df*, E,. [yh*(2)] = p(K, Ky). 4. Algorithms
; _ ) By [KZ(za)] _ . . . . .
Foranyx € X, define(z) = /g pomar @dU= This section discusses two-stage algorithms for learning

max, y(x). The following result shows that the hypothesis kernels in the form of linear combinations pfbase ker-

h* has high accuracy when the kernel alignmentis high anghels K, k € [1, p]. In all cases, the final hypothesis learned
I not too large' belongs to the reproducing kernel Hilbert space associated
Theorem 2 (classification) Let R(h*) = Prlyh*(z) < 0]  toakernelK,, = Y77, ju; K}, where the mixture weights
denote the error of* in binary classification. For any are selected subject to the conditj@n> 0, which guaran-
kernel K such that) < E[K 2] < +oo, the following holds:  tees that{ is a PDS kernel, and a condition on the norm of

, = A >0, whereA is a regularization parameter.
R(h*) < 1— p(K, Ky)/T. po [l el g p
In the first stage, these algorithms determine the mixture

Proof. Note that for allz € X, weightsu. In the second stage, they train a kernel-based
. , , o algorithm, e.g., SVMs for classification, or KRR for re-
lyh* (@) = Iy Ely'Ke(@, «")]|/ v EIKE] gression, in combination with the kernHl,,, to learn a
VEo WA B [K2(2,7)]  /Eo[K2(z, )] hypothesisi. Thus, the algorithms differ only by the first

stage, wherdy, is determined, which we briefly describe.

- E[KZ] E[KZ]

In view of this inequality, and the fact th&t, [yh*(z)] =
p(K, Ky ), we can write:

Uniform combination (uni f): this is the most straight-
forward method, which consists of choosing equal mixture
weights, thus the kernel matrix used{s, = % 1 K.

1 — R(h*) = Prlyh*(z) > 0] = E[1{yn-(2)0}] Nevertheless, improving upon the performance of this
yh* (z) method has been surprisingly difficult for standard (one-
> E| T 1iyh*(z)>0}] stage) learning kernel algorithmSdgrtes 2009.

yh*(x), Independent alignment-based methodd( i gn): this is
> B T J = p(K, Ky)/T, a simple but efficient method which consists of using the
where1,, is the indicator variable of an event [ training sample to independently compute the alignment
between each kernel matri;, and the target kernel matrix
— T i
A probabilistic version of the theorem can be straightfor-Ky = yy ', based on the labejs and to choose each mix-
wardly derived by noting that by Markov’s inequality, for turé Weighty, proportional to thapt alignment. Thus, the
anyd >0, with probability at least —4, |y(z)| < 1/v/. resulting kernel matrix isK,, oc 34 _; p(Kp, Ky ) K.
Theorem 3 (regression) Let R(h*) = E,.[(y — h*(x))?]  Alignment maximization algorithms (al i gnf): the in-
denote the error ok* in regression. For any kernédl’ such  dependent alignment-based method ignores the correlation
that0 < E[K 2] < +o0, the following holds: between the base kernel matrices. The alignment max-
. imization method takes these correlations into account.
R(W7) = 2(1 = p(K, Ky)). It determines the mixture weighis;, jointly by seeking

Proof. By the Cauchy-Schwarz inequality, it follows that: 0 maximize the alignment between the convex combi-
nation kernelK,, = > 7_, u:Kj and the target ker-

E[h*Q(.I')] —-E [M} nel Ky = yy', as suggested b@ristianini et al.(2007);
@ @ E[K?] Kandola et al(20023 and later studied byanckriet et al.
Eu [y?] Ew [K3(z,2")] (2009 who showed that the problem can be solved as a
a3 ]E [ E[K2] } QCQP. In what follows, we present even more efficient al-
Eu[y? Ev o [K2(2, 2)] gorithms for computing the weights, by showing that the

B2 = E;[y’Q] =1. problem can be reduced to a simple QP. We also examine
K] * the case of a non-convex linear combination, where compo-
Using again the fact that, [yh*(z)] = p(K, Ky ), the er-  nents ofu can be negative, and show that the problem then
ror of h* can be bounded as follows: admits a closed-form solution. We start with this linear
N 9 v/ A2 9 N combination case and partially use that solution to obtain
Elly = h*(2))"] = g[h ()7 + };[y I- 2};3['1/}1 (@)] the solution of the convex combination.
<141-2p(K, Ky). O

