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Abstract

This paper presents a theoretical analysis of the problem ofdomain adaptation
with multiple sources. For each source domain, the distribution over the input
points as well as a hypothesis with error at mostǫ are given. The problem con-
sists of combining these hypotheses to derive a hypothesis with small error with
respect to the target domain. We present several theoretical results relating to
this problem. In particular, we prove that standard convex combinations of the
source hypotheses may in fact perform very poorly and that, instead, combinations
weighted by the source distributions benefit from favorabletheoretical guarantees.
Our main result shows that, remarkably, for any fixed target function, there exists
a distribution weighted combining rule that has a loss of at mostǫ with respect to
any target mixture of the source distributions. We further generalize the setting
from a single target function to multiple consistent targetfunctions and show the
existence of a combining rule with error at most3ǫ. Finally, we report empirical
results for a multiple source adaptation problem with a real-world dataset.

1 Introduction

A common assumption in theoretical models of learning such as the standard PAC model [16], as
well as in the design of learning algorithms, is that training instances are drawn according to the
same distribution as the unseen test examples. In practice,however, there are many cases where this
assumption does not hold. There can be no hope for generalization, of course, when the training and
test distributions vastly differ, but when they are less dissimilar, learning can be more successful.

A typical situation is that ofdomain adaptationwhere little or no labeled data is at one’s disposal
for the target domain, but large amounts of labeled data from asource domainsomewhat similar to
the target, or hypotheses derived from that source, are available instead. This problem arises in a
variety of applications in natural language processing [4,7,10], speech processing [8,9,11,13–15],
computer vision [12], and many other areas.

This paper studies the problem of domain adaptation with multiple sources, which has also received
considerable attention in many areas such as natural language processing and speech processing.
An example is the problem ofsentiment analysiswhich consists of classifying a text sample such
as a movie review, restaurant rating, or discussion boards,or other web pages. Information about a
relatively small number of domains such asmoviesor booksmay be available, but little or none can
be found for more difficult domains such astravel.

We will consider the following problem of multiple source adaptation. For each sourcei ∈ [1, k],
the learner receives the distributionDi of the input points corresponding to that source as well
as a hypothesishi with loss at mostǫ on that source. The learner’s task consists of combining
the k hypotheseshi, i ∈ [1, k], to derive a hypothesish with small loss with respect to the target
distribution. The target distribution is assumed to be a mixture of the distributionsDi. We will
discuss both the case where the mixture is known to the learner and the case where it is unknown.
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Note that the distributionDi is defined over the input points and bears no information about the
labels. In practice,Di is estimated from large amounts of unlabeled points typically available from
sourcei.

An alternative set-up for domain adaptation with multiple sources is one where the learner is not
supplied with a good hypothesishi for each source but where instead he has access to the labeled
training data for each source domain. A natural solution consists then of combining the raw labeled
data from each source domain to form a new sample more representative of the target distribution
and use that to train a learning algorithm. This set-up and the type of solutions just described
have been in fact explored extensively in applications [8, 9, 11, 13–15]. However, several empirical
observations motivated our study of hypothesis combination, in addition to the theoretical simplicity
and clarity of this framework.

First, in some applications such as very large-vocabulary speech recognition, often the original raw
data used to derive each domain-dependent model is no more available [2, 9]. This is because such
models are typically obtained as a result of training based on many hours of speech with files oc-
cupying hundreds of gigabytes of disk space, while the models derived require orders of magnitude
less space. Thus, combining raw labeled data sets is not possible in such cases. Secondly, a com-
bined data set can be substantially larger than each domain-specific data set, which can significantly
increase the computational cost of training and make it prohibitive for some algorithms. Thirdly,
combining labeled data sets requires the mixture parameters of the target distribution to be known,
but it is not clear how to produce a hypothesis with a low errorrate with respect toany mixture
distribution.

