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Abstract

Adversarial robustness is a critical property of
classifiers in applications as they are increasingly
deployed in complex real-world systems. Yet,
achieving accurate adversarial robustness in ma-
chine learning remains a persistent challenge and
the choice of the surrogate loss function used
for training a key factor. We present a family
of new loss functions for adversarial robustness,
smooth adversarial losses, which we show can
be derived in a general way from broad families
of loss functions used in multi-class classifica-
tion. We prove strong H-consistency theoreti-
cal guarantees for these loss functions, includ-
ing multi-class H-consistency bounds for sum
losses in the adversarial setting. We design new
regularized algorithms based on the minimiza-
tion of these principled smooth adversarial losses
(PSAL). We further show through a series of ex-
tensive experiments with the CIFAR-10, CIFAR-
100 and SVHN datasets that our PSAL algo-
rithm consistently outperforms the current state-
of-the-art technique, TRADES, for both robust ac-
curacy against `∞-norm bounded perturbations
and, even more significantly, for clean accuracy.
Finally, we prove that, unlike PSAL, the TRADES
loss in general does not admit an H-consistency
property.

1 INTRODUCTION

Adversarial robustness is a critical property of classifiers
in applications as they are increasingly deployed in com-
plex real-world systems. A classifier misclassifying a traf-
fic sign, as a result of a minor variation, which may be the
presence of a small label on the sign, may result in traf-
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fic incidents or worse, human injuries, when used for ex-
ample with self-driving cars. Similar undesirable conse-
quences may result from the lack of robustness of classi-
fiers in medical diagnosis, speech recognition, fraud detec-
tion and many other areas.

Yet, achieving accurate adversarial robustness in machine
learning remains a persistent challenge theoretically and al-
gorithmically. Multi-layer neural networks trained on large
datasets have achieved a remarkable performance in sev-
eral applications in recent years, in particular in speech and
visual recognition tasks (Sutskever et al., 2014; Krizhevsky
et al., 2012). However, these rich models have been shown
to be susceptible to imperceptible perturbations (Szegedy
et al., 2013) and their adversarial accuracy remains sub-
stantially below their clean accuracy, their accuracy for the
standard classification loss.

For adversarial robustness, the standard zero-one loss func-
tion used in learning is typically replaced by a more strin-
gent adversarial loss, which requires a predictor to cor-
rectly classify an input point x and also to maintain the
same classification for all points at a small `p distance of x
(Goodfellow et al., 2014; Madry et al., 2017; Tsipras et al.,
2018; Carlini and Wagner, 2017). The design of robust al-
gorithms relies on surrogate losses since the optimization
of the adversarial loss is intractable for most hypothesis
sets. But, which surrogate losses should be used and which
benefit from theoretical guarantees?

A key criterion for surrogate losses is their Bayes-
consistency, which has been extensively studied in both bi-
nary and multi-class non-adversarial classification (Zhang,
2004; Bartlett et al., 2006; Tewari and Bartlett, 2007; Stein-
wart, 2007). More recently, Awasthi et al. (2021a) gave
an extensive study of consistency in the adversarial set-
ting, which they showed to be technically more complex
and requiring new proofs. Bayes-consistency is a property
related to the family of all measurable functions, which is
much broader than the hypothesis set used by learning al-
gorithms. But, remarkably, the authors also gave a series of
results for H-consistency, that is consistency restricted to
the use of a specific hypothesis set H (Long and Servedio,
2013). These results rule out, in particular, several types of
surrogates losses frequently used in applications to achieve
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adversarial robustness. Can these results further guide the
choice of effective surrogate losses for adversarial robust-
ness?

Bayes-consistency or even H-consistency for a specific hy-
pothesis set H is only an asymptotic property, which does
not provide any guarantee for approximate minimization
of losses based on finite samples. More favorable guar-
antees called H-consistency bounds were recently derived
(Awasthi et al., 2022a). These are hypothesis set-specific
guarantees that are stronger than H-consistency since they
do not just hold only asymptotically. Can we design surro-
gate losses for adversarial robustness benefiting from such
strong theoretical guarantees? Can such loss functions be
used to design effective algorithms?

This paper deals precisely with these questions. We present
a family of new loss functions, smooth adversarial losses,
which we show can be derived in a general way from broad
families of loss functions used in multi-class classification:
max losses (Crammer and Singer, 2001), sum losses (We-
ston and Watkins, 1998), or constrained losses (Lee et al.,
2004). These loss functions admit a non-adversarial loss
term and a smooth adversarial loss term based on the Lips-
chitz property of the auxiliary function in the definition of
the multi-class loss.

We prove strong theoretical guarantees based on H-
consistency for these loss functions, including multi-class
H-consistency bounds for the family of sum losses in the
adversarial scenario. These guarantees are more relevant to
most robustness problems, which are multi-class classifica-
tion tasks, than previous binary classification results given
by Awasthi et al. (2022a). Their analysis is also more chal-
lenging and requires novel proof techniques. We also give
new regularized algorithms based on the minimization of
these principled smooth adversarial sum losses (PSAL). We
show that PSAL consistently outperforms TRADES for both
robust classification and clean accuracy, with an even more
significant improvement of the clean accuracy, on CIFAR-
10, CIFAR-100 and SVHN against `∞-norm bounded per-
turbations of size γ = 8/255. These results establish the
new state-of-the-art benchmarks in these tasks in the sce-
nario where no generated data, extra data or extra data aug-
mentation is used.

The paper is structured as follows. In Section 3.1, we point
out that the surrogate losses frequently used in practice in
adversarial robust classification, the adversarial counterpart
of the cross-entropy loss (Madry et al., 2017) and TRADES
(Zhang et al., 2019) do not admit H-consistency, that is,
minimizing these surrogate losses over a hypothesis set H,
may not always lead to minimizing the adversarial zero-one
loss over H.

This motivates our design of a new family of surrogate
losses, smooth adversarial losses in Section 3.2. Here,
we provide a detailed derivation of smooth adversarial

losses corresponding to each of the following three fami-
lies of multi-class classification losses defined in the non-
adversarial setting: max losses (Crammer and Singer,
2001), sum losses (Weston and Watkins, 1998), and con-
strained losses (Lee et al., 2004).

In Section 4, we show that our smooth adversarial losses
benefit from H-consistency guarantees. To obtain guaran-
tees for our smooth adversarial loss, we first prove a multi-
class adversarial H-consistency bound for the adversarial
sum loss. The guarantees based on this bound provide a
strong support for our smooth loss minimization algorithm,
PSAL, described in Section 5. We further discuss in that
section various choices for auxiliary functions used in the
objective function of PSAL. In Section 6, we further ana-
lyze the surrogate loss TRADES and prove that there exist
learning problems in both the realizable and non-realizable
cases for which TRADES lacks the H-consistency guaran-
tee while our smooth adversarial loss admits that guaran-
tee. In Section 7, we report the results of several experi-
ments comparing with the current state-of-the-art ones us-
ing TRADES that demonstrate the empirical significance of
our PSAL algorithm. We start with some basic definitions
and notation (Section 2).

2 PRELIMINARIES

We denote by X the input space and by Y the set of labels
which we define by Y = {−1,+1} in binary classification,
by Y = {1, . . . , c} in multi-class classification with c > 2
classes. We denote by H a hypothesis set of functions map-
ping from X to R in the binary setting, from X × Y to R in
the multi-class setting. We denote by h(x) the label predic-
tion made by h: in binary classification, h(x) = sign(h(x))
with the convention sign(0) = +1; in multi-class classifica-
tion, h(x) = argmaxy∈Y h(x, y) with an arbitrary but fixed
strategy for breaking the ties.

Let D be a distribution over X × Y according to which
samples are drawn i.i.d. We denote by R`0−1(h) =
E(x,y)∼D[`0−1(h,x, y)] the generalization error of a hy-
pothesis h ∈ H, where `0−1(h,x, y) = 1h(x)≠y is the 0/1
loss. The generalization and best-in-class errors for a sur-
rogate loss `∶H × X × Y → R are similarly defined by
R`(h) = E(x,y)∼D[`(h,x, y)] and R∗

`,H = infh∈HR`(h).

