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Abstract

Adversarial robustness is a critical property in a variety of modern machine learning
applications. While it has been the subject of several recent theoretical studies,
many important questions related to adversarial robustness are still open. In this
work, we study a fundamental question regarding Bayes optimality for adversarial
robustness. We provide general sufficient conditions under which the existence of
a Bayes optimal classifier can be guaranteed for adversarial robustness. Our results
can provide a useful tool for a subsequent study of surrogate losses in adversarial
robustness and their consistency properties. This manuscript is the extended and
corrected version of the paper On the Existence of the Adversarial Bayes Classifier
published in NeurIPS 2021. There were two errors in theorem statements in the
original paper— one in the definition of pseudo-certifiable robustness and the other
in the measurability of Aε for arbitrary metric spaces. In this version we correct
the errors. Furthermore, the results of the original paper did not apply to some
non-strictly convex norms and here we extend our results to all possible norms.

1 Introduction

A key problem with using neural networks is their susceptibility to small perturbations: imperceptible
changes to the input at test time may result in an incorrect classification by the network (Szegedy
et al., 2013). A slightly perturbed picture of a dog could be misclassified as a hand-blower. The same
phenomenon appears with other types of data such as biosequences, text, or speech. This problem
has motivated a series of research publications studying the design of adversarially robust algorithms,
both from an empirical and a theoretical perspective (Szegedy et al., 2013; Biggio et al., 2013; Madry
et al., 2017; Schmidt et al., 2018; Athalye et al., 2018; Bubeck et al., 2018b; Montasser et al., 2019).

In the context of classification problems, instead of the standard zero-one loss, an adversarial zero-one
loss has been adopted which penalizes a classifier not only if it misclassifies an input x but also if it
does not maintain the correct x-label in a ε-neighborhood around x (Goodfellow et al., 2014; Madry
et al., 2017; Tsipras et al., 2018; Carlini and Wagner, 2017). Since optimizing the adversarial zero-one
loss is computationally intractable, a common approach for adversarial learning is to use a surrogate
loss instead. However, optimizing a surrogate loss over a class of functions may not always lead
to a minimizer of the true underlying loss over that class. In the case of the standard zero-one loss,
there is a large body of literature identifying conditions under which surrogate losses are consistent,
that is, minimizing them over the family of all measurable functions leads to minimizers of the true
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loss (Zhang, 2004; Bartlett et al., 2006; Steinwart, 2005; Lin, 2004). More precisely, as argued by
Long and Servedio (2013), it is in factH-consistency that is needed, which is consistency restricted
to the hypothesis set under consideration. A surrogate loss may be consistent for the family of all
measurable functions but not for the specific family of functions H, and a surrogate loss can be
H-consistent for a particular familyH, without being consistent for all measurable functions.

When are adversarial surrogate losses H-consistent? This problem is already non-trivial for the
standard zero-one loss: while there are well-known results for the consistency of losses for the zero-
one loss such as (Bartlett et al., 2006; Steinwart, 2005), these results do not hold forH-consistency.
Existing theoretical results forH-consistency assume that the Bayes risk is zero (Long and Servedio,
2013; Zhang and Agarwal, 2020). A similar situation seems to hold for the more complex case of
the adversarial loss. Recently, Awasthi et al. (2021a) gave a detailed study of H-calibration and
H-consistency of surrogates to the adversarial loss and also pointed out some technical issues with
someH-consistency claims made in prior work (Bao et al., 2020). These authors presented a number
of negative results for adversarialH-consistency and positive results for some surrogate losses which
assume realizability. For these positive results, the zero Bayes adversarial loss seems necessary. In
fact, the authors show empirically that without the realizability assumption,H-consistency does not
hold for a variety of surrogate losses, even when they areH-calibrated.

But when is the Bayes adversarial loss zero? Clearly, the adversarial risk can only be zero if it
admits a minimizer, which we call the adversarial Bayes classifier. However, it is unclear under what
conditions such a classifier exists. This is the primary theoretical question that we study in this work.

We now describe the challenges involved in finding minimizers of the adversarial zero-one loss. Most
of the existing work on the study of Bayes optimal classifiers focuses on loss functions such as the
zero-one loss that admit the pointwise optimality property (Steinwart, 2005; Steinwart et al., 2006). To
illustrate this better, consider the case of binary classification where on a given input x, η(x) denotes
the conditional class probability, that is, η(x) := P(y = 1 | x). In this case, it is well-known that the
Bayes optimal classifier can be obtained by making optimal predictions per point in the domain: at
a point x predict 1 if η(x) ≥ 1

2 , −1 otherwise. Similar to the notion of a Bayes optimal classifier,
an adversarial Bayes optimal classifier is the one that minimizes the adversarial loss. However, an
immediate obstacle is that the pointwise optimality property does not hold for adversarial losses.

As an example, consider the case of binary classification and perturbations measured in the `2 norm.
Then, for a given labeled point (x, y) and a perturbation radius ε, the adversarial zero-one loss of a
classifier f : Rd → {−1,+1} is defined as maxx′ : ‖x′−x‖2≤ε 1(f(x′) 6= y). Thus, the loss at a point
x cannot be measured simply by inspecting the prediction of the classifier at x. In other words, the
construction of an adversarial Bayes optimal classifier necessarily involves arguing about the global
patterns in the predictions of the classifier across the entire input domain. As a result, most of the
technical tools developed for the study of Bayes optimal classifiers for traditional loss functions are
not applicable to the analysis of adversarial loss functions, and new mathematical techniques are
required.

The above discussion leads to our second motivation for studying the question of existence of the
adversarial Bayes classifier. Insights regarding the structure of the adversarial Bayes optimal classifier
could have algorithmic implications. For example, in the case of the standard zero-one loss, many
popular learning algorithms seek to approximate the conditional probability of a class at a point
because the conditional probability defines the Bayes optimal classifier in this case. Analogously, one
could hope to develop new algorithmic techniques for adversarial learning with a better understanding
of the properties of adversarial Bayes classifiers. In fact, two recent publications propose this approach
(Yang et al., 2020; Bhattacharjee and Chaudhuri, 2020). Although their results do not rely on the
existence of the adversarial Bayes classifier, they implicitly make this assumption to make their
arguments clearer. Our work provides a rigorous basis for this premise.

A second related concept is certified robustness. A point x is certifiably robust for a classifier f and
a perturbation radius ε if every perturbation of radius at most ε leaves the class of x unchanged. In
this paper, we further study a property which we refer to as pseudo-certified robustness, which is
necessary for certified robustness. We show that there always exists an adversarial Bayes classifier
which satisfies the pseudo-certified robustness condition for a fixed radius at every point. However,
a non-trivial classifier cannot be certifiably robust for a fixed radius at every point – specifically, a
classifier is not certifiably robust at points within ε of the decision boundary.
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The concept of certified robustness has algorithmic implications. Cohen et al. (2019) recently showed
that after training a classifier, a process called randomized smoothing makes the classifier certifiably
robust at a point x in the `2 norm with a radius that depends on the point x. As an adversarial
Bayes classifier can be pseudo-certifiably robust but not certifiably robust with a fixed radius at every
point, one could try to design algorithms which ensure pseudo-certifiable robustness during or after
training. Recent works have explored constructing certificates of robustness as well (Raghunathan
et al., 2018; Weng et al., 2018; Zhang et al., 2018; Wong and Kolter, 2018). A better understanding
of the adversarial Bayes classifier could help find additional learning algorithms. By studying the
existence of the adversarial Bayes classifier, we take a first step towards this broader goal.

We now describe the organization of the paper. Section 2 summarizes related work and Section 3
presents the mathematical formulation of our problem. Section 4 discusses our main result and
the proof. Next, Section 5 addresses the measurability issues relating to this problem. Section 6
demonstrates how our techniques might apply to other models of perturbations. Subsequently, in
Appendix A, we prove the measurability results stated in Section 5 and describe a similar result for
metric spaces. Next, in Appendix B, we prove one of our key lemmas about convergence of sets.
These appendices present stand-alone results which do depend on material elsewhere in the appendix.
In Appendix C, we subsequently provide some background material for the results in Appendicies D-
F. Next, we prove the rest of our key lemmas in Appendicies D and E. Lastly, Appendix F states and
proves two generalizations of our main result.

2 Related Work

Existing theoretical work on adversarial robustness focuses on questions such as adversarial coun-
terparts of VC-dimension and Rademacher complexity (Cullina et al., 2018; Khim and Loh, 2018;
Yin et al., 2019; Awasthi et al., 2020), evidence of computational barriers (Bubeck et al., 2018b,a;
Nakkiran, 2019; Degwekar et al., 2019) and statistical barriers towards ensuring low adversarial test
error (Tsipras et al., 2018).

Cullina et al. (2018) formulate a notion of adversarial VC-dimension, aimed at capturing uniform
convergence of robust empirical risk minimization. The authors show that, for linear models,
adversarial VC-dimension coincides with the VC-dimension. However, in general, the two could
be arbitrarily separate. In a similar vein, Khim and Loh (2018), Yin et al. (2019) and Awasthi et al.
(2020) study the Rademacher complexity of adversarially robust losses for binary and multi-class
classification. Schmidt et al. (2018) provide an instance of a learning problem where one can provably
demonstrate a gap between the sample complexity of (standard) learning and adversarial learning.