_— 4.1. Alignment maximization algorithm - linear
1A version of this result was presented Byistianini et al. combination
(2001 2002 for the so-called Parzen window solution and non-

centered kernels, but their proof implicitly relies on tiaetfthat  \We can assume without loss of generality that the cen-

2 / 1 . . . . . .
By [K (2] ]? =1 which holds only ifK is constant.  tered base kernel matric&§;,. are independent since oth-

maxy I:Ea:,a:/ [K2(z,z’)]
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erwise we can select an independent subset. This condFhus,v* € Vec(M~1/2a) with [[M~1/20*||, = 1. This
tion ensuges. thanK#CHF >0 for an _arbitraryu and that  yields immediately:* = Hﬁijzll which verifiesy*'a =
p(I_(u,yy ) is vyell defined (Definitior2). By the prop- a™™ 'a/[M~a|| > 0 sinceM andM~! are PSD. O]
erties of centering(K,, ., Ky.)r = (K, ,Ky)r. Thus,
since||Ky .|| » does not depend gm, alignment maximiza-

. : : Lo 4.2. Alignment maximization algorithm - convex
tion can be written as the following optimization problem: 9 g

combination
_ T (Ku., ¥y )r : " . .
max p(K,,yy ') = max 127, (1) In view of the proof of Propositiog, the alignment maxi-
HeM peM  [|Ky [[r mization problem with the se¥t’ = {||u|l = 1A p > 0}

where M = {u: ||p|l2 = 1}. A similar set can be de- can be written as

fined via norm-1 instead of norm-2. As we shall see, T
however, the problem can be solved in the same way p* = argmax
in both cases. Note that, by definition of centering, pweM’
K,.=U,K,U, with U, =I1-11"/m, thus, K, = _ -
Zi:l MkUkaUm:Zi:I 1Ky, Leta denote the vec- The following p_roposrqon shows that the problem can be
tor (Kig,yy Vrs- ., (Kp.,yy )r)T andM the matrix ~ reduced to solving a simple QP.

defined byMy,; =(Ky..,K;.)r, for k,1 € [1,p]. Note that  Proposition 3. Letv* be the solution of the following QP:
since the base kernels are assumed independent, Mvatrix

is invertible. Also, in view of the non-negativity of the minv' Mv — 2v'a. (3)
Frobenius product of PSD matrices shown in Sec#d) v20

the entries oh andM are all non-negative. Observe also Then, the solutiop™ of the alignment maximization prob-
that M is a symmetric PSD matrix since for any vector lem @) is given byu* = v*/||v*||.

X = (21,...,0,)" € R™,

aa' p

TN @

Proof. Note that the objective function of probler) (is
invariant to scaling. The constraifift||=1 only serves to
enforce0l < ||pu|| < +o00. Thus, using the same change of
variable as in the proof of Propositid) we can instead

—Tr {(Z Ikch)(Z Iszc)} = ZkakcHQF > 0. solve the_z foIIQW|ng prqblem f.rom which we can retrieve
= = = the solution via normalization:

XTMX:Z LX) TI‘[KkCKlC]:TI‘ [ Z xklechlc:|
k=1 k,l=1

. . . . . 2
Proposition 2. The solutionu* of the optimization prob- . v —1/2
lem (1) is given byu* = M_a_ vi =  arghax o (M)
g YN - HM—la”' 0<HM71/2VH2<+00 ||IJH
M~ 2u>0

Proof. With the notation introduced, probleni)(can be

. Equivalently, we can solve the following problem for an
rewritten asu* = argmax,|,—; LA Thys, clearly, d ¥ ap y

VT Mp finite A > 0:
the solution must verifys* 'a > 0. We will square the ob- —1/2.12
jective and yet not enforce this condition since, as we shall M%%§>O [u- M%)
see, it will be verified by the solution we find. Therefore, llall=x"

we consider the problem . .
P Observe that foM~'/2u > 0 the inner product is non-

._ (n'a)? plaap negativeu- M~'/2a = M~/?u-a > 0, since the entries
p- = argmax = argmax —————. . . .
lplla=1 T TMp =1 # Mp of a are non-negative. Furthermore, it can be written as
follows:

In the final equality, we recognize the general Rayleigh
quotient. Letv = M2y andv* = MY2pu*, then

1 1 1
w M am =M a4 M
VT [M—I/QaaTM—l/Q]V 2 2 2

v* = argmax ) 1 _ A2 _
HM*Ig/QV\h:l viv =—5llu-M 1/231||2+7+§||M 2al|?.
Therefore, the solution is Thus, the problem becomes equivalent to the minimization:
l/Tl\/I_l/Qa]2

v*=  argmax ————s—— min Hu - M*1/2a||2. (4)