3 SMOOTH ADVERSARIAL LOSSES

3.1 Motivation

In adversarially robust classification, the benchmark cri-
terion is the adversarial 0/1 loss, which is the maximum
loss incurred over an adversarial perturbation of the exam-
ple. Let γ ∈ (0,1) be the maximum magnitude allowed for
perturbations and let ∥ ⋅ ∥ denote the norm adopted, which
is typically an `p-norm, p ∈ [1,+∞]. Then, the adver-
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sarial 0/1 loss `γ is defined as follows in the binary and
multi-class classification settings (Goodfellow et al., 2014;
Madry et al., 2017; Shafahi et al., 2019; Wong et al., 2020;
Awasthi et al., 2023):

• binary: `γ(h,x, y) = supx′∶∥x−x′∥≤γ 1yh(x′)≤0;

• multi-class: `γ(h,x, y) = supx′∶∥x−x′∥≤γ 1ρh(x′,y)≤0,

where ρh(x, y) = h(x, y) − maxy′≠y h(x, y′) is the multi-
class classification margin. As with the non-adversarial
0/1 loss, optimizing the adversarial loss `γ directly is in-
tractable. Thus, most algorithms resort to a surrogate loss
instead. But, how should this surrogate loss be defined?
One commonly adopted method consists of using a surro-
gate loss ` for the standard 0/1 loss and of defining an ad-
versarial surrogate loss ̃̀as the supremum-based version of
`:

̃̀(h,x, y) = sup
x′∶∥x−x′∥≤γ

`(h,x′, y). (1)

As an example, ̃̀
xent, the adversarial counterpart of the

cross-entropy loss `xent is defined as follows:

̃̀
xent(h,x, y) = sup

x′∶∥x−x′∥≤γ
`xent(h,x′, y), (2)

where `xent is the cross-entropy loss (or log-loss):
`xent(h,x, y) = − log(h(x, y)), subject to the requirements
h(x, y) ≥ 0 for any y ∈ Y and ∑y∈Y h(x, y) = 1, which
are fulfilled for neural network hypotheses, when using the
softmax activation function in the output layer.

While such surrogate losses are natural, formulation ̃̀
xent

and other similar ones based on a convex loss ` suffer from
a serious drawback, which may explain the persistent large
empirical gap observed empirically between the natural and
adversarial accuracies (Madry et al., 2017): as shown by
Awasthi et al. (2021a), even in the binary scenario, no
convex supremum-based loss admits the key property of
H-consistency (see Section 4 for a formal definition and
description of this property). Thus, in general, minimiz-
ing such surrogate losses, including the adversarial cross-
entropy loss ̃̀

xent, over a hypothesis set H, may not lead to
minimizing `γ over H.

An alternative surrogate loss adopted in the adversarial set-
ting is TRADES (Zhang et al., 2019), which is based on the
following formulation:

̃̀
TRADES(h,x, y)

= `xent(h,x, y) + sup
x′∶∥x−x′∥≤γ

Lxent(h,x, x′)/λ, (3)

where Lxent(h,x, x′) = −∑y∈Y h(x, y) log(h(x′, y)) is
the cross-entropy of h(x, ⋅) and h(x′, ⋅), and where λ > 0
is a constant. Minimizing a regularized objective based on
̃̀

TRADES has been shown empirically to improve upon mini-
mizing ̃̀

xent in adversarial training. In fact, this has led to

the current state-of-the-art adversarial accuracy in multiple
tasks (Gowal et al., 2020). We will show in Section 6, how-
ever, that, as with the adversarial cross-entropy loss ̃̀

xent,
̃̀

TRADES does not benefit from H-consistency guarantees.
This suggests the need for alternative surrogate losses in the
adversarially robust classification with stronger theoretical
guarantees.

3.2 New Surrogate Losses

In this section, we introduce a general family of surrogate
losses, smooth adversarial losses, which we will show ben-
efit from an H-consistency guarantee.

We begin with binary classification and then extend the
derivation to multi-class classification. Let Φ̃ be a
supremum-based margin loss based on the auxiliary func-
tion Φ, that is Φ̃(h,x, y) = supx′∶∥x−x′∥≤γ Φ(yh(x′)), for
any (x, y) ∈ X × Y. Assume that Φ is non-increasing and
µ-Lipschitz. Then, the following decomposition and in-
equality hold:

Φ̃(h,x, y)

= Φ(yh(x)) +Φ( inf
x′∶∥x−x′∥≤γ

yh(x′)) −Φ(yh(x))

≤ Φ(yh(x)) + ν∣yh(x) − inf
x′∶∥x−x′∥≤γ

yh(x′)∣,

(Φ µ-Lipschitz)

for any ν ≥ µ. We will refer to a loss function defined by
the last expression as a smooth adversarial loss and denote
it by Φsmooth. The loss function admits a non-adversarial
loss term and a smooth adversarial loss term based on the
Lipschitz property of the auxiliary function Φ.

Let Φ be a non-increasing and Lipschitz auxiliary function.
For multi-class classification, we can similarly derive the
smooth adversarial loss corresponding to each of the fol-
lowing three families of multi-class classification losses de-
fined in the non-adversarial setting:

• max loss: Φmax(h,x, y) = Φ(ρh(x, y)) where
ρh(x, y) = h(x, y)−maxy′≠y h(x, y′), e.g. (Crammer
and Singer, 2001);

• sum loss: Φsum(h,x, y) = ∑y′≠y Φ(∆h(x, y, y′))
where ∆h(x, y, y′) = h(x, y) − h(x, y′), e.g. (Weston
and Watkins, 1998); and

• constrained loss: Φcstnd(h,x, y)=∑y′≠yΦ(−h(x, y′))
subject to the constraint on the sum of the scores
∑y∈Y h(x, y) = 0, e.g. (Lee et al., 2004).

We give a detailed derivation in Appendix A. Table 1
gives the general form of the smooth adversarial loss
for each of these three families, where ∥ ⋅ ∥2 is the
`2 norm, ∆h(x, y) denotes the (c − 1)-dimensional
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Table 1: Multi-class classification losses and the corresponding smooth adversarial losses.

Multi-class loss Smooth adversarial loss

Max loss Φmax
smooth = Φmax(h,x, y) + ν∣ρh(x, y) − infx′∶∥x−x′∥≤γ ρh(x′, y)∣

Sum loss Φsum
smooth = Φsum(h,x, y) + ν supx′∶∥x−x′∥≤γ∥∆h(x′, y) −∆h(x, y)∥2

Constrained loss Φcstnd
smooth = Φcstnd(h,x, y) + ν supx′∶∥x−x′∥≤γ∥h(x′, y) − h(x, y)∥2

vector (∆h(x, y,1), . . . ,∆h(x, y, y − 1),∆h(x, y, y +
1), . . . ,∆h(x, y, c)), and h(x, y) the (c − 1)-dimensional
vector (h(x,1), . . . , h(x, y − 1), h(x, y + 1), . . . , h(x, c)).
As in binary classification, the loss functions in Table 1 ad-
mit an additive smooth adversarial loss term complement-
ing the non-adversarial loss term.

A family of common auxiliary functions Ψρ generalizing
the ρ-margin loss Φρ(t) = min{max{0,1 − t

ρ
},1} (Mohri

et al., 2018) is defined by the following:

Ψρ(t) =
⎧⎪⎪⎨⎪⎪⎩

Φρ(t), t < 0 or t > ρ
fµ(t), t ∈ [0, ρ].

Here, fµ is a non-increasing and µ-Lipschitz function on
[0, ρ] with fµ(0) = 1 and fµ(ρ) = 0. Thus, by definition
Ψρ is continuous, non-increasing and µ-Lipschitz. Further-
more, Ψρ coincides with the ρ-margin loss Φρ when fµ is
the 1

ρ
-Lipschitz function t↦ − t

ρ
+1. In the next section, we

will show that adversarial sum losses using Ψρ as auxiliary
functions benefit from strong H-consistency guarantees. It
will further provide similar guarantees for smooth adver-
sarial losses when using as auxiliary functions any convex
and smooth upper bounds of Ψρ.

4 H-CONSISTENCY GUARANTEES OF
SMOOTH ADVERSARIAL LOSSES

In this section, we will show that smooth adversarial
losses with general auxiliary functions benefit from H-
consistency guarantees. We will focus on the family of sum
losses, since max losses are not differentiable and since
constrained losses impose a restriction that is not compati-
ble with the standard use of the softmax function with neu-
ral network hypotheses, which make the optimization usu-
ally more difficult for those losses. Let us emphasize, how-
ever, that our results including the theoretical analysis of
sum losses can be extended to the study of other families,
in particular the constrained loss family.