Tsipras et al. (2018) points out a problem where any learning algorithm that achieves low (standard)
test error must necessarily admit high adversarial test error, that is close to 1. This highlights a
fundamental tension between ensuring low test error and low adversarial error. There are also studies
of the conditions on the data distribution that lead to the presence of adversarial examples and the
design of adversaries that can exploit them (Diochnos et al., 2018; Bartlett et al., 2021). The recent
work of Montasser et al. (2019) shows that any function class with finite VC-dimension d can be
adversarially robustly learned (in a PAC-style model) using exp(d) many samples.

Bubeck et al. (2018b,a) provide evidence of computational barriers in adversarial learning by con-
structing learning tasks that are easy in the PAC model, but that become intractable when adversarial
robustness is required. Several recent publications have studied the question of characterizing the
Bayes adversarial risk (Pydi and Jog, 2019; Bhagoji et al., 2019) for binary classification and relate it
to the optimal transportation cost between the two class conditional distributions. While these studies
aim to establish a lower bound on the Bayes adversarial risk, we study a more fundamental question
of when the Bayes adversarial classifier exists. There have also been publications studying robustness
beyond `p norm perturbations (Feige et al., 2015, 2018; Attias et al., 2018).

Finally, there are studies in the mathematical community of various properties regarding the direct
sum of a set and an ε-ball, which we use to model adversarial perturbations. Similar, but not identical
mathematical constructions have also appeared in the PDE literature. Cesaroni and Matteo (2017) and
Cesaroni et al. (2018) consider perturbations to the measure-theoretic boundary of a set. However, the
measure-theoretic boundary and the topological boundary behave quite differently. Chambolle et al.
(2012) consider problems involving integrals of indicator functions of perturbed sets Aε divided by
the size of the perturbation. Additionally, Bellettini (2004) and Chambolle et al. (2015) assume some
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set properties that are satisfied by sets perturbed by `p balls, and then use these to show regularity
and the curvature of the boundary. Lastly, Bertsekas and Shreve (1996) study the universal σ-algebra
in detail, however they did not show that the sets we use in this paper are universally measurable. We
prove a new measurability result in Section 5.

3 Problem Setup

We study binary classification with class labels in {−1,+1}. We consider a probability distribution
D over Rd × {−1,+1}. For convenience, η will denote the conditional distribution, η(x) = D(Y =
+1|x) for any x ∈ Rd, and P will denote the marginal, P(A) = D(A×{−1,+1}) for any measurable
set A ⊆ Rd. Let f : Rd → R be a function whose sign defines a classifier. Then, for a perturbation
set B, the adversarial loss of f is defined as

Rε(f) = E
(x,y)∼D

[
sup
h∈B

1y sign(f(x+h))<0

]
where sign(z) =

{
+1 if z > 0

−1 otherwise
.

The adversarial loss has been extensively studied in recent years (Montasser et al., 2019; Tsipras
et al., 2018; Bubeck et al., 2018b; Khim and Loh, 2018; Yin et al., 2019), motivated by the empirical
phenomenon of adversarial examples (Szegedy et al., 2013). In the rest of the paper, we will find it
more convenient to work with an alternative set-based definition of classifiers (and adversarial losses),
which we describe below. The function f induces two complementary sets A = {x : f(x) > 0} and
AC = {x : f(x) ≤ 0}. Conversely, specifying the set A is equivalent to specifying a function f since
one could choose f(x) = 1A(x). In the remainder of the paper, we will specify the set of points A
classified as +1 rather than the function f . The classification risk of a set A is then expressed as

R(A) =

∫
(1− η(x))1A(x) + η(x)1AC (x) dP. (1)

In the above formulation, it is easy to see that a Bayes optimal classifier is the setA = {x : η(x) > 1
2}.

We now extend this viewpoint to adversarial losses. We assume that the adversary knows the
classification set A and that the adversary seeks to perturb each point in Rd outside of A, via an
additive perturbation in a set B. In typical applications, B is a ball in some norm, and in the rest of
the paper we will assume that B = Bε(0) is a closed ball with radius ε centered at the origin. Next,
we define Aε to be the set of points that can fall inside A after an additive perturbation of magnitude
at most ε. Formally, Aε = {x ∈ Rd : ∃h ∈ Bε(0) for which x + h ∈ A}. Therefore, we can define
the adversarial risk as

Rε(A) =

∫
(1− η(x))1Aε(x) + η(x)1(AC)ε(x) dP. (2)

Pydi and Jog (2019); Bhagoji et al. (2019) also studied the adversarial Bayes classifiers using the ε
operation. We will now re-write Aε in a form more amenable to analysis:

Aε = {x ∈ Rd : ∃h ∈ Bε(0)|x + h ∈ A} = {x ∈ Rd : ∃h ∈ Bε(0) and a ∈ A|x + h = a}

=
{
x : ∃h ∈ Bε(0) and a ∈ A | a− h = x

}
= {a− h : a ∈ A,h ∈ Bε(0)} = A⊕Bε(0),

where the last equality follows from the symmetry of the ball Bε(0). From these relations, we can
recover a more typical expression of the adversarial loss. Note that 1Aε(x) = 1

A⊕Bε(0)
(x) =

sup
h∈Bε(0)

1A(x + h), which implies

Rε(A) =

∫
(1− η(x)) sup

h∈Bε(0)

1A(x + h) + η(x) sup
h∈Bε(0)

1AC (x + h) dP. (3)

The papers (Szegedy et al., 2013; Biggio et al., 2013; Madry et al., 2017) (and many others) use the
multi-class version of this loss to define adversarial risk. More specifically, they evaluate the risk on
the set A = {f(x) ≥ 0}, where f is a function in their model class.

We define the adversarial Bayes risk Rε∗ as the infimum of (2) over all measurable sets,
and we say that the set A is an adversarial Bayes classifier if Rε(A) = Rε∗. Note
that the integral above is defined only if the sets Aε, (AC)ε are measurable. This con-
sideration is nontrivial as there do exist measurable sets whose direct sum is not mea-
surable, see (Erdös and Stone, 1970; Ciesielski et al., 2001/2002) for examples.
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Figure 1: Sets Aε and A−ε

with B = B2
ε (0), the

closed `2 ball.

To address this issue, in Section 5, we discuss a σ-algebra called the
universal σ-algebra which is denoted U (Rd). Specifically, we show
that if A ∈ U (Rd), then Aε ∈ U (Rd) as well. Thus, working in
the universal σ-algebra U (Rd) allows us to define the integral in (2)
and then optimize Rε over sets in U (Rd). In particular, throughout
this paper, we adopt the convention that P is the completion of a Borel
measure restricted to U (Rd). (We elaborate on this construction in
Section 5.) We call a set universally measurable if it is in the universal
σ-algebra U (Rd).

We now introduce another important notation: we define A−ε : =
((AC)ε)C . The set A−ε contains the points that cannot be perturbed to
fall outside of A (see Lemma 14 in Appendix C for a formal proof). Figure 1 depicts the sets A,Aε
and A−ε.

4 Main Results

In this section, we prove our main result establishing the existence of the optimal adversarial classifier.
We first discuss challenges in establishing this theorem. In the case of the standard 0-1 loss, the risk
is defined in (1) with the sets A and AC disjoint. As a result, the integrand equals either η(x) or
(1− η(x)) at each point. Thus the set for which 1− η(x) < η(x) minimizes R. In other words, the
Bayes classifier minimizes the objective min(η(x), 1− η(x)) at each point.

On the other hand, the same reasoning does not apply to the adversarial risk. The adversarial risk at a
single point x depends on all the points in Bε(x). Hence, one cannot hope to find the adversarial
Bayes classifier by studying the risk in a pointwise manner.

Next, we introduce the concepts of certifiable robustness and pseudo-certifiable robustness.

Definition 1. 1 Fix a perturbation radius ε. We say that a classifier A is certifiably robust at a
point x with radius ε if either x ∈ A and Bε(x) ⊂ A, or x ∈ AC and Bε(x) ⊂ AC . We say
that a classifier A is pseudo-certifiably robust at a point x ∈ A with radius ε if there exists a ball
Bε(y) with x ∈ Bε(y) and Bε(y) ⊂ A. We say a classifier A is pseudo-certifiably robust if it is
pseudo-certifiably robust with radius ε at every point.

In other words, a classifier is certifiably robust at a point x ∈ A with radius ε if the entire ε-ball
around x is classified the same as A, and a classifier is pseudo-certifiably robust at a point x ∈ A
with radius ε if some closed ε-ball radius containing x is included in A. Pseudo-certifiable robustness
is a necessary condition for certifiable robustness.

We now discuss potential algorithmic applications of pseudo-certifiable robustness. To begin, we
start by defining the set of points at which a classifier is not pseudo-certifiably robust. If we define

F (A) = {x ∈ A : every closed ε-ball containing x also intersects AC}. (4)

Figure 2: The figure illustrates a setA with the sets
F (A) and F (AC) roughly indicated. For a point
a ∈ F (A), every closed ε-ball containing a also
intersects AC while for a ∈ F (AC) every closed
ε-ball containing a also intersects A.

Then, the set of points where a classifier is
not pseudo-certifiably robust is F (A). In Ap-
pendix D, we show that “subtracting" from a
classifier the points at which it is not pseudo-
certifiably robust can only reduce the risk. Simi-
larly, “adding" to a classifierA the points at which
AC is not pseudo-certifiably robust can only re-
duce the risk as well. Formally, we show that
Rε(A−F (A)) ≤ Rε(A) and Rε(A∪F (AC) ≤
Rε(A) (Lemma 19). As illustrated in Figure 2,
F (A), F (AC) are adjacent to the boundary ∂A.
Furthermore, F (A) is not very “large"— in fact,
F (A)−ε = ∅. These observations suggest that,

1Pseudo-certifiable robustness was defined differently in the original version of this paper. We thank Ryan
Murray for pointing out an error in Theorem 1 stemming from the earlier version of this definition.
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typically, if A is not pseudo-certifiably robust, then there is another classifier with lower risk that can
be found by making local changes to A.