IM-1/2p | p=1 w3 M~1/24>0

T 9 [YE
14 . L. .

argmax H—} Ml/Qa] . Now, we can omit the condition on the normwsince @)
=72 p=1 LIl holds for arbitrary finite\ > 0 and since neithen = 0 or
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any infinite normu can be the solution even without this Table 1.Error measures (top) and alignment values (bottom) for

condition. Thus, we can now consider instead: (A) uni f, (B) one-stage 2-krr orl 1-svm (C) al i gn and
D) al i gnf with kernels built from linear combinations of Gaus-
2
min _[lu—M""?a|". sian base kernels. The choicef 71 is listed in row labeled,
M~1/2u=0 andm is the size of the dataset used. Shown with standard
. deviation (in parentheses) measured by 5-fold cross-aidtid.
The change of variablea = M2y leads to: (inp ) Y
. 1/2¢ _ n—1/2.12 . g KINEMAT. | IONOSPH | GERMAN [SPAMBASE SPLICE
minyzo |[M'/2v — M /%l ". This is a standard least- o551 —551 1000 | 1000 | 1000
square regression problem with non-negativity constsaint ST 3.3 33 73 a7 -7 5 3
a simple and widely studied QP for which several families .138(_'005) .467(.’085) 25,9('1,8) 18.7(’2.8) 15.2’(2.2)
of algorithms have been designed. Expanding the terms,” |.158(.013)|.242(.021)|.089(.008) | .138(.031) |.122(.011)
we obtain the equivalent problem: B .137(.005)[.457(.085)] 26.0(2.6) [20.9(2.80) | 15.3(2.5)
155(.012) [.248(.022) |.082(.003) | .099(.024) |.105(.006)
minv Mv — 2v ' a. 0 < |-125(:004)[ 445(.086)| 25.5(1.5) | 18.6(2.6) [ 15.1(2.4)
v>0 173(.016) |.257(.024) |.089(.008) | .140(.031) |.123(.011)
. . . 115(.004) [.442(.087) | 24.2(1.5) | 18.0(2.4) | 13.9(1.3)
Note that this QP problem does not require a matrix in-| D 176(.017)|.273(.030) |.093(.009) | .146(.028) | .124(.011)
version of M. AlSO, it is not hard to see that this prOb' REGRESSION CLASSIFICATION

lem is equivalent to solving a hard margin SVM problem, on the performance on the validation set, while the regular-

thus, any SVM solver can also be used to solve it. A M ation parameter€ and\ are fixed since only the ratios

ilar problem with the non-centered definition of alignment : .
. . L2 C/A and\/A matter. Theu, parameter is set to zero in
is treated byKandola et al(2002h, but their optimization Section5.1 and is chosen to be uniform in Sectisr

solution differs from ours and requires cross-validation.

. 5.1. General kernel combinations
5. Experiments
In the first set of experiments, we consider combina-
This section compares the performance of several learntions of Gaussian kernels of the fordd, (x;,x;) =

ing kernel algorithms for classification and regression. Weexp(—v||x; — x;]|?), with varying bandwidth parame-
compare the algorithmsni f, al i gn, andal i gnf, from  ter 4 ¢ {200, 270+ 9l-m 9m}.  The valuesy
Sectiond, as well as the following one-stage algorithms:  and ~; are chosen such that the base kernels are suf-
ficiently different in alignment and performance. Each
base kernel is centered and normalized to have trace
equal to one. We test the algorithms on several

Norm-1 regularized combination (I 1- svm): this algo-
rithm optimizes the SVM objective

minmax 2a'1-a'Y'K,Ya datasets taken from the UCI Machine Learning Repos-
B itory (http://archive.ics.uci.edu/ml/) and Delve datase
subjecttoy > 0, Tr[K,] < A,a'y =0,0<a<C, (http://www.cs.toronto.edw/delve/data/datasets.html).

as described bianckriet et al(2004. Here,Y is the di-  Tablelsummarizes our results. For classification, we com-
agonal matrix constructed from the labgisand C is the ~ Pare against thel- symmethod and report the misclassi-
regularization parameter of the SVM. fication percentage. For regression, we compare against
thel 2- krr method and report RMSE. In general, we see
that performance and alignment are well correlated. In all
datasets, we see improvement over the uniform combina-
. T T T tion as well as the one-stage kernel learning algorithms.
e Aata—a Kua+t2ay Note that although thel i gngmethod often incgreages the
subject toys > 0, || — poll2 < A, alignment of the final kernel, as compared to the uniform
combination, theal i gnf method gives the best alignment
as described iCortes et al(20093. Here,\ is the regular-  since it directly maximizes this quantity. Nonetheless,
ization parameter of KRR, ang, is an additional regular- al i gn provides an inexpensive heuristic that increases the
ization parameter for the kernel selection. alignment and performance of the final combination kernel.