Given a hypothesis set H, an H-consistency bound for a
surrogate loss `1 of a target loss function `2 is an inequality
of the form

∀h ∈H, R`2(h) −R∗
`2,H ≤ f(R`1(h) −R∗

`1,H
), (4)

where f ∶R+ → R+ is a non-increasing function (Awasthi
et al., 2022a). Such a bound therefore relates the minimiza-

tion of the estimation error for the surrogate loss `1 to that
of the target loss `2 in a quantitative way.

Such guarantees are stronger than the H-consistency prop-
erty discussed in (Long and Servedio, 2013; Zhang and
Agarwal, 2020; Awasthi et al., 2021a,b), which only re-
quires that, asymptotically, the minimization of the surro-
gate loss estimation error results in that of the target esti-
mation loss:

lim
n→+∞

R`1(hn)−R∗
`1,H = 0⇒ lim

n→+∞
R`2(hn)−R∗

`2,H = 0 (5)

for all probability distributions and sequences of
{hn}n∈N ⊂ H. When H is the family of all measur-
able functions Hall, this coincides with the standard
Bayes-consistency. Since they are not just asymptotic
bounds, H-consistency bounds are stronger than Bayes-
consistency, H-calibration or H-consistency, and more
informative than excess error bounds derived for H being
the family of all measurable functions (Zhang, 2004;
Bartlett et al., 2006).

To present our bounds, we first need to introduce some con-
cepts and definitions. Given a distribution D over X × Y

with conditional probability p(x, y) = D(Y = y ∣X = x),
the conditional `-risk and the minimal conditional `-risk of
a loss function ` are defined as follows:

C`(h,x) = ∑
y∈Y

p(x, y)`(h,x, y) C∗`,H(x) = inf
h∈H

C`(h,x).

These correspond to the error or best-in-class error, con-
ditioned on a specific point x. For convenience, we also
define the conditional regret ∆C`,H(h,x) = C`(h,x) −
C∗`,H(x) and the conditional ε-regret [∆C`,H(h,x)]ε,
where we use the notation [t]ε = t1t>ε.
An important quantity that appears in our bounds is
the minimizability gap, defined by M`,H = R∗

`,H −
EX[C∗`,H(x)]. By the super-additivity of the infimum, the
minimizability gap is always non-negative. Its value de-
pends only on the hypothesis set H and the loss function
`. As an example, for multi-class 0/1 loss functions, M`,H

is zero for any distribution D and the hypothesis set of all
measurable functions.

We will say that a hypothesis set H is symmetric,
when there exists a family F of functions f mapping
from X to R such that {[h(x,1), . . . , h(x, c)] ∶ h ∈H} =
{[f1(x), . . . , fc(x)] ∶ f1, . . . , fc ∈ F} and ∣{f(x)∶ f ∈
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F}∣ ≥ 2 for any x ∈ X. Note that common hypothe-
sis sets, such as the family of all measurable functions
Hall = {(x, y) ↦ hy(x) ∣ hy ∶ X → R is measurable} and
that of multi-layer neural networks, HNN = {(x, y) ↦ uy ⋅
ρn(Wy,n(⋯ρ2(Wy,2ρ1(Wy,1x + by,1) + by,2)⋯) + by,n) ∣
∥uy∥1 ≤ Λ, ∥Wy,j∥ ≤W, ∥by,j∥1 ≤ B, j ∈ [n]}, where ρj is
an activation function and Λ,W,B are positive constants,
are all symmetric.

We say that a hypothesis set H is locally ρ-consistent if for
any x ∈ X, there exists a hypothesis h ∈ H inducing the
same ordering of the labels for any x′ ∈ {x′∶ ∥x − x′∥ ≤ γ}
and such that infx′∶∥x−x′∥≤γ ∣h(x′, i) − h(x′, j)∣ ≥ ρ > 0 for
any i ≠ j ∈ Y and supx′∶∥x−x′∥≤γ ∣h(x′, y)∣ < ∞ for any
y ∈ Y. The locally ρ-consistency condition only requires
the existence of one such hypothesis given a point x ∈ X

and thus is very general. Indeed, the family of all mea-
surable functions, that of linear models and that of multi-
layer neural networks commonly used in practice all verify
the condition for a suitable choice of ρ. For example, for
HNN, we can consider those hypotheses such thatWy,j = 0
for all y ∈ Y and j ∈ [n], which induce the same ordering of
the labels for any x. Then, it suffices to find one such hy-
pothesis such that ∣ui ⋅ ρn(bi,n) − uj ⋅ ρn(bj,n)∣ ≥ ρ for any
i ≠ j ∈ Y, which can be easily verified with suitable choices
of ρ, uy and by,n for y ∈ Y subject to the norm constraints.

For convenience, we denote by σ[h] the softmax output of
a hypothesis h, defined as σ[h](x, y) = eh(x,y)

∑y′∈Y eh(x,y
′
)
. For

any hypothesis set H, we denote by Hsoftmax the hypothe-
sis set that consists of all the softmax output of hypotheses
in H, defined as Hsoftmax = {σ[h] ∣ h ∈H}. Note that if a
hypothesis set H is symmetric, then Hsoftmax is also sym-
metric. Moreover, if H is locally ρ-consistent for some
ρ > 0, then there also exists ρ′ > 0 such that Hsoftmax is
locally ρ′-consistent. Indeed, for any x ∈ X, σ[h] and h
have the same ordering of labels. Let h ∈H be the hypoth-
esis that verifies the locally ρ-consistent condition and take
ρ′ = ρ

∑y∈Y e
sup

x′ ∶∥x−x′∥≤γ
∣h(x′,y)∣

> 0. Then, for any i ≠ j ∈ Y,

the following inequalities hold:

inf
x′∶∥x−x′∥≤γ

∣σ[h](x′, i) − σ[h](x′, j)∣

≥
infx′∶∥x−x′∥≤γ ∣h(x′, i) − h(x′, j)∣
∑y∈Y esupx′ ∶∥x−x′∥≤γ ∣h(x′,y)∣

≥ ρ′.

Thus, since the hypothesis sets commonly used in practice,
e.g. Hall and HNN, are symmetric and locally ρ-consistent
for some ρ > 0, their counterparts with the softmax oper-
ator, e.g. Hsoftmax

all and Hsoftmax
NN , are also symmetric and

locally ρ-consistent for some ρ > 0.

To obtain guarantees for our smooth adversarial loss,
we first give a multi-class adversarial H-consistency
bound for the adversarial sum loss Ψ̃sum

ρ (h,x, y) =
supx′∶∥x−x′∥≤γ Ψsum

ρ (h,x′, y) with symmetric and lo-

cally ρ-consistent hypothesis sets. Our multi-class H-
consistency bound is new and more significant than previ-
ous results given in the special case of binary classification
(Awasthi et al., 2022a).

Theorem 1 (H-consistency bound of Ψ̃sum
ρ ). Assume that

H is symmetric and locally ρ-consistent. Then, for any hy-
pothesis h ∈ H and any distribution D, the following in-
equality holds:

R`γ (h) −R∗
`γ ,H

≤ RΨ̃sum
ρ

(h) −R∗
Ψ̃sum
ρ ,H

+MΨ̃sum
ρ ,H −M`γ ,H. (6)

The proof is presented in Appendix B. The difficulty in the
multi-class setting is that, because there are multiple scores,
the conditional regret cannot be characterized explicitly,
as in the binary classification, by using a tool such as H-
estimation error transformation in (Awasthi et al., 2022a).
Instead, we use novel proof techniques that avoid directly
characterizing the conditional regret. We upper bound the
minimal conditional Ψ̃sum

ρ -risk by carefully choosing a hy-
pothesis in the class that shares the same ordering of the
labels with the conditional probability. Then, we lower
bound its conditional regret by applying the rearrangement
inequality regarding the conditional probabilities.

As mentioned earlier, the condition of Theorem 1 is verified
by a broad range of hypothesis sets commonly used in prac-
tice including the family of all measurable functions, that
of linear models and that of neural networks with or with-
out softmax operator for a suitable choice of ρ. Note that
the values of ρ verifying the condition depend on the hy-
pothesis set, e.g. ρ depends on B and Λ for HNN as shown
in the previous example. Furthermore, our bound holds for
a broad class of auxiliary functions Ψρ, which generalizes
the results of Awasthi et al. (2022b) on the ρ-margin loss
for adversarial robustness.