We now state our main existence result. We define the measures P0, P1 as in (Pydi and Jog, 2019) as

P1(A) =

∫
A

ηdP, P0(A) =

∫
A

(1− η)dP

Theorem 1. 2 Let P be the completion of a Borel measure on B(Rd) restricted to U (Rd) and assume
that either P0,P1 is absolutely continuous with respect to Lebesgue measure. DefineAε = A⊕Bε(0),
where Bε(0) is a norm ball. Then, there exists a minimizer of (2) when minimizing over U (Rd).
Furthermore, there exists a minimizer that is pseudo-certifiably robust and a minimizer whose
complement is pseudo-certifiably robust.

The original version of this paper published in NeurIps (Awasthi et al., 2021b) proves this result
for a restricted class of norms. For perturbations in an arbitrary norm, the theorem provides a
positive guarantee: for any distribution, the adversarial Bayes classifier exists. In fact the proof
of Theorem 1 shows that an even stronger result holds: under the hypotheses of Theorem 1, every
minimizing sequence An has a subsequece Anj for which lim supj Anj is the adversarial Bayes
classifier. This conclusion is analogous to saying that every minimizing sequence must have a
convergent subsequence.

To understand the significance of this statement, we compare to minimizing a function over R.
Consider the three functions f(x) = (x2 − 1)2, g(x) = sin(x)2, and h(x) = 1/x2. The infimum of
all three functions is 0. We can find minimizing sequences for f, g, and h which don’t converge. For
instance, the sequence given by

xk =

{
+1 k even
−1 k odd

is a minimizing subsequence of f because f(xk) = 0 for all k, but xk is not a convergent subsequence.
Intuitively, this phenomenon occurs because xi is actually comprised of two subsequences each of
which converges to a minimizer of f . In this case, every minimizing sequence of f has a convergent
subsequence. On the other hand, minimizing sequences of g have very different behavior. For
instance, consider the sequence given by yk = kπ. Then yk is a minimizing sequence of g because
g(yk) = 0 for all k. However, the sequence yk diverges to infinity, so {yk} does not have any
convergent subsequence. Lastly, the sequence yk also minimizes h(x). Notably, h does not have a
minimizer and thus all minimizing sequences diverge.

We also expect an analogous existence result for perturbations by open balls.

Next, we briefly discuss two ways in which our results relate to the consistency of adversarial losses.
First, Awasthi et al. (2021a) show that when H is the class of linear functions, if the surrogate risk
RεΨ of the adversarial surrogate loss Ψ is zero for a given distribution, then Ψ is H-consistent for
that distribution. The existence of the adversarial Bayes classifier is required for this condition
to hold. Next, a surrogate loss Ψ is consistent if a minimizing sequence of functions fi also
minimizes 0-1 adversarial loss. However, it may be easier to study minimizing sequences of the
Ψ loss when we have information about the adversarial Bayes classifier. The proof of Theorem 1
shows that under reasonable assumptions on η and P, every sequence An has a subsequence Anj
for which lim supAnj is an adversarial Bayes classifier. Thus, we can find conditions under which
{x : fi(x) ≥ 0} approaches a set A. In other words: If Ψ is consistent and fi is a sequence that
minimizes the adversarial φ loss, then fi ≥ 0 must have a subsequence that approaches an adversarial
Bayes classifier.

4.1 Proof strategy

We first outline the main ideas behind the proof of Theorem 1, which is presented in the next
subsection. The proof applies the direct method of the calculus of variations. Specifically, we apply
the following procedure:

1) Choose a sequence of sets {An} ⊂ U (Rd) along which Rε(An) approaches its infimum;
2The original version of this paper did not assume that either P0 or P1 was absolutely continuous with respect

to Lebesgue measure.
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2) Extract a subsequence {Anj} of {An} that is convergent in some topology;
3) Show that Rε is sequentially lower semi-continuous: for a convergent subsequence {An},

lim inf
n→∞

Rε(An) ≥ Rε( lim
n→∞

An).

In typical applications of the direct method, step 2) is almost immediate as it is achieved by working
in the appropriate Sobolev space. However, showing step 3) is usually quite difficult. See Dacorogna
(2008) for more on the direct method in PDEs. In contrast, in our scenario, the situation is the
opposite: finding the right topology for step 2) is quite difficult but the lower semi-continuity is a
direct implication of Fatou’s lemma.

As described above, one of the main considerations in the proof of Theorem 1 is the convergence
of set sequences. In order to find a minimizer, we need the indicator functions 1(An)ε ,1(ACn )ε to
converge. With that in mind, we adopt the following standard set-theoretic definitions for a sequence
of sets {An}:

lim supAn=
⋂
N≥1

⋃
n≥N

An and lim inf An=
⋃
N≥1

⋂
n≥N

An. (5)

As with lim sup and lim inf for a sequences of numbers, lim inf An ⊂ lim supAn or in other words
1lim inf An ≤ 1lim supAn . With the above definitions, the following holds:

lim inf
n→∞

1An = 1lim inf An and lim sup
n→∞

1An = 1lim supAn .

Specifically, these relations imply that the limit limn→∞ 1An exists P-a.e. if and only if the
lim sup and the lim inf of the sequence {An} match up to sets of measure zero under P. We
denote equality up to sets of Lebesgue measure zero by .

=. In order to find a sequence for which
lim inf Aεn

.
= lim supAεn, we apply a theorem from variational analysis in (Rockafellar and Wets,

1998). Specifically, we show

Lemma 1. Let Q be a finite positive measure and assume that Q is absolutely continuous with
respect to Lebesgue measure. For any sequence of sets An, there is a sub-sequence Anj for which

lim supAεnj =̇ lim inf Aεnj

The lemma above is proved in Appendix B. The next challenge is that lim inf Aεn/ lim supAεn do not
necessarily equal Aε for some set A. However, moving the ε operation inside the lim inf / lim sup
decreases the risk.

Lemma 2. Let An be any sequence of sets. Then

lim supAεn ⊃ (lim supAn)
ε and lim inf Aεn ⊃ (lim inf An)

ε

The lemma is proved in Appendix D.

Finally, it remains to show the claim about pseudo-certifiable robustness. We prove that for any set A
there are sets B,E for which B and EC are pseudo-certifiably robust and have lower robust risk than
A.

Lemma 3. Let A be any set. Then there exist sets B,E for which B and EC are pseudo-certifiably
robust and Rε(B) ≤ Rε(A), Rε(E) ≤ Rε(A).

To prove this result, we show that applying −ε, ε in succession to a set removes F (A) as defined in
(4). Analogously, applying −ε,ε in succession to a set adds F (AC). We prove the above Lemma in
Appendix E.

4.2 Formal Proof of Theorem 1

We now formally prove Theorem 1 using these three lemmas.

Proof of Theorem 1. WLOG assume that P1 is absolutely continuous with respect to Lebesgue
measure.
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Let An be a minimizing sequence of Rε. By Lemma 1, there is a subsequence Anj for which
lim supj A

ε
nj =̇ lim infj A

ε
nj and thus∫

η1lim supj A
ε
nj
dP =

∫
η1lim infj Aεnj

dP (6)

Fatou’s lemma then implies that

inf
A
Rε(A) = lim inf

j→∞
Rε(Anj ) ≥

∫
lim inf
j→∞

(
η1Aεnj

+ (1− η)1(ACnj
)ε

)
dP

≥
∫

lim inf
j→∞

η1Aεnj
+ lim inf

j→∞
(1− η)1(ACnj

)εdP

=

∫
η1lim supj A

ε
nj

+ (1− η)1lim infj(ACnj
)εdP (Equation 6)

≥
∫
η1(lim supj Anj )ε + (1− η)1(lim infj ACnj

)εdP (Lemma 2)

=

∫
η1(lim supj Anj )ε + (1− η)1((lim supj Anj )C)εdP

Therefore, A = lim supj Anj is a minimizer ofRε. Lemma 3 then implies that there are setsB,E for
which B,EC are pseudo-certifiably robust and Rε(B) ≤ Rε(A) and Rε(E) ≤ Rε(A). Therefore,
B,E are minimizers as well.

4.3 Proof Outline for Lemmas 1, 2, and 3

In this section, we explain the intuition for the proofs of Lemmas 1, 2, and 3. Lemmas 1 and 2 follow
directly from properties of the ε operation. Specifically, in Appendix C we show that( ∞⋃

i=1

Ai

)ε
=

∞⋃
i=1

Aεi and

( ∞⋂
i=1

Ai

)ε
⊂
∞⋂
i=1

Aεi . (7)

As the lim inf and lim sup operations of (5) are defined by unions and intersections, this result
immediately implies Lemma 2. Next, one can use the relations of (7) to argue that if B = (A−ε)ε,
then (BC)ε = (AC)ε and Bε ⊂ Aε so therefore Rε(B) ≤ Rε(A). One can make an analogous
statement with E = (Aε)−ε, see Appendix D for the formal statement and proof.