Norm-2 regularized combination (I 2-krr): this algo-
rithm optimizes the kernel ridge regression objective

In all experiments, the error measures reported are for 5%o the best of our knowledge, these are the first kernel com-
fold cross validation, where, in each trial, three folds arebination experiments for alignment with general base ker-
used for training, one used for validation, and one for testnels. Previous experiments seem to have dealt exclusively
ing. For the two-stage methods, the same training and valwith rank-1 base kernels built from the eigenvectors of a
dation data is used for both stages of the learning. The regsingle kernel matrix Cristianini et al, 200J). In the next
ularization parametek is chosen via a grid search based section, we also examine rank-1 kernels, although not gen-
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Table 2.The error measures (top) and alignment values (bottom) damets built with rank-1 feature based kernels on four damai

sentiment analysis domains. Shown with standard deviation as measured by 5-fold cross-validation

BOOKS DVD ELEC KITCHEN BOOKS DVD ELEC KITCHEN

uni f 1.442 £ .015(1.438 £ .033|1.342 £ .030|1.356 £ .016 uni f 258+ 1.7(1243+£15]18.8+14]20.1£2.0
.029 £.005 | .029 £ .005 | .038 £ .002 | .039 £ .006 .030 £ .004.030 + .005|.040 £ .002|.039 £ .007

| 2-Kkrr 1.414 £ .020|1.420 £ .034|1.318 £ .031|1.332 £ .016 | 1- svm 28.6+1.629.0£22|23.8+1.9|23.8+£2.2
.031 £.004 | .031 £.005 | .042 £+ .003 | .044 + .007 .029 £ .012.038 + .011|.051 £ .004|.060 &= .006

align 1.401 +£.035|1.414 £ .017|1.308 £ .033|1.312 £ .012 align 243+£20(214£20|16.6£1.6|17.2+2.2
.046 £ .006 | .047 £ .005 | .065 £ .004 | .076 £ .008 .043 £ .003.045 £ .005|.063 £ .004|.070 £ .010

REGRESSION CLASSIFICATION

erated from a spectral decomposition. Balcan, Maria-Florina and Blum, Avrim. On a theory of leagi

with similarity functions. InICML, pp. 73-80, 2006.

5.2. Rank-1 kernel combinations Blitzer, John, Dredze, Mark, and Pereira, Fernando. Biuftjes,

. . . . Bollywood, Boom-boxes and Blenders: Domain Adaptation
In this set of experiments we use the sentiment analysis for Sentiment Classification. IACL, 2007.

dataset fronBlitzer et al. (2007): books dvd, electronics , , . ,

and ktihen Each domain has 2,000_ examp!es. In the re-corﬁif"cggrmg?w_'g\ggegdngfkl'ei?golgg_mmg kernels helrigre
gression setting, the goal is to predict a rating between 1
and 5, while for classification the goal is to discriminate Cortes, Corinna and Vapnik, Vladimir. Support-Vector Netks.
positive (ratings> 4) from negative reviews (ratings 2). Machine Learning20(3), 1995.

We use rank-1 kernels based on the 4,000 most frequent bGortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin
grams. Thekth base kernelK},, corresponds to thé-th regularization for learning kernels. WAI, 2009a.

pigram countv;, K, = v, v/ . Each base kernel is normal- Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin
ized to have trace 1 and the labels are centered. Learning non-linear combinations of kernels.NiPS 2009b.