The locally ρ-consistency condition is easier to verify for a
smaller ρ. One the other hand, Ψρ with a smaller ρ will be
closer to the 0/1 loss and thus typically harder to optimize.
Therefore, the choice of the most suitable value of ρ is sub-
ject to a trade-off. In practice, the hyper-parameter ρ can
be selected via cross-validation.

Assume that Ψρ is µ-Lipschitz in Theorem 1. Then, using
the inequality Φsum

smooth ≥ Ψ̃sum
ρ which holds for Φ ≥ Ψρ

and ν ≥ µ, we obtain the following guarantee for our pro-
posed smooth adversarial loss under the same condition on
hypothesis set H.

Corollary 2 (Guarantees for smooth adversarial sum
losses). Assume that H is symmetric and locally ρ-
consistent, and Ψρ is µ-Lipschitz. Then, for any auxiliary
function Φ ≥ Ψρ and hyper-parameter ν ≥ µ, any hypothe-
sis h ∈ H and any distribution D, the following inequality
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holds:

R`γ (h) −R∗
`γ ,H

≤ RΦsum
smooth

(h) −R∗
Ψ̃sum
ρ ,H

+MΨ̃sum
ρ ,H −M`γ ,H. (7)

This guarantee is based on the H-consistency bound of the
adversarial sum loss. Corollary 2 theoretically motivates
our PSAL algorithm presented in Section 5, which is based
on minimization of surrogate smooth adversarial loss error.

In practice, the minimizability gaps appearing in Theo-
rem 1 and Corollary 2 are equal to zero, in particular, when
the learning problem is realizable along with a natural con-
dition on the surrogate loss (Awasthi et al., 2021a). Thus,
Theorem 1 guarantees H-consistency for all these common
cases since the inequality can then be rewritten as

R`γ (h) −R∗
`γ ,H ≤ RΨ̃sum

ρ
(h) −R∗

Ψ̃sum
ρ ,H

,

which shows that minimizing the surrogate estimation error
minimizes the adversarial loss estimation error. Corollary 2
implies a similar guarantee for smooth adversarial losses.

Definition 3 (realizability). A learning problem in the
adversarial scenario is realizable for a hypothesis H if
there exists a best-in-class hypothesis h∗ ∈ H such that
R`γ ,H(h∗) = R∗

`γ ,H
= 0.

Under the realizability assumption, we have M`γ ,H ≤
R∗
`γ ,H

= 0. Note that, as shown in (Awasthi et al., 2021a),
H-consistency for all distributions should not be antici-
pated in the adversarial scenario. Even for linear models,
they proved that there are no continuous surrogate losses
that can be H-consistent for all distributions. The real-
izability assumption can be verified empirically for real
datasets and neural networks used in practice: it is not hard
to reach 100% adversarial accuracy when training on the
union of the training and test datasets. In contrast, TRADES
does not benefit from H-consistency guarantees even in the
realizable case, as shown in Section 6.

5 ALGORITHM

In this section, we will present our PSAL algorithm, which
benefits from strong guarantees, as shown in the previous
sections. Given an auxiliary function Φ and a constant ν ≥
0, we define the corresponding objective function FΦ as
follows:

FΦ(h) = 1

m

m

∑
i=1

[ ∑
y′≠yi

Φ(∆h(xi, yi, y′))

+ ν sup
x′∶∥xi−x′∥≤γ

∥∆h(x′, yi) −∆h(xi, yi)∥2
], (8)

where m is the sample size. Thus, for any h ∈ H, the
objective FΦ(h) can be expressed as follows in terms of

the smooth adversarial loss corresponding to the sum loss
(Table 1):

FΦ(h) = 1

m

m

∑
i=1

Φsum
smooth(h,xi, yi). (9)

The H-consistency guarantee of Corollary 2 suggests mini-
mizing 1

m ∑
m
i=1 Φsum

smooth(h,xi, yi) for some auxiliary func-
tion Φ ≥ Ψρ with Lipschitz constant µ, and hyper-
parameter ν ≥ µ plus a regularization term R(h), as sug-
gested by standard generalization bounds. This gives rise
to the following minimization problem:

min
h∈H

FΦ(h) + τR(h), (10)

for some regularization parameter τ > 0, auxiliary func-
tion Φ ≥ Ψρ with Lipschitz constant µ, hyper-parameters
ρ > 0 and ν ≥ µ. One natural choice of Ψρ is the ρ-
margin loss Φρ, which is 1

ρ
-Lipschitz, and natural con-

vex and differentiable upper bounds for Φρ are for exam-
ple, the ρ-logistic loss used in logistic regression, defined
by Φρ−log(t) = log2(1 + e− tρ ) and the ρ-exponential loss
used in AdaBoost (Freund and Schapire, 1997), defined by
Φρ−exp(t) = e−

t
ρ , which are adopted in our experiments in

Section 7. One can also use alternative auxiliary functions.
The algorithm defined by (10), which we will call PSAL
(Principled Smooth Adversarial Loss algorithm), benefits
from the H-consistency guarantee with respect to the ad-
versarial 0/1 loss.

Note that when Φ is a convex function of h, by the standard
Lagrange method, (10) can be equivalently and more effi-
ciently solved with the replacement of the `2 norm by its
square in (8), since the regularization term can be moved
to a constraint and then be squared. In Section 7, we em-
ployed the squared `2 norm for the experiments.

For the inner maximization problem appearing in FΦ(h),
we approximately solve it by Projected Gradient-Descent
(PGD) method, which is widely used in adversarial training
(Madry et al., 2017; Zhang et al., 2019). For the regular-
ization term R(h), we adopt the L2 regularization, which
is often referred to as weight decay.

6 ANALYSIS OF TRADES

In this section, we will show that there exists a learning
problem in the realizable case such that the surrogate loss
TRADES does not benefit from H-consistency guarantees,
while our smooth adversarial loss indeed does. We will also
see that even in the non-realizable case, our smooth adver-
sarial loss can be H-consistent while TRADES remains not.

Let X = Bd2(1)∶= {x ∈ Rd ∣ ∥x∥2 ≤ 1}, where ∥ ⋅ ∥2 is
the `2 norm. We consider an adversarial binary classi-
fication problem with a family of linear models Hlin =
{x→ w ⋅ x ∣ ∥w∥2 = 1} under `2 perturbations. In this case,
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the adversarial 0/1 loss `γ(h,x, y) can be expressed as:

sup
x′∶∥x−x′∥2≤γ

1yh(x′)≤0 = 1infx′ ∶∥x−x′∥2≤γ yw⋅x
′≤0 = 1yw⋅x≤γ . (11)

In binary classification, the TRADES loss is expressed as
follows (Zhang et al., 2019, eq. (3)):

̃̀
trades(h,x, y)
= Φlog(yh(x)) + sup

x′∶∥x−x′∥≤γ
Φlog(h(x)h(x′)/λ), (12)

where Φlog = log(1 + e−t) is the logistic loss, the binary
counterpart of the cross-entropy loss used in the multi-class
formulation (3). Note that in (3), the softmax operator is
included in the hypothesis set, while in (12), the softmax
operator is inherently included in the logistic loss function.
Therefore, the composition of the binary formulation with
H corresponds to that of the multi-class formulation with
Hsoftmax. Also, note that in their multi-class formulation
(3) of TRADES, λ is outside the loss function while in their
binary formulation (12), λ is inside the loss function. This
is in fact one of the issues with the TRADES analysis that we
will mention below: the authors only provide a theoretical
analysis for the binary case, while the multi-class formula-
tion is only given a heuristic extension. For comparison, the
guarantees for our smooth adversarial loss (Corollary 2) ap-
ply to the multi-class setting, which is based on a new and
more informative multi-class H-consistency bound (The-
orem 1). Nevertheless, the negative results for TRADES,
Theorem 4 and 5, hold whether λ is inside or outside the
loss function in (12), with basically the same proof.

By the definition in Section 3.2, using as an auxiliary func-
tion the ρ-margin loss Φρ which is 1

ρ
-Lipschitz, our smooth

adversarial loss in binary classification is expressed as:

Φsmooth = Φρ(yh(x))+
1

ρ
[yh(x) − inf

x′∶∥x−x′∥≤γ
yh(x′)]. (13)

The next result shows that there exists a realizable learn-
ing problem for which ̃̀

trades does not admit the H-
consistency guarantee while Φsmooth does.