Few theoretical studies have been devoted to the problem of adaptation with multiple sources. Ben-
David et al. [1] gave bounds for single source adaptation, then Blitzer et al. [3] extended the work
to give a bound on the error rate of a hypothesis derived from aweighted combination of the source
data sets for the specific case of empirical risk minimization. Crammer et al. [5, 6] also addressed
a problem where multiple sources are present but the nature of the problem differs from adaptation
since the distribution of the input points is the same for allthese sources, only the labels change
due to varying amounts of noise. We are not aware of a prior theoretical study of the problem of
adaptation with multiple sources analyzed here.

We present several theoretical results relating to this problem. We examine two types of hypothesis
combination. The first type is simply based on convex combinations of thek hypotheseshi. We
show that this natural and widely used hypothesis combination may in fact perform very poorly in
our setting. Namely, we give a simple example of two distributions and two matching hypotheses,
each with zero error for their respective distribution, butsuch that any convex combination has
expected absolute loss of1/2 for the equal mixture of the distributions. This points out apotentially
significant weakness of a convex combination.

The second type of hypothesis combination, which is the mainone we will study in this work,
takes into account the probabilities derived from the distributions. Namely, the weight of hypothesis
hi on an inputx is proportional toλiDi(x), wereλ is the set of mixture weights. We will refer
to this method as thedistribution weighted hypothesis combination. Our main result shows that,
remarkably, for any fixed target function, there exists a distribution weighted combining rule that
has a loss of at mostǫ with respect toanymixture of thek distributions. We also show that there
exists a distribution weighted combining rule that has lossat most3ǫ with respect to any consistent
target function (one for which eachhi has lossǫ on Di) and any mixture of thek distributions. In
some sense, our results establish that the distribution weighted hypothesis combination is the “right”
combination rule, and that it also benefits from a well-founded theoretical guarantee.

The remainder of this paper is organized as follows. Section2 introduces our theoretical model for
multiple source adaptation. In Section 3, we analyze the abstract case where the mixture parameters
of the target distribution are known and show that the distribution weighted hypothesis combination
that uses as weights these mixture coefficients achieves a loss of at mostǫ. In Section 4, we give
a simple method to produce an error ofΘ(kǫ) that does not require the prior knowledge of the
mixture parameters of the target distribution. Our main results showing the existence of a combined
hypothesis performing well regardless of the target mixture are given in Section 5 for the case of a
fixed target function, and in Section 6 for the case of multiple target functions. Section 7 reports
empirical results for a multiple source adaptation problemwith a real-world dataset.
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2 Problem Set-Up

LetX be the input space,f : X → R the target function to learn, andL : R×R → R a loss function
penalizing errors with respect tof . The loss of a hypothesish with respect to a distributionD and
loss functionL is denoted byL(D, h, f) and defined asL(D, h, f) = Ex∼D[L(h(x), f(x))] =∑

x∈X
L(h(x), f(x))D(x). We will denote by∆ the simplex∆ = {λ : λi ≥ 0 ∧

∑k

i=1 λi = 1} of
R

k.

We consider an adaptation problem withk source domains and a single target domain. The input
to the problem is the set ofk source distributionsD1, . . . , Dk and k corresponding hypotheses
h1, . . . , hk such that for alli ∈ [1, k], L(Di, hi, f) ≤ ǫ, for a fixed ǫ ≥ 0. The distribution
of the target domain,DT , is assumed to be a mixture of thek source distributionsDis, that is
DT (x) =

∑k

i=1 λiDi(x), for some unknown mixture weight vectorλ ∈ ∆. The adaptation problem
consists of combing the hypotheseshis to derive a hypothesis with small loss on the target domain.
Since the target distributionDT is assumed to be a mixture, we will refer to this problem as the
mixture adaptation problem.