Theal i gnf method returns a sparse weight vector due toCortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin
the constrainfx > 0. As is demonstrated by the perfor- Generalization bounds for learning kernelsl@ML 10, 2010.
mance of theé 1- svmmethod (Table?) and also previously  Cristianini, Nello, Shawe-Taylor, John, Elisseeff, Aadrand
observed byCortes et al(2009g, a sparse weight vector ~ Kandola, Jaz S. On kernel-target alignmentNIFPS 2001.

p does not ge_ner"’_‘”y offer an Improvement over the uni-cyistianini, Nello, Kandola, Jaz S., Elisseeff, Andréd@hawe-
form combination in the rank-1 setting. Thus, we focus Taylor, John. On kernel target alignment. http://www.sop
on the performance afl i gn and compare it tani f and vector.net/papers/alignmedMLR.ps, unpublished, 2002.
ong-stagg learning methods. Tgﬁlehows thatl i gn sig- Kandola, Jaz S., Shawe-Taylor, John, and Cristianini,dNeln
nificantly improves both the alignment and the error per- the extensions of kernel alignment. technical report 128, D
centage oveuni f and also improves somewhat over the partment of Computer Science, Univ. of London, UK, 2002a.
one-stagé 2- krr algorithm. Although the sparse weight- Kandola, Jaz S., Shawe-Taylor, John, and Cristianini,dNellp-

ing provided byl 1- svmimproves the alignmentin certain  timizing kernel alignment over combinations of kernelschte
cases, it does not improve performance. nical report 121, Dept. of CS, Univ. of London, UK, 2002b.

Lanckriet, Gert, Cristianini, Nello, Bartlett, Peter, Glog Lau-
rent El, and Jordan, Michael. Learning the kernel matribhwit
semidefinite programminglMLR, 5, 2004.

6. Conclusion

We presented a series of novel theoretical, algorithmid, an
empirical results for a two-stage learning kernel alganith
based on a notion of alignment. Our experiments show é/licchellli, Charles anq Pqntil, Massimiliano. Learning #ernel
consistent improvement of the performance over previous [Unction via regularizationJMLR 6, 2005.

learning kernel techniques, as well as the straightforwar@®ng, Cheng Soon, Smola, Alexander, and Williamson, Robert.
uniform kernel combination, which has been difficult to  Learning the kernel with hyperkernel3MLR, 6, 2005.

surpass in the past. These improvements could suggestrthin, J.-B. and Richard, C. Optimizing kernel alignmentata
better one-stage algorithm with a regularization term tak- translation in feature space. IGASSR 2008.

ing into account the alignment quality of each base kernel
a topic for future research.

Meila, Marina. Data centering in feature spaceAISTATS$S2003.

Scholkopf, Bernhard and Smola, Alex.earning with Kernels
MIT Press: Cambridge, MA, 2002.

Shawe-Taylor, John and Cristianini, Nell&ernel Methods for
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A. Proof of Proposition 1 Lemma 3. Let K and K’ denote kernel matrices associ-
ated to the kernel functions” and K’ for a sample of size
m according to the distributionD. Assume that for any
r € X, K(z,z) < R?and K'(z,z) < R% Then, the fol-
lowing perturbation inequality holds when changing one
point of the sample:

The proof relies on a series of lemmas shown below.

Proof. By the triangle inequality and in view of Lemndia
the following holds:

(K, Ko)r 1 24R*
‘T —E[K.K]]| < W|A(<KC,K2>F)| < -
/ / 4
(Ke, Ke)r E (Ko, Ko + 1812 . Proof. By Lemma2, we can write:
m2 m2 m
/ - /
Now, in view of Lemmag, the application of McDiarmid’s (Ko, Ko)r = <I§C’ Kr .
inequalitytoa(j;l# gives for anye > 0: Tl 1= 11 KII— 11 K’
m m
K. K K. K T T T T
pr || JF g lf JF| S . < S SOV § Ot | LR & Gos & Lo
m? m? m m m m
2 exp[—2me® /(24R*)?]. K. K') 1T (KK +K'K)1 | (1TK1)(1TK'])
= ) F — .
Settings to be equal to the right-hand side yields the state- m m?
ment of the proposition. O  The perturbation of the first term is given by
We denote byl € R™*" the vector with all entries equal A (K, K')5) = Z AKimK, ) + A(Z KK ).
to one, and by the identity matrix. im1 im
kzmr;?rﬁc.ezhefollowmg properties hold for centering ker- By the Cauchy-Schwarz inequality, for ayj < [1,m),
' |K”| = |K(l‘l, .1'7)| < \/K(xi, xi)K(xj, .I'j) < R2. Thus,
1. For any kernel matridK € R™*", the centered ker- 1 2% — 1 A AR
nel matrixK_. can be given by W|A(<K7K/>F)| S — (2R%) < gt
T T Similarly, for the first part of the second term, we obtain
Kc_[l—i}K[I—i} ) y P
" B TKK'1 " KK
1 1 i i
. , —al—==)|=]a( > &
2. For any two kernel matriceK andK’, m?2 m i m3
1,7,k=
(Ko, Ko)r = (K.K)r = (K, K')r.  (6) N ‘A(Zzlk—l KirKi + 2 j2m KimKinj)Jr
m3
Proof. The first statement can be shown straightforwardly > K, KL
from the definition ofK. given by (1). The second state- A( k?ém’#mg k) )‘
ment follows from ) m ;
L L < m +m(m—13)+(m—1) (2RY)
(Ko, Ke)p = Tr HI_—]K{I_—] 3m2—3m+wll 6R*
mn mn < —3(2R4) < —.
117 117 . "
[I - —} K’ {I - —H ; Similarly, we have:
m m
1 1"K'K1 6R*
the fact thafl — 2117]2 = I. = [I - 1117}, and the pc) A(T)’ < — )
trace propertyl[t[AB] = Tr[BA], valid for all matrices
A ,B e Rm*™, O  and it can be shown that
_ 1 (1TK1)(1TK'1) 8RY
For a functionf of the sampleS, we denote byA(f) the o A 2 = (8)