Theorem 4 (Negative results for TRADES: realizable
case). There exists a learning problem that is realizable
for Hlin, such that ̃̀

trades with any λ > 0 is not Hlin-
consistent with respect to `γ , while there exists ρ > 0
such that Φsmooth with the auxiliary function Φρ is Hlin-
consistent with respect to `γ .

The proof is presented in Appendix C. Figure 1 gives an
illustration of that realizable example, where the best-in-
class hypothesis for `γ coincides with that for Φsmooth and
achieves zero generalization error for `γ , but deviates far
from that for ̃̀

trades.

Theorem 4 rules out the H-consistency for TRADES in the
realizable case, let alone the non-realizable case where it is

-1 0 1
-1

-0.5

0

0.5

1

Figure 1: Left: example in the realizable case used in The-
orem 4. Right: example in the non-realizable case used in
Theorem 5. The best-in-class hypothesis for `γ coincides
with that for Φsmooth, but not for ̃̀

trades in both cases.

harder to achieve such guarantees. In contrast, our smooth
adversarial loss can benefit from H-consistency guarantees
even in some non-realizable case, as shown in the below.

Theorem 5 (Negative results for TRADES: non-realiz-
able case). There exists a learning problem that is non-
realizable for Hlin, such that Φsmooth with the auxiliary
function Φρ and a suitable ρ > 0 is Hlin-consistent with
respect to `γ , while ̃̀

trades with any λ > 0 is not Hlin-
consistent with respect to `γ .

The proof is presented in Appendix D. Figure 1 also gives
an illustration of that non-realizable example. Theorem 4
and 5 suggest that TRADES does not admit consistency
guarantees for the adversarial 0/1 loss while our smooth
adversarial loss does. Zhang et al. (2019) showed that for
any surrogate loss that is Bayes consistent with respect to
the standard binary 0/1 loss, the difference of the robust
accuracy and the natural accuracy of the classifier obtained
by optimizing the surrogate can be upper bounded by a
term that captures the vulnerability of the surrogate near
the boundary. However, this does not provide any theo-
retical guarantees with respect to the generalization error
of the adversarial 0/1 loss itself. Moreover, their guaran-
tees (Zhang et al., 2019, Theorem 3.1) only apply to the
binary case and the hypothesis set of all measurable func-
tions. In contrast, our guarantee is based on a multi-class
H-consistency bound in the adversarial setting, which is
directly relevant to the adversarial 0/1 loss, applies to the
multi-class setting, and holds for general hypothesis sets.
Additionally, while TRADES is based on the trade-off be-
tween clean accuracy and robust accuracy, the experiments
in Section 7 show empirically that our smooth adversarial
losses can achieve a better performance for both robust and
clean accuracy, with an even more significant improvement
of the clean accuracy (Table 2).
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Table 2: Clean accuracy and robust accuracy under PGD40
margin and AutoAttack, with reported mean and standard deviation

over three runs in each setting for both PSAL and the state-of-the-art TRADES in (Gowal et al., 2020). Results of other well-
known adversarial defense models are included for completeness. PSAL consistently outperforms TRADES for both robust
and clean accuracy, with an even more significant improvement of the clean accuracy in all the cases.

Method Dataset Norm Maximum magnitude Clean PGD40
margin AutoAttack

Gowal et al. (2020) (WRN-70-16)

CIFAR-10 `∞ γ = 8/255

85.34 ± 0.04% 57.90 ± 0.13% 57.05 ± 0.17%
PSAL (WRN-70-16) 86.63 ± 0.24% 59.01 ± 0.13% 57.46 ± 0.12%
Gowal et al. (2020) (WRN-34-20) 85.21 ± 0.16% 57.54 ± 0.18% 56.70 ± 0.14%
PSAL (WRN-34-20) 86.71 ± 0.08% 58.68 ± 0.16% 57.13 ± 0.18%
Gowal et al. (2020) (WRN-28-10) 84.33 ± 0.18% 55.92 ± 0.20% 55.19 ± 0.23%
PSAL (WRN-28-10) 86.07 ± 0.14% 57.12 ± 0.19% 55.66 ± 0.16%

Pang et al. (2020) (WRN-34-20) 86.43% — 54.39%
Rice et al. (2020) (WRN-34-20) 85.34% — 53.42%
Wu et al. (2020) (WRN-34-10) 85.36% — 56.17%
Qin et al. (2019) (WRN-40-8) 86.28% — 52.84%
Xu et al. (2022) (ResNet-32) 80.43% — 44.15%

Gowal et al. (2020) (WRN-70-16) CIFAR-100 `∞ γ = 8/255
60.56 ± 0.31% 31.39 ± 0.19% 29.93 ± 0.14%

PSAL (WRN-70-16) 62.25 ± 0.26% 34.11 ± 0.17% 30.63 ± 0.10%

Gowal et al. (2020) (WRN-34-20) SVHN `∞ γ = 8/255
93.03 ± 0.13% 61.01 ± 0.16% 57.84 ± 0.19%

PSAL (WRN-34-20) 94.31 ± 0.17% 63.12 ± 0.14% 58.08 ± 0.15%

7 EXPERIMENTS

In this section, we present experimental results on CIFAR-
10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009)
and SVHN (Netzer et al., 2011) datasets to demonstrate the
effectiveness of our algorithm PSAL.

Experimental Settings We follow the settings of Gowal
et al. (2020) and apply WideResNet (WRN) (Zagoruyko
and Komodakis, 2016) with SiLU activations (Hendrycks
and Gimpel, 2016; He et al., 2016), where WRN-n-k de-
notes a residual network that has a total number of con-
volutional layers n and a widening factor k (for example,
network with 76 layers and k = 16 times wider than origi-
nal would be denoted as WRN-70-16). In training, we use
Stochastic Gradient Descent (SGD) with Nesterov momen-
tum (Nesterov, 1983) with a batch size of 1,024 and weight
decay 5 × 10−4. The training runs for 800 epochs with the
cosine decay learning rate schedule (Loshchilov and Hut-
ter, 2016), using an initial learning rate of 0.4 for CIFAR-
10 and SVHN, and an initial learning rate of 0.1 for CIFAR-
100 without restarts. For CIFAR-10 and CIFAR-100, the
commonly used data augmentations, 32× 32 random crops
after padding by 4 pixels and random horizontal flips, are
applied. The training attacks are generated by a 10-step
PGD adversary as mentioned in Section 5, with random
starts. We adopt model weight averaging (Izmailov et al.,
2018) with a decay rate of 0.9975. For our smooth adver-
sarial losses, we set both ρ and ν to 1.0 for CIFAR-10 and
SVHN, whereas we set ρ = 0.3 and ν = 6.0 for CIFAR-100.
For TRADES, we use the same setup as Gowal et al. (2020).

Evaluation We mitigate robust overfitting with early
stopping (Rice et al., 2020). Throughout training, we mea-
sure the robust accuracy on a held-out validation set of
1,024 samples using 40-step PGD on the margin loss, de-
noted by PGD40

margin, to select the best check-point. We
report the mean and standard deviation over three runs in
each setting for both PSAL and the state-of-the-art TRADES
in (Gowal et al., 2020). We evaluate the robustness of the
trained models via AutoAttack (Croce and Hein, 2020b),1

a widely recognized benchmark with an ensemble of three
white-box attacks, that are Auto-PGD (APGD) on the
cross-entropy, APGD on the DLR-loss and FAB (Croce
and Hein, 2020a), and one black-box attack, that is the
Square Attack (Andriushchenko et al., 2020). We also re-
port the clean accuracy and the robust accuracy measured
by PGD40

margin on the full test sets. Here, the clean accuracy
refers to the standard classification accuracy, as opposed to
the adversarial accuracy. For SVHN, the accuracy is mea-
sured on 5,000 points randomly chosen from the test set.
The results for TRADES reproduced by us match those re-
ported in (Gowal et al., 2020).