The proof of Lemma 1 combines the analysis of the ε operation with measure theoretic considerations.
Rockafellar and Wets (1998) prove a set convergence result for a different notion of the lim inf
and lim sup of a sequence of sets Sn. This notion of set convergence includes points that are
arbitrarily close to Sn for infinitely many n. The standard lim inf / lim sup operations have a similar
interpretation in terms of sequences. Recall that

lim inf Sn = {x : there exists an N for which x ∈ Sn for all n > N} (8)

lim supSn = {x : there exists a sequence nj for which x ∈ Snj for all j} (9)

On the other hand, the Rockafellar and Wets (1998) defines l̃im inf, ˜lim sup in terms of convergent
sequences {xn} with xn ∈ Sn:

l̃im inf Sn = {x : there exists a sequence with xn ∈ Sn and lim
n→∞

xn = x}

˜lim supSn = {x : there exists a subsequence {nj} with xnj ∈ Snj and lim
i→∞

xnj = x} (10)

In other words, a point x is in lim inf Sn if x ∈ Sn for sufficiently large n while x ∈ l̃im inf Sn if the
distance between x and Snj approaches zero. Similarly, a point is in lim supSn if x ∈ Snj for some
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subsequence nj while x ∈ ˜lim supSnj if there is a subsequence nj for which the distance between

x and Sn approaches zero. This characterization immediately implies lim inf Sn ⊂ l̃im inf Sn and
lim supSn ⊂ ˜lim supSn. For the notions of set limit l̃im inf, ˜lim sup every subsequence has a
convergent subsequence:
Theorem 2 ((Rockafellar and Wets, 1998)). Let Sn be any sequence of sets in Rd. Then there is a
subsequence Snj of Sn for which l̃im inf Snj = ˜lim supSnj .

This statement is a consequence of Theorem 4.18 of (Rockafellar and Wets, 1998). In other words,
one can always choose a subsequence Snk of Sn for which the l̃im inf and the ˜lim sup match. This
result is false for the standard definitions of lim inf , lim sup.

However, pseudo-certifiably robust sets are fairly well-behaved, so one would hope such sets would
also interact well with the standard definition of lim inf and lim sup. Furthermore, a standard
argument from geometric measure theory implies that pseudo-certifiably robust sets have a measure
zero boundary.
Lemma 4. Let µ be Lebesgue measure and let S ⊂ Rd. If for each s ∈ ∂S there exists a ball Bε(a)
with Bε(a) ⊂ S and s ∈ ∂Bε(a), then µ(∂S) = 0.

See Appendix B.2 for a proof.

One can show that for a subsequence Anj with l̃im inf Anj = ˜lim supAnj , the set lim inf Aεnj
satisfies a property similar to pseudo-certifiable robustness: for all x ∈ lim inf Aεnj , there is a ball
Bε(a) for which x ∈ Bε(a) and Bε(a) ⊂ lim inf Aεnj (See Lemma 10 in Appendix B). In other
words, the condition of Lemma 4 is satisfied at every point in lim inf Aεnj . By taking limits, one can
then argue that this property also holds for all x ∈ ∂ lim inf Aεnj . Lemma 4 then implies Lemma 1.

5 Addressing Measurability

As mentioned earlier, defining the adversarial loss requires integrating over Aε. However, one must
ensure that Aε is measurable. Furthermore, in the proof of Lemma 3, we apply the ε,−ε operations
multiple times in succession. In particular, we consider sets of the form (A−ε)ε. Hence we would like
to work in a σ-algebra Σ for which if A ∈ Σ, Aε ∈ Σ as well. Below, we explain that a σ-algebra
called the universal σ-algebra satisfies this property.

Let B(Rd) be the Borel σ-algebra on Rd and let ν be a measure on this σ-algebra. We will denote
the completion of the measure space (ν,Rd,B(Rd)) by (ν,Rd,Lν(Rd)), where Lν(Rd) is the
completion of B(Rd) under ν. Let M (Rd) be the set of all finite Borel measures on Rd. Then we
define the universal σ-algebra as U (Rd) =

⋂
ν∈M (Rd) Lν(Rd). In other words, U (Rd) is the sets

which are measurable under every complete finite Borel measure. For the universal σ-algebra, we
have the following theorem proved in Appendix A.2:
Theorem 3. If A ∈ U (Rd), then Aε ∈ U (Rd) as well.

Specifically, Theorem 3 allows us to define the adversarial risk in Equation (2). Appendix A.1
proves a similar measurability theorem for metric spaces. Recall that for a probability measure Q,
by definition U (Rd) ⊂ LQ(Rd). Therefore, if A ∈ U (Rd), then Aε is measurable with respect to
(Q,Rd,LQ(Rd)). However, as this only holds for A ∈ U (Rd) and not all of LQ(Rd), throughout
this paper, we implicitly assume that our measure space is (Q,Rd,U (Rd)). In other words, we
assume that the probability measure P is a complete measure Q restricted to the σ-algebra U (Rd). As
U (Rd) is closed under the ε,−ε operations, this convention allows us to mostly ignore measurability
considerations.

Results similar to Theorem 3 appear in the literature, but are inadequate for our construction. For
instance, Proposition 7.36 of Bertsekas and Shreve (1996) implies that if A is Borel measurable, then
Aε is universally measurable (See Appendix A.1 for more details). However, as discussed earlier
in this section, this result does not suffice because we need to show that for a σ-algebra Σ, A ∈ Σ
implies that Aε ∈ Σ as well. However, as we detail in Appendix A.1, this approach shows that for an
arbitrary metric space, one can still define the adversarial risk Rε.
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6 Alternative Models of Perturbations

In this paper, we developed techniques for proving the existence of the adversarial Bayes classifier on
Rd with additive perturbations. Our techniques could be applied to other natural models of attacks.
In Appendix F, we state a general theorem that summarizes the part of our theory that is applicable
beyond additive perturbations. We discuss three notable examples.
Example 1 (Elementwise Scaling). For x ∈ Rd, we perturb each coordinate by multiplying it by a
number in [1− ε, 1 + ε]. Thus, to perturb x, we multiply it elementwise by another vector in B∞ε (1).

(Engstrom et al., 2019) studied the following perturbation empirically in image classification tasks.
Example 2 (Rotations). Let x ∈ Rd. We perturb x by multiplying it by a “small" rotation matrix R.
We define our perturbation set this time as the set of matrices with

B =
{
R : sup

‖x‖2=1

x ·Rx ≥ 1− ε
}
.

Our final example is inspired from applications in natural language processing (Ebrahimi et al., 2018).
Example 3 (Discrete Perturbations). Let A be an alphabet. For an input string x, consider perturba-
tions that replace a character of x at a given index with another character in A.

The above perturbation models have a lot in common with additive perturbations in Rd. All three
are examples of semigroup actions, and in fact the first two are group actions. Furthermore, all three
involve metric spaces. Lastly, denoting a perturbed set as Aε, we still have the containments in (7).

Many aspects of the theory developed in this work are applicable in more general scenarios. In
Appendix F.1, we prove the existence of the adversarial Bayes classifier for a simpler version of
Example 3 using the techniques we developed in this paper. Proving the existence of the adversarial
Bayes classifier for the other two examples remains an open problem.

Note that the proof of Theorem 1 only depends on Lemmas 1, 2, and 3, and not on the properties
of Rd. Thus in order to generalize our main theorem, one needs to generalize the three lemmas.
Lemmas 2 and 3 follow directly from the containments in (7).

Thus it remains to generalize both the measurability considerations and Lemma 1 on a case-by-
case basis. Regarding measurability, we prove a statement similar to Theorem 3 in Appendix A
(Theorem 4) which applies to perturbations given by a metric ball in a metric space. Specifically, this
theorem states that if A is Borel in a metric space, then Aε is universally measurable. Lastly, our
tools may be useful for proving Lemma 1 in other scenarios.

7 Conclusion

We initiated the study of fundamental questions regarding the existence of adversarial Bayes optimal
classifiers. We provided sufficient conditions that ensure the existence of such classifiers when
perturbing by an ε-ball. More importantly, our work highlights the need for new tools to understand
Bayes optimality under adversarial perturbations, as one cannot simply rely on constructing pointwise
optimal classifiers. Our paper also introduces several theorems which could be useful tools in further
theoretical work.

Similar to the case of standard loss functions, the most interesting extension of our work is to
formulate and study questions related to the consistency of surrogate loss functions for adversarial
robustness. We hope that this line of study will lead to new practically useful surrogate losses for
designing adversarially robust classifiers.
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A The Measurability of Aε

In this section, we prove two versions of Theorem 3. The first applies to general metric spaces and
the second to abstract vector spaces. We discuss the theorem in high generality for two reasons. First,
discussing this result in terms of abstract concepts actually clarifies main idea underlying these results.
In fact, the proof of the statement we show for metric spaces is simpler than the one we show for
vector spaces. Second, we suspect that our framework will be useful in discussing other models of
perturbations.

Throughout this section, we denote elements of the vector space Rd in bold (x) and elements of a
general metric space X as non-bold (x).

A.1 Measurability for Metric Spaces

For a measure space (ν,X,B(X)) equipped with the Borel σ-algebra B(X), we will denote its
completion as (ν,X,Lν(X)). Furthermore, throughout this section, we assume that X is a metric
space and that the Borel σ-algebra B(X) is generated by the sets open in the metric on X .

Recall that in Section 4, we defined Aε as Aε = A⊕Bε(0). Another way to write this relation is

Aε =
⋃
a∈A

Bε(a). (11)

This form for Aε is helpful because it allows us to define Aε for general metric spaces. Notably, one
can define the adversairal risk in a general metric space as

Rε(A) =

∫
(1− η(x))1Aε(x) + η(x)1(AC)ε(x) dP

=

∫
(1− η(x)) sup

a∈A
1
Bε(a)

(x) + η(x) sup
a∈AC

1
Bε(a)

(x) dP

holds for general metric spaces when we define Aε as in (11). On Rd, the second line is equivalent to
the expression (3). We will use this observation later to prove a generalized version of our theorem
for alternative models of perturbations.