A combining rulefor the hypotheses takes as an input thehis and outputs a single hypothe-
sis h : X → R. We define two combining rules of particular interest for ourpurpose: thelin-
ear combining rulewhich is based on a parameterz ∈ ∆ and which sets the hypothesis to
h(x) =

∑k

i=1 zihi(x); and thedistribution weighted combining rulealso based on a parameter

z ∈ ∆ which sets the hypothesis toh(x) =
∑k

i=1
ziDi(x)

P

k
j=1

zjDj(x)
hi(x) when

∑k

j=1 zjDj(x) > 0.

This last condition always holds ifDi(x) > 0 for all x ∈ X and somei ∈ [1, k]. We defineH to
be the set of all distribution weighted combining rules. Given the input to the adaptation problem
we have implicit information about the target functionf . We define the set ofconsistent target
functions, F , as follows,

F = {g : ∀i ∈ [1, k], L(Di, hi, g) ≤ ǫ} .

By definition, the target functionf is an element ofF .

We will assume that the following properties hold for the loss functionL: (i) L is non-negative:
L(x, y) ≥ 0 for all x, y ∈ R; (ii) L is convex with respect to the first argument:L(

∑k

i=1 λixi, y) ≤∑k

i=1 λiL(xi, y) for all x1, . . . , xk, y ∈ R andλ ∈ ∆; (iii) L is bounded: there existsM ≥ 0
such thatL(x, y) ≤ M for all x, y ∈ R; (iv) L(x, y) is continuous in bothx andy; and (v)L is
symmetricL(x, y) = L(y, x). The absolute loss defined byL(x, y) = |x − y| will serve as our
primary motivating example.

3 Known Target Mixture Distribution

In this section we assume that the parameters of the target mixture distribution are known. Thus, the
learning algorithm is givenλ∈∆ such thatDT (x)=

∑k

i=1 λiDi(x). A good starting point would be
to study the performance of a linear combining rule. Namely the classifierh(x) =

∑k

i=1 λihi(x).
While this seems like a very natural classifier, the following example highlights the problematic
aspects of this approach.

Consider a discrete domainX = {a, b} and two distributions,Da andDb, such thatDa(a) = 1
andDb(b) = 1. Namely, each distribution puts all the weight on a single element inX . Consider
the target functionf , wheref(a) = 1 andf(b) = 0, and let the loss be the absolute loss. Let
h0 = 0 be the function that outputs0 for all x ∈ X and similarlyh1 = 1. The hypothesesh1

andh0 havezeroexpected absolute loss on the distributionsDa andDb, respectively, i.e.,ǫ = 0.
Now consider the target distributionDT with λa = λb = 1/2, thusDT (a) = DT (b) = 1/2. The
hypothesish(x) = (1/2)h1(x) + (1/2)h0(x) always outputs1/2, and has an absolute loss of1/2.
Furthermore, for any other parameterz of the linear combining rule, the expected absolute loss of
h(x) = zh1(x)+(1−z)h0(x) with respect toDT is exactly1/2. We have established the following
theorem.

Theorem 1. There is a mixture adaptation problem withǫ = 0 for which any linear combination
rule has expected absolute loss of1/2.
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Next we show that the distribution weighted combining rule produces a hypothesis with a low ex-
pected loss. Given a mixtureDT (x) =

∑k

i=1 λiDi(x), we consider the distribution weighted com-
bining rule with parameterλ, which we denote byhλ. Recall that,

hλ(x) =

k∑

i=1

λiDi(x)
∑k

j=1 λjDj(x)
hi(x) =

k∑

i=1

λiDi(x)

DT (x)
hi(x) .

Using the convexity ofL with respect to the first argument, the loss ofhλ with respect toDT and a
targetf ∈ F can be bounded as follows,

L(DT , hλ, f) =
∑

x∈X

L(hλ(x), f(x))DT (x) ≤
∑

x∈X

k∑

i=1

λiDi(x)L(hi(x), f(x)) =

k∑

i=1

λiǫi ≤ ǫ,

whereǫi := L(Di, hi, f) ≤ ǫ. Thus, we have derived the following theorem.