Comparison with TRADES Gowal et al. (2020) achieved
state-of-the-art results by adopting TRADES with a com-
bination of early stopping, model weight averaging and a
well-tuned hyperparameter configuration. On CIFAR-10,
CIFAR-100 and SVHN, we consider `∞-norm bounded
perturbations of size γ = 8/255. Table 2 shows that
PSAL consistently outperforms TRADES for both robust and
clean accuracy, with an even more significant improvement
of the clean accuracy. Here, PSAL is implemented with

1https://github.com/fra31/auto-attack.

https://github.com/fra31/auto-attack


Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong

Φ = Φρ−log for CIFAR-10 and SVHN, and Φ = Φρ−exp for
CIFAR-100. For a fair comparison, the same neural net-
work architecture, WRN-70-16, WRN-34-20 or WRN-28-
10, is adopted for both methods.

In Table 2, we include results of some other well-known ad-
versarial defense models for completeness, among which
Pang et al. (2020) studied a series of tricks for adver-
sarial training, Rice et al. (2020) advocated the use of
early stopping in adversarially robust deep learning, Wu
et al. (2020) proposed Adversarial Weight Perturbation,
Qin et al. (2019) introduced a regularizer to avoid gradient
obfuscation (Athalye et al., 2018) through local lineariza-
tion, and Xu et al. (2022) constructed a special type of
dense orthogonal weights. Our algorithm PSAL with WRN-
34-20 surpasses all of them.

It is worth pointing out that we are in the setting where
no additional generated data or extra data is used. Let us
also emphasize that, while improving the robust accuracy,
we further achieve a very significant improvement in clean
accuracy as compared to (Gowal et al., 2020).

8 CONCLUSION

We presented a series of theoretical, algorithmic, and em-
pirical results for adversarial robustness. Our theoretical
analysis, including our proofs of multi-class H-consistency
for sum losses, provides new tools for the analysis of other
similar loss functions in adversarial multi-class classifica-
tion. Our PSAL algorithms provide effective solutions for
adversarial robustness in multiple tasks. Our extensive em-
pirical analysis demonstrates their effectiveness of these al-
gorithms and establishes the new state-of-the-art for multi-
ple problems. The family of smooth losses we introduced
can potentially be useful for the design of similar algo-
rithms in other scenarios beyond adversarial robustness for
classification. We hope that these results will provide new
tools for the study of adversarial robustness, which remains
a challenging question, in spite of the improvements re-
ported.
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A DERIVATION OF SMOOTH ADVERSARIAL LOSSES

A.1 Max Loss

The adversarial max loss is defined by

Φ̃max(h,x, y) = sup
x′∶∥x−x′∥≤γ

Φmax(h,x′, y) = sup
x′∶∥x−x′∥≤γ

Φ(ρh(x′, y)).

If Φ is non-increasing and µ-Lipschitz, then the following decomposition and inequality hold for any ν ≥ µ:

Φ̃max(h,x, y) = Φmax(h,x, y) + Φ̃max(h,x, y) −Φmax(h,x, y)
= Φmax(h,x, y) + sup

x′∶∥x−x′∥≤γ
Φ(ρh(x′, y)) −Φ(ρh(x, y))

= Φmax(h,x, y) +Φ( inf
x′∶∥x−x′∥≤γ

ρh(x′, y)) −Φ(ρh(x, y)) (Φ is non-increasing)

≤ Φmax(h,x, y) + ν∣ρh(x, y) − inf
x′∶∥x−x′∥≤γ

ρh(x′, y)∣ (Φ µ-Lipschitz and ν ≥ µ)

= Φmax
smooth

A.2 Sum Loss

The adversarial max loss is defined by

Φ̃sum(h,x, y) = sup
x′∶∥x−x′∥≤γ

Φsum(h,x′, y) = sup
x′∶∥x−x′∥≤γ

∑
y′≠y

Φ(h(x′, y) − h(x′, y′)).

Let ∆h(x, y, y′) = h(x, y) − h(x, y′) and ∆h(x, y) denote the c − 1 dimensional vector (∆h(x, y,1), . . . ,∆h(x, y, y −
1),∆h(x, y, y + 1), . . . ,∆h(x, y, c)). If Φ is non-increasing and µ-Lipschitz, then the following decomposition and in-
equality hold for any ν ≥

√
c − 1µ:

Φ̃sum(h,x, y) = Φsum(h,x, y) + Φ̃sum(h,x, y) −Φsum(h,x, y)
= Φsum(h,x, y) + sup

x′∶∥x−x′∥≤γ
∑
y′≠y

Φ(∆h(x′, y, y′)) − ∑
y′≠y

Φ(∆h(x, y, y′))

= Φsum(h,x, y) + sup
x′∶∥x−x′∥≤γ

∑
y′≠y

(Φ(∆h(x′, y, y′)) −Φ(∆h(x, y, y′)))

≤ Φsum(h,x, y) + µ sup
x′∶∥x−x′∥≤γ

∥∆h(x′, y) −∆h(x, y)∥1
(Φ µ-Lipschitz)

≤ Φsum(h,x, y) + µ
√
c − 1 sup

x′∶∥x−x′∥≤γ
∥∆h(x′, y) −∆h(x, y)∥2

(Cauchy-Schwarz ineq.)

≤ Φsum(h,x, y) + ν sup
x′∶∥x−x′∥≤γ

∥∆h(x′, y) −∆h(x, y)∥2
(ν ≥ µ

√
c − 1)

= Φsum
smooth.

A.3 Constrained Loss

The adversarial constrained loss Φ̃cstnd is defined by

Φ̃cstnd(h,x, y) = sup
x′∶∥x−x′∥≤γ

Φcstnd(h,x′, y) = sup
x′∶∥x−x′∥≤γ

∑
y′≠y

Φ(−h(x′, y′)).

with the constraint that ∑y∈Y h(x, y) = 0. Let h(x, y) denote the (c − 1)-dimensional vector (h(x,1), . . . , h(x, y −
1), h(x, y + 1), . . . , h(x, c)). If Φ is non-increasing and µ-Lipschitz, then, the following decomposition and inequality
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hold for any ν ≥
√
c − 1µ:

Φ̃cstnd(h,x, y) = Φcstnd(h,x, y) + Φ̃cstnd(h,x, y) −Φcstnd(h,x, y)
= Φcstnd(h,x, y) + sup

x′∶∥x−x′∥≤γ
∑
y′≠y

Φ(−h(x′, y′)) − ∑
y′≠y

Φ(−h(x, y′))

= Φcstnd(h,x, y) + sup
x′∶∥x−x′∥≤γ

∑
y′≠y

(Φ(−h(x′, y′)) −Φ(−h(x, y′)))

≤ Φcstnd(h,x, y) + µ sup
x′∶∥x−x′∥≤γ

∥h(x′, y) − h(x, y)∥
1

(Φ µ-Lipschitz)

≤ Φcstnd(h,x, y) + µ
√
c − 1 sup

x′∶∥x−x′∥≤γ
∥h(x′, y) − h(x, y)∥

2
(Cauchy-Schwarz ineq.)

≤ Φcstnd(h,x, y) + ν sup
x′∶∥x−x′∥≤γ

∥h(x′, y) − h(x, y)∥
2

(ν ≥ µ
√
c − 1)

= Φcstnd
smooth.

B PROOF OF THEOREM 1

Theorem 1 (H-consistency bound of Ψ̃sum
ρ ). Assume that H is symmetric and locally ρ-consistent. Then, for any hypoth-

esis h ∈H and any distribution D, the following inequality holds:

R`γ (h) −R∗
`γ ,H ≤ RΨ̃sum

ρ
(h) −R∗

Ψ̃sum
ρ ,H

+MΨ̃sum
ρ ,H −M`γ ,H. (6)

Proof. Let Hγ(x) = {h ∈H ∶ infx′∶∥x−x′∥≤γ ρh(x′,h(x)) > 0} and p(x) = (p(x,1), . . . , p(x, c)). For any x ∈ X and

h ∈ H, we define h(x,{1}hx), h(x,{2}hx), . . . , h(x,{c}
h
x) by sorting the scores {h(x, y) ∶ y ∈ Y} in increasing order, and

p[1](x), p[2](x), . . . , p[c](x) by sorting the probabilities {p(x, y) ∶ y ∈ Y} in increasing order. Note {c}hx = h(x). Since H

is symmetric and locally ρ-consistent, for any x ∈ X, there exists a hypothesis h∗ ∈H such that

inf
x′∶∥x−x′∥≤γ

∣h∗(x′, i) − h∗(x′, j)∣ ≥ ρ,∀i ≠ j ∈ Y

p(x,{k}h
∗

x′ ) = p[k](x),∀x
′ ∈ {x′∶ ∥x − x′∥ ≤ γ},∀k ∈ Y.