We start by defining the universal σ-algebra for a measure space X .
Definition 2. Let X be a Borel space and let M (X) be the set of all finite positive Borel measures
on X . We define the universal σ-algebra to be

U (X) =
⋂

ν∈M (X)

Lν(X). (12)

If A ∈ U (X), then we say that A is universally measurable. 3

In this section we prove the following theorem:
Theorem 4. 4 Let (X, d) be complete separable metric space. Define Aε as in (11). If A ⊂ X is
Borel measurable, then Aε is universally measurable.

That the metric on our space X generates the topology on X which in turn generates B(X) is implicit
in this theorem statement.

This subtlety is crucial when applying Theorem 4. For norms Rd however, the situation simplifies– all
norms generate the standard topology. In contrast, a general seminorm does not generate the standard
topology on Rd, so Theorem 4 in this case would not apply to Rd with the usual Borel σ-algebra.

We now describe the basic idea behind the proof of Theorem 4. Consider a Borel set A ⊂ X . Then
X × A is Borel in X ×X . The set ∆ε = {(x, y) ∈ X ×X : d(x, y) ≤ ε} is closed, and therefore

3Alternatively, one could compute the intersection in (12) over all σ-finite measures. These two approaches
are equivalent because for every σ-finite measure λ and compact set K, the restriction λ K is a finite measure
with L

λ K
(X) ⊃ Lλ(X). See Theorem 1.5 of and Proposition 2.5 (Nishiura, 2010).

4The original version of this paper stated that in an arbitrary metric space, if A is universally measurable,
then Aε is universally measurable as well, which was an error.
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Borel. Thus X ×A ∩∆ε is Borel in X ×X . Notice that Aε is the projection of this set onto the first
coordinate. Such a projection is universally measurable.

In (Bertsekas and Shreve, 1996), Propositions 7.41 and the statement that U (X) contains the analytic
σ-algebra implies the following theorem:
Theorem 5. Let S be a Borel set in X × Y and let Π1 : X × Y → X be projection onto the first
coordinate: Π1(x, y) = x. Then Π1(S) is universally measurable

In fact, this analysis implies that Aε is measurable with respect to a smaller σ-algebra called the
analytic σ-algebra. See Chapter 7 of (Bertsekas and Shreve, 1996) for details. We formally perform
this calculation below.

Proof of Theorem 4. Let ∆ε = {(x, y) : d(x, y) ≤ ε}. We will show that Aε = Π1(X × A ∩∆ε).
Theorem 5 will then imply the result.

Π1(X ×A ∩∆ε) = {x : for some a ∈ A, (x,a) ∈ ∆ε} = {x : for some a ∈ A, d(a,x) ≤ ε}

=
⋃
a∈A

Bε(a) = Aε

A.2 Measurability for Vector Spaces

In this section we show the following measurability result:

Theorem 6. Let (X, ‖ · ‖) be a separable vector space. Define Aε as Aε = A⊕Bε(0), where Bε is
an ε-ball in the norm ‖ · ‖. If A ⊂ X is universally measurable, then Aε is universally measurable as
well.

As Rd with the standard topology is separable and all norms on Rd generate the standard topology,
Theorem 3 immediately follows from Theorem 6.

Again, that the norm on our space X generates the topology on X which in turn generates B(X) is
implicit in this theorem statement.

Before proving Theorem 6, we define another useful concept.
Definition 3. Let X,Y be a separable metric spaces and let (ν, Y,Lν(Y )) be a complete σ-finite
measure space. Then X is absolute measurable if for every injective continuous map h : X → Y ,
h(X) is an element of Lν(Y ).

This definition is useful due to the following theorem:
Theorem 7. Let X be an absolute measurable Borel space and Y a separable metrizable space. Let
f : X → Y be a homeomorphism.

Then
f [U (X)] ⊂ U (Y ).

This theorem is the implication (1)⇒ (4) of the Purves-Darst-Grzegorek Theorem, stated on page 33
in Chapter 2.1 of (Nishiura, 2010). A separable vector space is σ-compact. This fact implies that that
Theorem 7 applies.
Lemma 5. A σ-compact space is absolute measurable.

We now describe the basic idea behind the proof of Theorem 6 for Rd. Consider the homeomorphism
w : Bε(0)×Rd → Bε(0)×Rd given by w(v,x) = (v,x+v). Then for any set A, w(Bε(0), A) =

Bε(0)×Aε. Therefore, if Bε(0) is universally measurable in Bε(0)× Rd, then Bε(0)×Aε is also
universally measurable. To conclude that Aε is universally measurable in Rd, it remains to show that
that Bε(0)× S is universally measurable in Bε(0)× Rd iff S is universally measurable in Rd.
Lemma 6. Let X,Y be Borel spaces. If S ∈ U (Y ), then X × S ∈ U (X × Y ).
Lemma 7. Let X,Y be second countable, locally compact Hausdorff spaces. Assume that X is
compact and Y is σ-compact. If X × S ∈ U (X × Y ), then S ∈ U (Y ).
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We prove Theorem 6 using these results.

Proof of Theorem 6. Consider the function w : Bε(0) × X → Bε(0) × X given by w(h,x) =
(h,x + h). Then w is continuous and invertible, so it is a homeomorphism. Furthermore, it maps the
set Bε(0)×A to Bε(0)× (A⊕Bε(0)).

Let A be a universally measurable subset of X . Then by Lemma 6, Bε(0) × A is universally
measurable in Bε(0)×X . Thus, Theorem 7 implies that w(Bε(0), A) = Bε(0)×Aε is universally
measurable in Bε(0)×X . Lastly, Lemma 7 implies that Aε is measurable.

A.3 Proofs of Lemmas 5, 6, and 7

Lemma 5. A σ-compact space is absolute measurable.

Proof of Lemma 5. We will start by showing that a compact space is absolute measurable. Let H be
a compact topological space and let Y be a separable metric space. If f : H → Y is continuous, a
well-known theorem from topology implies that f(H) is compact as well. A compact subset of a
metric space is always closed, and therefore f(H) is a Borel set.

Next, consider a σ-compact space X . Write

X =
⋃
n∈N

Hn

where each Hn is compact. Then if f : X → Y is a continuous map, then f(X) is a countable union
of Borel sets;

f(X) =
⋃
n∈N

f(Hn)

and is therefore Borel as well.

Lemma 6. Let X,Y be Borel spaces. If S ∈ U (Y ), then X × S ∈ U (X × Y ).

Proof of Lemma 6. Let (ν,X ×Y,B(X ×Y )) be an arbitrary finite Borel measure on X ×Y and let
S ∈ U (Y ). We will show that X × S ∈ Lν(X × Y ). As the universal σ-algebra is the intersection
of all Lν(X × Y ) for all finite Borel measures ν, this inclusion will imply that X × S ∈ U (X × Y ).

Let λ be the marginal distribution on Y given by λ(B) = ν(X × B) with σ-algebra B(Y ). Now
consider the completion (λ, Y,Lλ(Y )). Because S is in the universal σ-algebra for Y , we know that
S ∈ Lλ(Y ). Therefore, S = B ∪N ′ where B is a Borel set and N ′ is a subset of a null Borel set
N . Because N is Borel, X × N is as well and ν(X × N) = λ(N) = 0. Therefore, X × N is a
null Borel set for the measure space (ν,X × Y,B(X × Y )). Thus both X ×N ′ and X ×B are in
the complete measure space (ν,X × Y,Lν(X × Y )). Therefore, X × S = X ×B ∪X ×N ′ is in
Lν(X × Y ) as well.

However, to prove the converse to Lemma 6, one must apply the concept of regularity of measures.

Definition 4. Let τ be a topology on a set X and B(X) the Borel σ-algebra generated by τ .
Let P be a Borel measure on (X,B(X)).Then P is inner regular if for all measurable sets E,
P(E) = sup{P(K) : K ⊂ E,K compact}. A space is regular if all finite Borel measures on X are
inner regular.

Theorem 7.8 of (Folland, 1999) implies that most measure spaces encountered in applications are
regular:

Theorem 8. Let X be a second-countable and locally compact Haudsorff space. Then every finite
Borel measure is inner regular.

The notion of regularity extends to complete measures.
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Lemma 8. Let ν be a finite positive Borel measure on a regular space X and let ν be the completion
of ν. Let A ∈ Lν(X). Then

ν(A) = sup
K⊂A

K compact

ν(K).

Proof. If A ∈ Lν(X), then there is a Borel set B with B ⊂ A and ν(A) = ν(B). The result then
follows from the definition of inner regularity for Borel measures.

Lemma 7. Let X,Y be second countable, locally compact Hausdorff spaces. Assume that X is
compact and Y is σ-compact. If X × S ∈ U (X × Y ), then S ∈ U (Y ).