Theorem 2. For any mixture adaptation problem with target distribution Dλ(x) =
∑k

i=1 λiDi(x),
the expected loss of the hypothesishλ is at mostǫ with respect to any target functionf ∈ F :
L(Dλ, hλ, f) ≤ ǫ.

4 Simple Adaptation Algorithms

In this section we show how to construct a simple distribution weighted hypothesis that has an
expected loss guarantee with respect to any mixture. Our hypothesishu is simply based on equal
weights, i.e.,ui = 1/k, for all i ∈ [1, k]. Thus,

hu(x) =

k∑

i=1

(1/k)Di(x)
∑k

j=1(1/k)Dj(x)
hi(x) =

k∑

i=1

Di(x)
∑k

j=1 Dj(x)
hi(x).

We show forhu an expected loss bound ofkǫ, with respect to any mixture distributionDT and target
functionf ∈ F . (Proof omitted.)
Theorem 3. For any mixture adaptation problem the expected loss ofhu is at mostkǫ, for any
mixture distributionDT and target functionf ∈ F , i.e.,L(DT , hu, f) ≤ kǫ.

Unfortunately, the hypothesishu can have an expected absolute loss as large asΩ(kǫ). (Proof
omitted.)
Theorem 4. There is a mixture adaptation problem for which the expectedabsolute loss ofhu is
Ω(kǫ). Also, fork = 2 there is an input to the mixture adaptation problem for whichthe expected
absolute loss ofhu is 2ǫ − ǫ2.

5 Existence of a Good Hypothesis

In this section, we will show that for any target functionf ∈ F there is a distribution weighted
combining rulehz that has a loss of at mostǫ with respect to any mixtureDT . We will construct
the proof in two parts. In the first part, we will show, using a simple reduction to a zero-sum game,
that one can obtain a mixture ofhzs that guarantees a loss bounded byǫ. In the second part, which
is the more interesting scenario, we will show that for any target functionf ∈ F there is a single
distribution weighted combining rulehz that has loss of at mostǫ with respect toanymixtureDT .
This later part will require the use of Brouwer fixed point theorem to show the existence of such an
hz.

5.1 Zero-sum game

The adaptation problem can be viewed as a zero-sum game between two players,NATUREand
LEARNER. Let the input to the mixture adaptation problem beD1, . . . , Dk, h1, . . . , hk andǫ, and
fix a target functionf ∈ F . The playerNATUREpicks a distributionDi while the playerLEARNER
selects a distribution weighted combining rulehz ∈ H. The loss whenNATUREplaysDi and
LEARNERplayshz is L(Di, hz, f). Let us emphasize that the target functionf ∈ F is fixed
beforehand. The objective ofNATUREis to maximize the loss and the objective ofLEARNERis to
minimize the loss. We start with the following lemma,
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Lemma 1. Given any mixed strategy ofNATURE, i.e., a distributionµ overDi’s, then the following
action ofLEARNERhµ ∈ H has expected loss at mostǫ, i.e.,L(Dµ, hµ, f) ≤ ǫ.

The proof is identical to that of Theorem 2. This almost establishes that the value of the game is at
mostǫ. The technical part that we need to take care of is the fact that the action space ofLEARNER
is infinite. However, by an appropriate discretization ofH we can derive the following theorem.

Theorem 5. For any target functionf ∈ F and anyδ > 0, there exists a functionh(x) =∑m

j=1 αjhzj
(x), wherehzi

∈ H, such thatL(DT , h, f) ≤ ǫ + δ for any mixture distribution

DT (x) =
∑k

i=1 λiDi(x).

Since we can fixδ > 0 to be arbitrarily small, this implies that a linear mixture of distribution
weighted combining rules can guarantee a loss of almostǫ with respect to any product distribution.

5.2 Single distribution weighted combining rule

In the previous subsection, we showed that a mixture of hypotheses inH would guarantee a loss of
at mostǫ. Here, we will considerably strengthen the result and show that there is asinglehypothesis
in H for which this guarantee holds. Unfortunately our loss is not convex with respect toh ∈ H, so
we need to resort to a more powerful technique, namely the Brouwer fixed point theorem.