Then, we have

C∗
Ψ̃sum
ρ ,H

(x)

≤ CΨ̃sum
ρ

(h∗, x)

= ∑
y∈Y

sup
x′∶∥x−x′∥≤γ

p(x, y) ∑
y′≠y

Ψρ(h∗(x′, y) − h∗(x′, y′))

=
c

∑
i=1

sup
x′∶∥x−x′∥≤γ

p(x,{i}h
∗

x′ )
⎡⎢⎢⎢⎣

i−1

∑
j=1

Ψρ(h∗(x′,{i}h
∗

x′ ) − h
∗(x′,{j}h

∗

x′ )) +
c

∑
j=i+1

Ψρ(h∗(x′,{i}h
∗

x′ ) − h
∗(x′,{j}h

∗

x′ ))
⎤⎥⎥⎥⎦

=
c

∑
i=1

sup
x′∶∥x−x′∥≤γ

p(x,{i}h
∗

x′ )
⎡⎢⎢⎢⎣

i−1

∑
j=1

Ψρ(h∗(x′,{i}h
∗

x′ ) − h
∗(x′,{j}h

∗

x′ )) + c − i
⎤⎥⎥⎥⎦

(Ψρ(t) = 1, ∀t ≤ 0)

=
c

∑
i=1

sup
x′∶∥x−x′∥≤γ

p(x,{i}h
∗

x′ )(c − i) (infx′∶∥x−x′∥≤γ ∣h∗(x′, i) − h∗(x′, j)∣ ≥ ρ for any i ≠ j and Ψρ(t) = 0, ∀t ≥ ρ)

=
c

∑
i=1

p[i](x)(c − i) (p(x,{k}h
∗

x′ ) = p[k](x),∀x′ ∈ {x′∶ ∥x − x′∥ ≤ γ},∀k ∈ Y)

= c −
c

∑
i=1

i p[i](x) (∑ci=1 p[i](x) = 1)
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Note Hγ(x) ≠ ∅ under the assumption. Then, use the derivation above, we obtain

∆CΨ̃sum
ρ ,H(h,x)

=
c

∑
i=1

sup
x′∶∥x−x′∥≤γ

p(x,{i}hx′)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Ψρ(h(x′,{i}hx′) − h(x
′,{j}hx′)) + c − i

⎤⎥⎥⎥⎦
− (c −

c

∑
i=1

i p[i](x))

≥ p(x,h(x))1h/∈Hγ(x) +
c

∑
i=1

sup
x′∶∥x−x′∥≤γ

p(x,{i}hx′)(c − i) − (c −
c

∑
i=1

i p[i](x)) (Ψρ is non-negative)

≥ p(x,h(x))1h/∈Hγ(x) +
c

∑
i=1

i p[i](x) −
c

∑
i=1

i p(x,{i}hx) (supx′∶∥x−x′∥≤γ p(x,{i}
h
x′) ≥ p(x,{i}

h
x)

= p(x,h(x))1h/∈Hγ(x) +max
y∈Y

p(x, y) − p(x,h(x)) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 1
c − 1
c − 2
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p[c](x)
p[c−1](x)
p[c−2](x)

⋮
p[1](x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 1
c − 1
c − 2
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(x,{c}hx)
p(x,{c − 1}hx)
p(x,{c − 2}hx)

⋮
p(x,{1}hx)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(p[c](x) = maxy∈Y p(x, y) and {c}hx = h(x))

≥ p(x,h(x))1h/∈Hγ(x) +max
y∈Y

p(x, y) − p(x,h(x))

( rearrangement inequality for c − 1 ≥ c − 1 ≥ c − 2 ≥ ⋯ ≥ 1 and p[c](x) ≥ ⋯ ≥ p[1](x))

= max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x)

for any h ∈H. Since H is symmetric and Hγ(x) ≠ ∅, we have

∆C`γ ,H(h,x) = C`γ (h,x) − C∗`γ ,H(x)
= ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥≤γ

1ρh(x′,y)≤0 − inf
h∈H
∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥≤γ

1ρh(x′,y)≤0

= (1 − p(x,h(x)))1h∈Hγ(x) + 1h/∈Hγ(x) − inf
h∈H

[(1 − p(x,h(x)))1h∈Hγ(x) + 1h/∈Hγ(x)]

= (1 − p(x,h(x)))1h∈Hγ(x) + 1h/∈Hγ(x) − (1 −max
y∈Y

p(x, y)) (H is symmetric and Hγ(x) ≠ ∅)

= max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x).

Therefore, by the definition, we obtain

R`γ (h) −R∗
`γ ,H +M`γ ,H = EX[∆C`γ (h,x)]

= EX[max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x)]

≤ EX[∆CΨ̃sum
ρ ,H(h,x)]

= RΨ̃sum
ρ

(h) −R∗
Ψ̃sum
ρ ,H

+MΨ̃sum
ρ ,H,

which implies that

R`γ (h) −R∗
`γ ,H ≤ RΨ̃sum

ρ
(h) −R∗

Ψ̃sum
ρ ,H

+MΨ̃sum
ρ ,H −M`γ ,H.
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C PROOF OF THEOREM 4

Theorem 4 (Negative results for TRADES: realizable case). There exists a learning problem that is realizable for Hlin,
such that ̃̀trades with any λ > 0 is not Hlin-consistent with respect to `γ , while there exists ρ > 0 such that Φsmooth with
the auxiliary function Φρ is Hlin-consistent with respect to `γ .

Proof. We consider the following distribution. Let x = (x1, x2), x2
1 + x2

2 ≤ 1 follow the distribution concentrated on the
four points (0,−γ̂), (0, γ̂), (Iγ̂ ,−γ̂) and (−Iγ̂ , γ̂) with the marginal distribution P[x = (0,−γ̂)] = P[x = (0, γ̂)] = 1−β

2
,

P[x = (Iγ̂ ,−γ̂)] = P[x = (−Iγ̂ , γ̂)] = β
2

and the conditional distribution

p(x,+1) =
⎧⎪⎪⎨⎪⎪⎩

1, x2 < 0

0, x2 > 0
p(x,−1) = 1 − p(x,+1)

where β ∈ (0,1), γ̂ = γ + 1−γ
100

= 1+99γ
100

and Iγ̂ =
√

1 − γ̂2. Let γ = 0.1 and w = (cos t, sin t), t ∈ [−π
2
, 3π

2
). By (11), for any

h ∈Hlin, the generalization error of `γ can be expressed as

R`γ (h) = (1 − β)1−γ̂ sin t≤γ + β1Iγ̂ cos t−γ̂ sin t≤γ .

Therefore, the best-in-class hypotheses for adversarial 0/1 loss `γ are w∗
`γ ,Hlin

= (cos t∗`γ , sin t
∗
`γ
), where t∗`γ ∈

[−π
2
,−arcsin γ

γ̂
) and the best-in-class error for `γ is R∗

`γ ,Hlin
= 0.

For the linear hypothesis set Hlin, ̃̀trades can be written as

̃̀
trades(h,x, y) = Φlog(yh(x)) + sup

x′∶∥x−x′∥≤γ
Φlog(h(x)h(x′)/λ)

= Φlog(yw ⋅ x) +Φlog( inf
x′∶∥x−x′∥≤γ

(w ⋅ x)(w ⋅ x′)/λ)

= Φlog(yw ⋅ x) +Φlog((∣w ⋅ x∣2 − γ∣w ⋅ x∣)/λ).

(14)

Thus, for any h ∈Hlin, the generalization error of ̃̀
trades can be expressed as

R̃̀
trades

(h) = (1 − β)[Φlog(−γ̂ sin t) +Φlog((∣γ̂ sin t∣2 − γ∣γ̂ sin t∣)/λ)]

+ β[Φlog(Iγ̂ cos t − γ̂ sin t) +Φlog((∣Iγ̂ cos t − γ̂ sin t∣2 − γ∣Iγ̂ cos t − γ̂ sin t∣)/λ)].