Proof of Lemma 7. As X,Y are both σ-compact spaces, Theorem 8 implies that X × Y is regular.
Fix a Borel probability measure λ on X , and let ν be any finite Borel measure on Y . Then λ× ν is a
Borel probability measure on X × Y , so it is inner regular. Let λ× ν be the completion of λ× ν.
Then

λ× ν(X × S) = sup
K compact
K⊂X×S

λ× ν(K)

We will now argue that
sup

K compact
K⊂X×S

λ× ν(K) = sup
K compact
K⊂S

ν(K) (13)

Let K ⊂ X × S and let Π2 : X ×X → X be projection onto the second coordinate. Because the
continuous image of a compact set is compact, K ′ = Π2(K) is compact and contained in S. Thus
X × S ⊃ X ×K ′ ⊃ X ×K, which implies (13). Now (13) applied to SC implies that

λ× ν(X × S) = inf
UC compact
U⊃X×S

λ× ν(U) = inf
UC compact
U⊃S

ν(U)

Thus
sup

K compact
K⊂S

ν(K) = inf
UC compact
U⊃S

ν(U) := m

Let Kn be a sequence of compact sets contained in A for which limn→∞ ν(Kn) = m and Un a
sequence of sets containing A for which UCn is compact and limn→∞ ν(Un) = m. Because a finite
union of compact sets is compact, one can choose such sequences that satisfy Kn+1 ⊃ Kn and
Un+1 ⊂ Un. ThenD =

⋃
Kn, V =

⋂
Un are Borel sets that satisfyD ⊂ S ⊂ V and ν(D) = ν(V ),

so V −D a null set. Thus S −D is a subset of the null Borel set V −D, so S ∈ L(Rd). As ν was
arbitrary, it follows that S is universally measurable.

B Proof of Lemma 1

In the next subsection we show how Lemma 4 implies Lemma 1. The proof of Lemma 4 is delayed
to B.2.

B.1 Main Argument

The following lemma assists in understanding the convergence of pseudo-certifiably robust sets.
Lemma 9. Let {an} be a sequence converging to a. Then if x ∈ Bε(a), then for sufficiently large n,
x ∈ Bε(an).

Proof. Set r = ‖x− a‖. Then if we choose n large enough so that ‖a− an‖ < ε− r, then

‖x− an‖ ≤ ‖x− a‖+ ‖a− an‖ < r + (ε− r) = ε

Therefore, for sufficiently large n, x ∈ Bε(an).

The following result is central to the proof of Lemma 1.
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Lemma 4. Let µ be Lebesgue measure and let S ⊂ Rd. If for each s ∈ ∂S there exists a ball Bε(a)
with Bε(a) ⊂ S and s ∈ ∂Bε(a), then µ(∂S) = 0.

The next lemma shows that if ˜lim supAn = l̃im inf An, then for every x ∈ lim inf Aεn there is a
ball for which x ∈ Bε(a) but Bε(a) ⊂ lim inf Aεn. Thus the set lim inf Aεn satisfies the property
required by Lemma 4 at all points. It remains to show that this property also holds on the boundary
∂ lim inf Aεn, which is later accomplished by taking limits.

Lemma 10. Let An be a sequence for which l̃im inf An = ˜lim supAn. Then lim inf Aεn has the
following property: for every x ∈ lim inf Aεn, there is a ball Bε(a) for which x ∈ Bε(a) and
Bε(a) ⊂ lim inf Aεn.

Proof. Let x ∈ lim inf Aεn. The expression for the lim inf in (8) implies that there is a J for which
x ∈ Aεn for all n > N . Hence one can write x = an + hn with an ∈ An and hn ∈ Bε(0) for all
n > N . Now pick a subsequence nj for which hnj converges and set h = limj→∞ hnj . Then let

a = lim
j→∞

anj = x− h. (14)

Due to the definition of ˜lim sup in (10), a ∈ ˜lim supAn and by the assumption on our sequence An,
˜lim supAn = l̃im inf An. Thus there is a sequence ãn for which ãn ∈ An and limn→∞ ãn = a.

Then Bε(ãn) ⊂ Aεn and Lemma 9 then implies that Bε(a) ⊂ lim infj A
ε
n.

Lastly, one can conclude that ‖x− a‖ ≤ ε from the definition of a in (14).

Finally, Lemma 1 is a consequence of Lemma 4, Lemma 10, and Theorem 2.
Lemma 1. Let Q be a finite positive measure and assume that Q is absolutely continuous with
respect to Lebesgue measure. For any sequence of sets An, there is a sub-sequence Anj for which

lim supAεnj =̇ lim inf Aεnj

Proof. Let µ denote Lebesgue measure. We will find a subsequence Anj of An for which
µ(lim supAnj − lim inf Anj ) = 0. By Theorem 2, one can find a subsequence nj for which

l̃im inf Anj = ˜lim supAnj . Then for this subsequence, Lemma 10 then applies to this subsequence.
We will argue that lim inf Aεn in fact satisfies the property of Lemma 4.

Let x ∈ ∂ lim inf Aεnj . We will find a ball Bε(a) ⊂ lim inf Aεnj for which x ∈ Bε(a). If x ∈
lim inf Aεnj , then there is a sequence xk ∈ lim inf Aεnj converging to x. By Lemma 10, for each xk,

there is a ak with x ∈ Bε(ak) and Bε(ak) ⊂ lim inf Aεnj . Furthermore, because xk → x, the set
{ak} is bounded. Let km be a subsequence for which akm converges and set a = limm→∞ akm .
Then because Bε(akm) ⊂ lim inf Aεnj , Lemma 9 implies that Bε(a) ⊂ lim inf Aεnj as well. Next,

‖x− a‖ ≤ ‖x− xkm‖+ ‖xkm − akm‖+ ‖akm − a‖ ≤ ‖x− xkm‖+ ε+ ‖akm − a‖

As ‖x − xkm‖ , ‖a − akm‖ both approach zero, it follows that x ∈ Bε(a). Therefore, Lemma 4
applies.

B.2 Proof of Lemma 4

To prove Lemma 4 we take an approach that is standard in geometric measure theory. The strategy is
to apply the Lebesgue differentiation theorem.
Theorem 9 (Lebesgue Differentiation Theorem). Assume that f : Rd → R is bounded. Then the
following holds for x µ-a.e.:

lim
r→0

1

µ(B2
r (x))

∫
B2
r(x)

fdµ = f(x)
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See Folland (1999) for a proof. We prove a slightly more general version of Lemma 4:
Lemma 11. Let µ be Lebesgue measure and let S ⊂ Rd. If for each s ∈ ∂S there exists an open
convex C with C ⊂ S and s ∈ ∂C, then µ(∂S) = 0.

Proof of Lemma 11. We will apply the Lebesgue differentiation theorem to the function 1∂S .

Let B2
r (x) denote the radius r ball centered at x given by the 2-norm. The Lebesgue differentiation

theorem implies that the set defined by

E =

{
x : lim

r→0

1

µ(B2
r (x))

∫
B2
r(x)

1∂S(y)dy 6= 1∂S(x)

}
has measure zero. We will show ∂S ⊂ E, which will imply µ(∂S) = 0.

This amounts to showing that for x ∈ ∂S,

lim
r→0

1

µ(B2
r (x))

∫
B2
r(x)

1∂S(y)dy = lim
r→0

µ(∂S ∩B2
r (x))

µ(B2
r (x))

6= 1

Specifically, we will show that for sufficiently small r, there exists a constant K > 0 independent of
r for which

µ(intS ∩B2
r (x))

µ(B2
r (x))

≥ K > 0.

This inequality will imply the result as

lim
r→0

µ(∂S ∩B2
r (x))

µ(B2
r (x))

≤ 1− lim inf
r→0

µ(intS ∩B2
r (x))

µ(B2
r (x))

− lim inf
r→0

µ(intSC ∩B2
r (x))

µ(B2
r (x))

.

Pick x0 ∈ ∂S. Then by assumption, there is an open convex set C for which x0 ∈ ∂C and C ⊂ S.
As C is open, C ⊂ intS. Furthermore, B2

1(x0) ∩ C is non-empty, open, and convex. Thus we can
pick d points x1 . . .xd ∈ C for which the vectors {x1 − x0 . . .xd − x0} are linearly independent.
By the convexity of C ⊂ intS, the interior of the convex hull of {x0 . . .xd} is contained in intS.
We will call the interior of this convex hull T . By construction, for any r, T ∩ B2

r (x0) is disjoint
from ∂S and contained in S. This implies

µ(intS ∩B2
r (x))

µ(B2
r (x))

≥ µ(T ∩B2
r (x))

µ(B2
r (x))

We we will show that for r < mini∈[1,n] ‖xi − x0‖,

µ(T ∩B2
r (x))

µ(B2
r (x))

≥ K > 0

for some constant K.

Specifically, if r < mini∈[1,n] ‖xi − x0‖, B2
r (x) contains x0 + r xi−x0

‖xi−x0‖ for each i. Then because
B2
r (x) is convex, it must contain the simplex defined by these vectors which we will call W . See

Figure B.2 for an illustration. A standard calculation shows that µ(W ) = rd

n! |det(M)|, where

M =

[
x1 − x0

‖x1 − x0‖
. . .

xn − x0

‖xn − x0‖

]
see for instance Stein (1966).

Therefore, as the volume of a ball radius r is π
d
2 rd

Γ( d2 +1)
, we have shown that for r < mini∈[1,n] ‖xi −

x0‖,
µ(T ∩B2

r (x))

µ(B2
r (x))

≥ µ(W )

µ(B2
r (x))

=
rd

d! |detM |
π
d
2

Γ( d2 +1)
rd

=
Γ(d2 + 1)|detM |

d!π
d
2

> 0
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Figure 3: The convex set C, the simplex T , and the simplex W in two dimensions. The illustrated
ball has radius less than r. In this Figure, r = ‖x2 − x0‖.