For the proof we will need that the distribution weighted combining rule hz be continuous in
the parameterz. In general, this does hold due to the existence of pointsx ∈ X for which∑k

j=1 zjDj(x) = 0. To avoid this discontinuity, we will modify the definition of hz to hη
z , as

follows.

Claim 1. Let U denote the uniform distribution overX , then for anyη > 0 and z ∈ ∆, let
hη

z : X → R be the function defined by

hη
z(x) =

k∑

i=1

ziDi(x) + ηU(x)/k
∑k

j=1 zjDj(x) + ηU(x)
hi(x).

Then, for any distributionD, L(D, hη
z , f) is continuous inz.1

Let us first state Brouwer’s fixed point theorem.

Theorem 6 (Brouwer Fixed Point Theorem). For any compact and convex non-empty setA ⊂ R
n

and any continuous functionf : A → A, there is a pointx ∈ A such thatf(x) = x.

We first show that there exists a distribution weighted combining rule hη
z for which the losses

L(Di, h
η
z , f) are all nearly the same.

Lemma 2. For any target functionf ∈ F and anyη, η′ >0, there existsz ∈ ∆, with zi 6= 0 for all
i ∈ [1, k], such that the following holds for the distribution weighted combining rulehη

z ∈ H:

L(Di, h
η
z , f) = γ + η′ −

η′

zik
≤ γ + η′

for any1 ≤ i ≤ k, whereγ =
∑k

j=1 zjL(Dj , h
η
z , f).

Proof. Fix η′ > 0 and letLz
i = L(Di, h

η
z , f) for all z ∈ ∆ and i ∈ [1, m]. Consider the

mappingφ : ∆ → ∆ defined for allz ∈ ∆ by [φ(z)]i = (ziL
z
i + η′/k)/ (

∑k

j=1 zjL
z
j + η′),

where [φ(z)]i, is the ith coordinate ofφ(x), i ∈ [1, m]. By Claim 1, φ is continuous. Thus,
by Brouwer’s Fixed Point Theorem, there existsz ∈ ∆ such thatφ(z) = z. This implies that
zi = (ziL

z
i +η′/k)/(

∑k

j=1 zjL
z
j +η′). Sinceη′ > 0, we must havezi 6= 0 for anyi ∈ [1, m]. Thus,

we can divide byzi and writeLz
i +η′/(zik) = (

∑k

j=1 zjL
z
j )+η′. Therefore,Lz

i = γ+η′−η′/(zik)

with γ =
∑k

j=1 zjL
z
j .

1In addition to continuity, the perturbation tohz , hη
z , also helps us ensure that none of the mixture weights

zi is zero in the proof of the Lemma 2 .

5



Note that the lemma just presented does not use the structureof the distribution weighted combining
rule, but only the fact that the loss is continuous in the parameterz ∈ ∆. The lemma applies as well
to the linear combination rule and provides the same guarantee. The real crux of the argument is, as
shown in the next lemma, thatγ is small for a distribution weighted combining rule (while it can be
very large for a linear combination rule).
Lemma 3. For any target functionf ∈ F and anyη, η′ > 0, there existsz ∈ ∆ such that
L(Dλ, hη

z , f) ≤ ǫ + ηM + η′ for anyλ ∈ ∆.

Proof. Let z be the parameter guaranteed in Lemma 2. ThenL(Di, h
η
z , f) = γ + η′ − η′/(zik) ≤

γ + η′, for 1 ≤ i ≤ k. Consider the mixtureDz, i.e., set the mixture parameter to bez. Consider the
quantityL(Dz , h

η
z , f). On the one hand, by definition,L(Dz , h

η
z , f) =

∑k

i=1 ziL(Di, h
η
z , f) and

thusL(Dz , h
η
z , f) = γ. On the other hand,

L(Dz,h
η
z , f)

=
X

x∈X

Dz(x)L(hη
z(x), f(x)) ≤

X

x∈X

Dz(x)

Dz(x) + ηU(x)

 

k
X

i=1

(ziDi(x) +
ηU(x)

k
)L(hi(x), f(x))

!