difference f(S") — f(S), whereS’ is a sample differing
from S by just one point, say the:-th pointisz,, in Sand  Combining these last four inequalities leads directly ® th
al,in S’ statement of the lemma. O
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Because of the diagonal terms of the matricesgexpectation:

24 (K.,K.)r is not an unbiased estimate BfK K. ,
However, as shown by the following lemma, the estimation B |:<KC’KC>F:|
bias decreases at the r&¢l/m). m?

Lemma 4. Under the same assumptions as Len8nthe ~ — {m(m —1) _ 2m(m-1)  2m(m— 1)} E[KK']
m

following bound on the difference of expectations holds: ? m? m*
[—2m(m —1)(m —2) 2m(m —1)(m —2)
(Ko, KL 18R* i m3 * m*
B [ (0.0 Kl o))~ | Sl ] < BB :
z,x’ S m m E [E;[K] E;[KIH
~1 —_92 _

Proof. To simplify the notation, unless otherwise specified, L m
the expectation is taken overx’ drawn according to the m  2m  m
distributionD. tls -5t W} g[K(x, ) K'(z,z)]
The key observation used in this proof is that L '—m(:nng— 1) n 2m(:4— 1)] BK (2, 2) ' (, 2')]

E[K;; K. ] =E[K(z;,2;)K'(x;,2;)] = E[KK'], (9 r_ _ _

S[ j ]] S[ ( LY )l [ l, (9) " m(:nn3 1) n 2m(;14 1)] B (2, ') K' (3, 2)]
for i, j distinct. For expressions suchs[K ;. Kj ;] with [m(m —1) ,
i, j, k distinct, we obtain the following: + T mA ElK (2, 2)]| E[K'(z, )]

m(m—1)(m — 2)
E[KiKj;] = BIK (¢, 2) K (ar, 7)) = E[E[K]E[K].  + g BIK (2, z)] E[K']
(10) Fm(m —1)(m — 2
Let us start with the expression Bf K. K + ( m)4( )} E[K]E[K(z, )]
"o B B Taking the difference with the expression BfK.K|
B[R K] =F [(K E[K] ED[K] + E[K]) (Equation 11), using the fact that terms of form

(K’—E[K’]—E[K’]+E[K’])}. (11) E.[K(z,2)K' (z, )] and. other similar_ ones are all
! T bounded byR* and collecting the terms gives

After expanding this expression, applying the expectation , (K., K p 3m? —4m + 2 ,
to each of terms, and simplifying, we obtain: E[K.K.] - % { m2 } = m3 ElKK']
4m? —5m +2
EK.K(] = E[KK'] - 2E[B[K|E[K']] + E[K]E[K].  — 25— B[BIK]EK]]
6m? — 11 6
+ D RIK B 4,
m

(K., K')r can be expanded and written more explicitly as

follows: with |y| < =L R, Using again the fact that the expecta-
tions are bounded bi* yields

<K07K:3>F
!/
. 1TKK1 1"K’K1  1"K11'K1  |E[K.K!]-E {LC’KCW} <3 8,06 g
= (K, K')r — - + s m?2 m m m m
m m m? s
m 1 m < —R47
= Z Kz‘jK;j T m Z (Kle;g] + K Kij)+ -
e bk and concludes the proof. O
1
3l S KD K.
i,j=1 i,j=1

To take the expectation of this expression, we shall use the
observations9) and (L0) and similar identities. Counting
terms of each kind, leads to the following expression of the