C Properties of the ε,−ε Operations

In this section, we will discuss some basic properties of the ε,−ε operations. We will apply these
results throughout the rest of the appendix. Furthermore, this section should highlight some of the
intuition for working with these set operations.

We will adopt (11) as our definition for Aε.

This convention will allow us to generalize much of the results in this section to arbitrary metric
spaces. After defining Aε we can then define A−ε as

A−ε = ((AC)ε)C . (15)

The following lemma details how the ε and −ε operations interact with unions and intersections.
Lemma 12. Define Aε as in (11) and A−ε as (15). Then for any sequence of sets {Ai}, the following
set containments hold:

∞⋃
i=1

Aεi =

[ ∞⋃
i=1

Ai

]ε
(16)

⋂
n≥1

A−εn =
(⋂
n≥1

An

)−ε
(17)

∞⋂
i=1

Aεi ⊃

[ ∞⋂
i=1

Ai

]ε
(18)

∞⋃
i=1

A−εi ⊂

[ ∞⋃
i=1

Ai

]−ε
(19)

Proof. Showing (16):
For any set A, one can write

Aε =
⋃
a∈A

Bε(a).

Thus
∞⋃
i=1

Aεi =

∞⋃
i=1

⋃
a∈Ai

Bε(a) =
⋃

a∈
⋃∞
i=1 Ai

Bε(a) =

( ∞⋃
i=1

Ai

)ε
.

Showing (18):
First note that if C ⊃ B, then Cε ⊃ Bε. Next, since Ai ⊃

⋂∞
i=1Ai,

Aεi ⊃

 ∞⋂
j=1

Aj

ε
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for all i. Thus (18) holds.

Showing (17):
Recall that A−ε = ((AC)ε)C . If we apply (16) to (ACi )ε, we get that

∞⋃
i=1

(
ACi
)ε

=

( ∞⋃
i=1

ACi

)ε
=

( ∞⋂
i=1

Ai

)Cε

.

Now upon taking complements,( ∞⋂
i=1

Ai

)−ε
=

( ∞⋃
i=1

(
ACi
)ε)C

=

∞⋂
i=1

((
ACi
)ε)C

=

∞⋂
i=1

A−εi .

Showing (19): If we apply (18) to ACi , then

∞⋂
i=1

(
ACi
)ε ⊃ ( ∞⋂

i=1

ACi

)ε
=

( ∞⋃
i=1

Ai

)Cε

.

Taking complements gives (19).

Next, we use the previous representations to show that F (Aε) = ∅ and F ((A−ε)C) = ∅, where we
define F (·) in (4).

Lemma 13. For a set A, define

F (A) = {x ∈ A : every closed ε-ball containing x also intersects AC} (4)

Then
F (Aε) = ∅ (20)

F ((A−ε)C) = ∅ (21)

This lemma is an important stepping stone towards showing that there exists a pseudo-certifiably
robust adversarial Bayes classifier.

Proof of Lemma 13. Equation 11 implies that each point x in Aε is included in some closed ε-ball
that is contained in Aε. Subsequently, the definition of F in (4) implies (20). Lastly, (21) follows by
applying (20) to (A−ε)C .

The next lemma provides an alternative interpretation of the ε,−ε operations.

Lemma 14. Define Aε, A−ε as in (11),(15). Then alternative characterizations of Aε, A−ε are given
by

Aε = {x ∈ X : Bε(x) ∩A 6= ∅} (22)

A−ε = {a : Bε(a) ⊂ A} (23)

Notice that in Rd (23) reduces to

A−ε = {a ∈ A : a + h ∈ A for all h with ‖h‖ ≤ ε}

Proof of Lemma 14. Showing (22):
Recall that z ∈ Aε iff for some a ∈ A, z ∈ Bε(a). However,

z ∈ Bε(a)⇔ a ∈ Bε(z)⇔ Bε(z) intersects A
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Showing (23):
Recall the definition A−ε = ((AC)ε)C . Then

a ∈ A−ε

⇔ a 6∈ (AC)ε

⇔ Bε(a) does not intersect AC (by (22))

⇔ Bε(a) ⊂ A

D Proof of Lemma 3

In some of our proofs, we apply the ε and −ε operations to sets multiple times in succession. In this
section, we describe how the ε and the −ε operations interact. These considerations turn out to be
important because applying ε followed by −ε to a set (or vice versa) decreases the adversarial loss.
We prove this statement in Lemmas 3 and 19, which are the central conclusions of this Appendix.

Our first result states that applying −ε an then ε to a set A makes the set smaller while applying ε and
then −ε makes the set larger.
Lemma 15. Define the ε,−ε operations as in (11), (15). Then

(Aε)−ε ⊃ A (24)

(A−ε)ε ⊂ A (25)

Proof. To start, note that (25) follows from applying (24) to AC and then taking complements.

In order to show (24), we make use of Equation 23. Equation 23 implies that if x ∈ A−ε, then
Bε(x) ⊂ A. As

(A−ε)ε =
⋃

x∈A−ε
Bε(x)

and each Bε(x) is entirely contained in A, the entire set (A−ε)ε is contained in A as well.

Lemma 16. Define Aε, A−ε as in (11),(15). Then the following hold:

A = (A−ε)ε t F (A) (26)

(Aε)−ε = A t F (AC). (27)

Specifically, (26) implies that (A−ε)ε = A − F (A) and (27) implies that (Aε)−ε = A ∪ F (AC).
Figure 2 illustrates the sets F (A) and F (AC).

Proof of Lemma 16.
Showing ⊃ for (26):
It’s clear that F (A) ⊂ A and Lemma 15 implies that (A−ε)ε ⊂ A as well.
Showing ⊂ for (26):
We will prove that A− F (A) ⊂ (A−ε)ε. Assume that x ∈ A− F (A). Then there is a closed ε-ball
containing x that does not intersect AC , which means that this ball is completely contained in A.
Thus for some a ∈ A, x ∈ Bε(a) ⊂ A. Thus by (23), a ∈ A−ε. Furthermore, x ∈ Bε(a) implies
that x ∈ (A−ε)ε.

Showing disjoint union for (26):

Lemma 15 states that (A−ε)ε ⊂ A. Specifically, every point in (A−ε)ε is contained in a closed ε-ball
that is contained in A. As no point in F (A) satisfies this property, (A−ε)ε and F (A) are disjoint.

Showing (27):
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Applying (26) to AC results in

AC = ((AC)−ε)ε t F (AC) = ((Aε)C)ε t F (AC).

Taking complements of both sides of this equation produces

A = (Aε)−ε ∩ F (AC)C

and therefore
A ∪

(
(Aε)−ε ∩ F (AC)

)
= (Aε)−ε.

The union is actually a disjoint union because F (AC) ⊂ AC which is disjoint from A. It remains to
show that F (AC) ⊂ (Aε)−ε, so that F (AC) ∩ (Aε)−ε = F (AC).

We now show that F (AC) ⊂ (Aε)−ε. Pick x ∈ F (AC). We will show that for every y ∈ Bε(x),
y ∈ Aε. This statement will imply that Bε(x) ⊂ Aε and then (23) will then imply that x ∈ (Aε)−ε.

If y ∈ Bε(x), then Bε(y) contains x. By definition, because x ∈ F (AC), every ball containing x

intersects A. Therefore Bε(y) intersects A and then (22) then implies that y ∈ Aε.

In the previous lemma, we characterized (A−ε)ε and (Aε)−ε, in terms of A and F (·) but this
characterization is a little complicated. Here, we show that if in fact A = B−ε some set B, then
(Aε)−ε simplifies. Similarly, (A−ε)ε simplifies if in fact A = Bε for some set B.

Lemma 17. For any set A, the following hold:(
(Aε)−ε

)ε
= Aε,

(
(A−ε)ε

)−ε
= A−ε.

Proof of Lemma 17. By Lemmas 13 and 16,(
(Aε)−ε

)ε
= (
(
Aε
)−ε

)ε = Aε − F (Aε) = Aε.

Similarly, (
(A−ε)ε

)−ε
= (
(
A−ε

)ε
)−ε = A−ε ∪ F ((A−ε)C) = A−ε.

We next prove a short lemma that will help us understand how the −ε, ε operations reduce the
adversarial loss.

Lemma 18. Let ε,−ε be as in (11) and (15). Consider a set B ⊂ X . Then if D = (B−ε)ε and
C = (Bε)−ε, then Cε ⊂ Bε, C−ε ⊃ B−ε and Dε ⊂ Bε, D−ε ⊃ B−ε.

Proof. First consider the set D. Then by Lemma 17, D−ε = B−ε. Furthermore, according to
Lemma 15, D ⊂ B, so that Dε ⊂ Bε.
Next, according to Lemma 17, Cε = Bε. Furthermore, according to Lemma 15, C ⊃ B, so that
C−ε ⊃ B−ε.

Lastly, we prove a lemma which states that applying the ε,−ε operations in succession decreases the
adversarial loss. Observe that Rε incurs a penalty of 1 on both F (A) and F (AC) because points in
these sets are always within ε of a point with the opposite class label.

Lemma 19. For any set A, the following hold:

Rε(A) ≥ R((Aε)−ε) (28)

Rε(A) ≥ R((A−ε)ε). (29)
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Proof of Lemma 19. The basic idea here is that the maximum penalty is incurred on F (A), so
removing F (A) from A and adding it to AC will not increase the loss. (Compare the statement of
this lemma with Lemma 16 and Figure 2.) The same holds for F (AC) and AC .