≤
X

x∈X

 

k
X

i=1

ziDi(x)L(hi(x), f(x))

!

+
X

x∈X

ηMU(x)

=

k
X

i=1

ziL(Di, hi, f) + ηM =

k
X

i=1

ziǫi + ηM ≤ ǫ + ηM .

Thereforeγ ≤ ǫ + ηM . To complete the proof, note that the following inequality holds for any
mixtureDλ:

L(Dλ, hη
z , f) =

k∑

i=1

λiL(Di, h
η
z , f) ≤ γ + η′,

which is at mostǫ + ηM + η′.

By settingη = δ/(2M) andη′ = δ/2, we can derive the following theorem.
Theorem 7. For any target functionf ∈ F and anyδ > 0, there existsη > 0 andz ∈ ∆, such that
L(Dλ, hη

z , f) ≤ ǫ + δ for any mixture parameterλ.

6 Arbitrary target function

The results of the previous section show that for anyfixedtarget function there is a good distribution
weighted combining rule. In this section, we wish to extend these results to the case where the target
function is not fixed in advanced. Thus, we seek a single distribution weighted combining rule that
can perform well foranyf ∈ F andany mixtureDλ. Unfortunately, we are not able to prove a
bound ofǫ + o(ǫ) but only a bound of3ǫ. To show this bound we will show that for anyf1, f2 ∈ F
andanyhypothesish the difference of loss is bounded by at most2ǫ.
Lemma 4. Assume that the loss functionL obeys the triangle inequality, i.e.,L(f, h) ≤ L(f, g) +
L(g, h). Then for anyf, f ′ ∈ F and any mixtureDT , the inequalityL(DT , h, f ′) ≤ L(DT , h, f)+
2ǫ holds for any hypothesish.

Proof. Since our loss function obeys the triangle inequality, for any functionsf, g, h, the following
holds,L(D, f, h) ≤ L(D, f, g) + L(D, g, h). In our case, we observe that replacingg with any
f ′ ∈ F gives,L(Dλ, f, h) ≤ L(Dλ, f ′, h) + L(Dλ, f, f ′). We can bound the termL(Dλ, f, f ′)
with a similar inequality,L(Dλ, f, f ′) ≤ L(Dλ, f, hλ) + L(Dλ, f ′, hλ) ≤ 2ǫ, wherehλ is the
distribution weighted combining rule produced by choosingz = λ and using Theorem 2. Therefore,
for anyf, f ′ ∈ F we have,L(Dλ, f, h) ≤ L(Dλ, f ′, h) + 2ǫ, which completes the proof.

We derived the following corollary to Theorem 7.
Corollary 1. Assume that the loss functionL obeys the triangle inequality. Then, for anyδ > 0,
there existsη > 0 and z ∈ ∆, such that for any mixture parameterλ and anyf ∈ F ,
L(Dλ, hη

z , f) ≤ 3ǫ + δ.

6



1 2 3 4 5 6

1.5

1.6

1.7

1.8

1.9

2

2.1

M
S

E

Uniform Mixture Over 4 Domains

 

 

In−Domain

Out−Domain

0 0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

2.2

2.4

Mixture = α book + (1 − α) kitchen

α

M
S

E

 

 

weighted

linear

book

kitchen

0 0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

2.2

2.4

α

M
S

E

Mixture = α dvd + (1 − α) electronics

 

 

weighted

linear

dvd

electronics

(a) (b)

Figure 1: (a) MSE performance for a target mixture of four domains (1: books, 2: dvd, 3: electronics,
4: kitchen 5: linear, 6: weighted). (b) MSE performance under various mixtures of two source
domains, plot left:book andkitchen , plot right: dvd andelectronics .