Let B = (A−ε)ε or B = (Aε)−ε. Lemma 18 implies that Bε ⊂ Aε and B−ε ⊃ A−ε. These
containments imply the result because if Bε ⊂ Aε and B−ε ⊃ A−ε then

η(x)1Aε + (1− η(x))1(AC)ε ≥ η(x)1Bε + (1− η(x))1(BC)ε

holds pointwise, so

Rε(A) =

∫
η(x)1Aε + (1− η(x))1(AC)εdP ≥

∫
η(x)1Bε + (1− η(x))1(BC)εdP = Rε(B).

By taking B = (A−ε)ε, E = (Aε)−ε, Lemma 3 immediately follows from Lemma 19 and the
definition of the ε operation.
Lemma 3. Let A be any set. Then there exist sets B,E for which B and EC are pseudo-certifiably
robust and Rε(B) ≤ Rε(A), Rε(E) ≤ Rε(A).

E Proof of Lemma 2 and a Generalization (Lemma 20)

We begin by reviewing some results of Appendix C. To start, recall that the operationAε = A⊕Bε(0),
satisfies the relations of (7):( ∞⋃

i=1

Ai

)ε
=

∞⋃
i=1

Aεi ,

( ∞⋂
i=1

Ai

)ε
⊂
∞⋂
i=1

Aεi (7)

In the next section, we will prove a version of Lemma 2 for other models of perturbations. Thus,
in the rest of this appendix, rather than focusing on Rd, we will assume that ε is a set operation
that satisfies (7). This formulation will allow us to prove an existence theorem for other models of
perturbations. As elements of our space X are not necessarily vectors, we write them in non-bold
font (x). We now state a generalized version of Lemma 2.
Lemma 20. Let Aε be any set operation that satisfies (7). Then

lim supAεn ⊃ (lim supAn)
ε and lim inf Aεn ⊃ (lim inf An)

ε

Note that Lemma 2 is simply Lemma 20 combined with the fact thatAε defined asA⊕Bε(0) satisfies
(7) (shown in Lemma 12).

Proof of Lemma 20. We start by proving the statement for lim sup. By (7),

lim supAεn =

∞⋂
N=1

∞⋃
n=N

Aεn =

∞⋂
N=1

( ∞⋃
n=N

An

)ε
⊃

( ∞⋂
N=1

∞⋃
n=N

An

)ε
The statement for lim inf follows from a similar argument:

lim inf Aεn =

∞⋃
N=1

∞⋂
n=N

Aεn ⊃
∞⋃
N=1

( ∞⋂
n=N

An

)ε
=

( ∞⋃
N=1

∞⋂
n=N

An

)ε

F More General Results

In this Appendix, we present a generalization of our main result. This generalization concerns
other models of perturbations. As discussed in Section 6, there are many other possible models of
perturbations in adversarial learning. A more general result would help address the existence of the
adversarial Bayes classifier in these scenarios as well. We provide a motivating example in the next
subsection.
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Theorem 10. Let X be a separable metric space and let B(X),U (X) be the corresponding Borel
and universal σ-algebras respectively. Let P be the completion of a measure on B(X) restricted to
U (X). For A ⊂ X , let ε : A→ Aε be a set operation for which Aε is universally measurable for all
sets A ∈ U (X). Furthermore, assume that ε satisfies the properties⋃

n∈N
Aεn =

(⋃
n∈N

An

)ε
(30)

⋂
n∈N

Aεn ⊃

(⋂
n∈N

An

)ε
(31)

for every sequence of sets {An}. Define the loss

Rε(A) =

∫
(1− η(x))1Aε(x) + η(x)1(AC)εdP

Assume that for some minimizing sequence An, one can always find a subsequence Anj for which
lim supAεnj =̇ lim inf Aεnj , where =̇ is with respect to the measure P. Then there exists a minimizer
to Rε in the σ-algebra U (X).

If Aε is defined by perturbations in a metric space, Theorem 4 could be used to conclude that Aε is
universally measurable.

Just like Theorem 1, one could also define the −ε operation as A−ε = ((AC)ε)C , and then argue that
there exists a pseudo-certifiably robust minimizer, if Aε is universally measurable for universally
measurable A. This statement follows from the same argument as Lemma 19.

F.1 A Motivating Example–Applying Theorem 10

To show the utility of Theorem 10, we present an application inspired by NLP. For clarity, we choose
a model of discrete perturbations somewhat simpler than Example 3. Let X be all strings of finite
length with a finite alphabet A. This space is countable and therefore separable. Furthermore, this
space is discrete. Recall that in a discrete space, every set is measurable. Hence, the Borel σ-algebra
consists of all subsets of X , which implies that U (X) and B(X) are equal.

We will define our perturbations as swapping two letters in a string at specified positions. Formally,
for w ∈ X , let |w| denote the length of the string. Furthermore, let T be the set of functions defined
by

T =
{
bi,j : X → X

∣∣∣bi,j(w)k = wk if k 6= i, j or max(i, j) > |w|,

bi,j(w)i = wj , b
i,j(w)j = wi otherwise

}
.

In other words, bi,j will swap the letters at i and j in w if w has length at least max(i, j) and will
keep the string fixed otherwise. Now let B be a finite subset of T .

If A is a set of strings, we define

Aε = {b(a) : a ∈ A, b ∈ B}.

To start, note that for this definition of the ε operation, we still have that for every sequence of sets
An, the relations (30), (31) hold. The proofs are the same as (16), (18) of Lemma 12, so we do not
reproduce it here.

Next, we argue that for every sequence An, there is a subsequence Anj for which lim inf Anj =
lim supAnj . The proof is similar to that of Theorem 2 presented in (Rockafellar and Wets, 1998).

Let A = lim supAn. Because the space X is countable, one can enumerate A = lim supAn =
{an}Nn=1, with N ∈ N ∪ {∞}. Now we inductively define N nested subsequences of sets {Akn}∞n=1
indexed by k as follows: Because a1 ∈ lim supAn, by the characterization of lim sup in (9), one can
find a subsequence Anm for which a1 ∈ Anm for all m. Let A1

m = Anm .

Now given the sequence {Akn}, we inductively define {Ak+1
n }. Consider the element ak+1 of the

sequence A = {an}Nn=1. If ak+1 ∈ lim supnA
k
n, then one can find a subsequence Aknm for which
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ak+1 ∈ Aknm for all m. Similarly, if ak+1 6∈ lim supnA
k
n, then one can find a subsequence Aknm for

which ak+1 6∈ Aknm for all m. Thus we choose the subsequence Aknm so that either ak+1 ∈ Aknm for
all m or ak+1 6∈ Aknm for all m. Set Ak+1

n = Aknm .

If N = | lim supAn| is finite, consider the sequence ANn . Then lim supANn ⊂ lim supAn. Further-
more, by the construction of the sequences {Akn}Nn=1, for each a ∈ lim supAn, either a ∈ ANn for
all n or a 6∈ ANn for all n. This observation implies that if a ∈ lim supnA

N
n , then a is eventually in

the tail of the sequence ANn and thus a ∈ lim infnA
N
n . Therefore lim infnA

N
n = lim supN A

N
n .

We now analyze the case N =∞. Consider now the diagonal sequence Ank = Akk. Again, we have
the containment lim supk A

K
k ⊂ lim supnAn. Let aj be an element of A = lim supAn. Then by

construction of the sequences {Akn}∞n=1, either aj ∈ Akk for all k ≥ j or aj 6∈ Akk for all k ≥ j. Thus
every a ∈ lim supAnk is also in Anj for all sufficiently large j so a ∈ lim infk Ank . Therefore,
lim supk Ank = lim infk Ank .

F.2 Proving Theorem 10

The proof of Theorem 10 follows the same steps as the proof of Theorem 1. As mentioned in
Section 6, the big picture motivation is that Theorem 1 followed directly from Lemmas 1, 2, and 3 –
we did not use properties of ε or the space Rd outside of these three Lemmas. The main challenge
is generalizing these concepts. With the proper definitions, the proof of Theorem 10 is exactly the
same as the proof of Theorem 1, except that we replace Lemma 1 with the assumption that for every
minimizing sequence An there exists a subsequence Anj for which lim supAεnj − lim inf Aεnj is a
null set.

Proof of Theorem 10. Let An be a minimizing sequence of Rε. Pick a subsequence Anj for which

P(lim supAεnj − lim inf Aεnj ) = 0 (32)

and set A = lim supAnj . Then

inf
A Borel

Rε(A) = lim
j→∞

Rε(Aj) ≥
∫

lim inf
j→∞

(
η1Aεnj

+ (1− η)1(ACnj
)ε

)
dP (Fatou’s Lemma)

≥
∫
η lim inf

j→∞
1Aεnj

+ (1− η) lim inf
j→∞

1(ACnj
)εdP

=

∫
η1lim supj A

ε
nj

+ (1− η)1lim infj(ACnj
)εdP (Equation 32)

≥
∫
η1(lim supj Anj )

ε + (1− η)1(
lim infj ACnj

)εdP (Lemma 20)

=

∫
η1(lim supj Anj )

ε + (1− η)1((lim supj Anj )C)
εdP

= Rε(A)

Therefore, A is a minimizer of Rε.

27


	The Measurability of A
	Measurability for Metric Spaces
	Measurability for Vector Spaces
	Proofs of Lemmas 5, 6, and 7

	Proof of Lemma 1 
	Main Argument
	Proof of Lemma 4

	Properties of the ,- Operations
	Proof of Lemma 3 
	Proof of Lemma 2 and a Generalization (Lemma 20)
	More General Results
	A Motivating Example–Applying Theorem 10
	Proving Theorem 10