7 Empirical results

This section reports the results of our experiments with a distribution weighted combining rule using
real-world data. In our experiments, we fixed a mixture target distributionDλ and considered the
distribution weighted combining rulehz, with z = λ. Since we used real-world data, we did not have
access to the domain distributions. Instead, we modeled each distribution and used large amounts
of unlabeled data available for each source to estimate the model’s parameters. One could have thus
expected potentially significantly worse empirical results than the theoretical ones, but this turned
out not to be an issue in our experiments.

We used the sentiment analysis dataset found in [4].2 The data consists of review text and rat-
ing labels, taken fromamazon.com product reviews within four different categories (domains).
These four domains consist ofbook , dvd , electronics andkitchen reviews, where each do-
main contains 2000 data points.3 In our experiments, we fixed a mixture target distributionDλ and
considered the distribution weighted combining rulehz , with z = λ.

In our first experiment, we considered mixtures of all four domains, where the test set was a uniform
mixture of 600 points, that is the union of 150 points taken uniformly at random from each domain.
The remaining 1,850 points from each domain were used to train the base hypotheses.4 We com-
pared our proposed weighted combining rule to the linear combining rule. The results are shown
in Figure 1(a). They show that the base hypotheses perform poorly on the mixture test set, which
justifies the need for adaptation. Furthermore, the distribution weighted combining rule is shown to
perform at least as well as the worst in-domain performance of a base hypothesis, as expected from
our bounds. Finally, we observe that this real-world data experiment gives an example in which a
linear combining rule performs poorly compared to the distribution weighted combining rule.

In other experiments, we considered the mixture of two domains, where the mixture is varied ac-
cording to the parameterα ∈ {0.1, 0.2, . . . , 1.0}. For each plot in Figure 1 (b), the test set consists
of 600α points from the first domain and600(1 − α) points from the second domain, where the
first and second domains are made clear in the figure. The remaining points that were not used for
testing were used to train the base hypotheses. The results show the linear shift from one domain to
the other, as is evident from the performance of the two base hypotheses. The distribution weighted
combining rule outperforms the base hypotheses as well as the linear combining rule.

2
http://www.seas.upenn.edu/˜mdredze/datasets/sentime nt/ .

3The rating label, an integer between 1 and 5, was used as a regression label, and the loss measured by the
mean squared error (MSE). All base hypotheses were generated using Support Vector Regression (SVR) [17]
with the trade-off parametersC = 8, ǫ = 0.1, and a Gaussian kernel with parameterg = 0.00078. The SVR
solutions were obtained using the libSVM software library (http://www.csie.ntu.edu.tw/˜cjlin/libsvm/ ).
Our features were defined as the set of unigrams appearing fivetimes or more in all domains. This defined
about 4000 unigrams. We used a binary feature vector encoding the presence or absence of these frequent
unigrams to define our instances. To model the domain distributions, we used a unigram statistical language
model trained on the same corpus as the one used to define the features. The language model was created using
the GRM library (http://www.research.att.com/˜fsmtools/grm/ ).

4Each experiment was repeated 20 times with random folds. Thestandard deviation found was far below
what could be legibly displayed in the figures.
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Thus, our preliminary experiments suggest that the distribution weighted combining rule performs
well in practice and clearly outperforms a simple linear combining rule. Furthermore, using statis-
tical language models as approximations to the distribution oracles seem to be sufficient in practice
and can help produce a good distribution weighted combiningrule.

8 Conclusion

We presented a theoretical analysis of the problem of adaptation with multiple sources. Domain
adaptation is an important problem that arises in a variety of modern applications where limited or
no labeled data is available for a target application and ouranalysis can be relevant in a variety of
situations. The theoretical guarantees proven for the distribution weight combining rule provide it
with a strong foundation. Its empirical performance with a real-world data set further motivates
its use in applications. Much of the results presented were based on the assumption that the target
distribution is some mixture of the source distributions. Afurther analysis suggests however that
our main results can be extended to arbitrary target distributions.
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