Therefore, as β → 1, the best-in-class hypothesis for ̃̀
trades tends to be w∗

̃̀
trades,Hlin

= (cos t∗̃̀
trades

, sin t∗̃̀
trades

) with

t∗̃̀
trades

= −arcsin γ̂ ∉ [−π
2
,−arcsin γ

γ̂
) since γ̂2 < γ. Therefore, ̃̀trades with any λ > 0 is not Hlin-consistent with respect

to `γ .

On the other hand, for the linear hypothesis set Hlin, Φsmooth can be written as

Φsmooth = Φρ(yh(x)) +
1

ρ
(yh(x) − inf

x′∶∥x−x′∥≤γ
yh(x′))

= Φρ(yw ⋅ x) + 1

ρ
(yw ⋅ x − inf

x′∶∥x−x′∥≤γ
yw ⋅ x′)

= Φρ(yw ⋅ x) + γ
ρ
.

(15)

Then, the generalization error of Φsmooth can be expressed as

RΦsmooth
(h) = (1 − β)Φρ(−γ̂ sin t) + βΦρ(Iγ̂ cos t − γ̂ sin t) + γ

ρ
.

Let ρ = γ̂. Thus, the unique best-in-class hypothesis for Φsmooth is w∗
Φsmooth,Hlin

= (cos t∗Φsmooth
, sin t∗Φsmooth

), where

t∗Φsmooth
= −π

2
∈ [−π

2
,−arcsin γ

γ̂
). Therefore, Φsmooth with ρ = γ̂ is Hlin-consistent with respect to `γ on this distribution.
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D PROOF OF THEOREM 5

Theorem 5 (Negative results for TRADES: non-realizable case). There exists a learning problem that is non-realizable
for Hlin, such that Φsmooth with the auxiliary function Φρ and a suitable ρ > 0 is Hlin-consistent with respect to `γ , while
̃̀
trades with any λ > 0 is not Hlin-consistent with respect to `γ .

Proof. We consider the following distribution. Let x = (cos θ, sin θ), θ ∈ [0,2π) follow the uniform distribution on the
unit circle with the conditional distribution defined by

p(x,+1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
, θ ∈ [π

2
, π)

1, θ ∈ [0, π
2
) or [ 3π

2
,2π)

0, θ ∈ [π, 3π
2
)

p(x,−1) = 1 − p(x,+1).

Let γ = cosβ = 0.1, that is β = arccos(γ) = arccos(0.1) ∈ (π
4
, π

2
) and w = (cos t, sin t), t ∈ [0,2π). Note that we have

w ⋅ x = cos(θ − t). By (11), for any h ∈Hlin, the generalization error of `γ can be expressed as

R`γ (h)

= 1

2π
(∫

π

π
2

1

2
1cos(θ−t)≤cosβ +

1

2
1− cos(θ−t)≤cosβ dθ + ∫

π
2

−π2
1cos(θ−t)≤cosβ dθ + ∫

−π2

−π
1− cos(θ−t)≤cosβ dθ)

= 1

2π
(∫

π

π
2

1

2
1cos(θ−t)≤cosβ dθ + ∫

0

−π2

1

2
1cos(θ−t)≤cosβ dθ + ∫

0

−π2
1cos(θ−t)≤cosβ dθ + ∫

π
2

0
21cos(θ−t)≤cosβ dθ)

(change of variables)

= 1

2π
(∫

π

π
2

1

2
1cos(θ−t)≤cosβ dθ + ∫

0

−π2

3

2
1cos(θ−t)≤cosβ dθ + ∫

π
2

0
(1

2
+ 2 − 1

2
)1cos(θ−t)≤cosβ dθ)

= 1

2π
(∫

π

0

1

2
1cos(θ−t)≤cosβ dθ + ∫

π
2

−π2

3

2
1cos(θ−t)≤cosβ dθ)

= 1

2π
(∫

π

0

1

2
1cos(θ−t)≤cosβ dθ + ∫

π

0

3

2
1sin(θ−t)≤cosβ dθ) (change of variables)

= 1

2π
∫

π−t

−t

1

2
1cos θ≤cosβ +

3

2
1sin θ≤cosβ dθ. (change of variables)

Next, we analyze eight cases:

• When −t ∈ [−β,β − π
2
],

R`γ (h) =
1

2π
[0 × (2β − π

2
) + 1

2
× (π − β − t) + 3

2
× (π

2
− β + t) + 2 × 0]

≥ 7

8
− 3β

2π
,

where the equality is achieved when t = π
2
− β.

• When −t ∈ [β − π
2
, π

2
− β],

R`γ (h) =
1

2π
[0 × (2β − π

2
) + 1

2
× (π

2
) + 3

2
× (π

2
− β + t) + 2 × (π

2
− β − t)]

≥ 7

8
− 3β

2π
,

where the equality is achieved when t = π
2
− β.

• When −t ∈ [π
2
− β,β],

R`γ (h) =
1

2π
[0 × (β + t) + 1

2
× (π

2
) + 3

2
× 0 + 2 × (π

2
− β − t)]

≥ 9

8
− 2β

π
,

where the equality is achieved when t = β − π
2

.



Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong

• When −t ∈ [β,π − β],

R`γ (h) =
1

2π
[0 × 0 + 1

2
× (β + π

2
+ t) + 3

2
× 0 + 2 × (π

2
− β − t)]

≥ 5

8
,

where the equality is achieved when t = −β.

• When −t ∈ [π − β,β + π
2
],

R`γ (h) =
1

2π
[0 × 0 + 1

2
× (β + π

2
+ t) + 3

2
× (β − π − t) + 2 × (3π

2
− 2β)]

≥ 9

8
− β

2π
,

where the equality is achieved when t = −β − π
2

.

• When −t ∈ [β + π
2
,−β + 3π

2
],

R`γ (h) =
1

2π
[0 × 0 + 1

2
× 0 + 3

2
× (β − π − t) + 2 × (2π − β + t)]

≥ 7

8
,

where the equality is achieved when t = β − 3π
2

.

• When −t ∈ [−β + 3π
2
, β + π],

R`γ (h) =
1

2π
[0 × (−3π

2
+ β − t) + 1

2
× 0 + 3

2
× (π

2
) + 2 × (2π − β + t)]

≥ 11

8
− 2β

π
,

where the equality is achieved when t = −β − π.

• When −t ∈ [β − π,−β],

R`γ (h) =
1

2π
[0 × (−π

2
+ 2β) + 1

2
× (π − β − t) + 3

2
× (π

2
) + 2 × (−β + t)]

≥ 5

8
− β

2π
,

where the equality is achieved when t = β.

Therefore, the unique best-in-class hypothesis for adversarial 0/1 loss `γ is w∗
`γ ,Hlin

= (cos t∗`γ , sin t
∗
`γ
), where t∗`γ =

π
2
−β

and the best-in-class error for `γ is R∗
`γ ,Hlin

= 7
8
− 3β

2π
.

For the linear hypothesis set Hlin, ̃̀trades can be written as

̃̀
trades(h,x, y) = Φlog(yh(x)) + sup

x′∶∥x−x′∥≤γ
Φlog(h(x)h(x′)/λ)

= Φlog(yw ⋅ x) +Φlog( inf
x′∶∥x−x′∥≤γ

(w ⋅ x)(w ⋅ x′)/λ)

= Φlog(yw ⋅ x) +Φlog((∣w ⋅ x∣2 − γ∣w ⋅ x∣)/λ).

(16)
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Thus, for any h ∈Hlin, the generalization error of ̃̀
trades can be expressed as

R̃̀
trades

(h)

= 1

2π
(∫

π

0

1

2
Φlog(cos(θ − t)) + 3

2
Φlog(sin(θ − t))dθ + ∫

2π

0
Φlog(cos(θ − t)2 − γ∣cos(θ − t)∣/λ))dθ

= 1

2π
∫

π−t

−t

1

2
Φlog(cos θ) + 3

2
Φlog(sin θ)dθ +

1

2π
∫

2π

0
Φlog(cos(θ − t)2 − γ∣cos(θ − t)∣/λ)dθ (change of variables)

= 1

2π
∫

π−t

−t

1

2
Φlog(cos θ) + 3

2
Φlog(sin θ)dθ + constant (constant = 1

2π ∫
2π

0 Φlog(cos(θ)2 − γ∣cos(θ)∣/λ)dθ)

= Utrades(t) + constant. (Utrades(t) = 1
2π ∫

π−t
−t

1
2
Φlog(cos θ) + 3

2
Φlog(sin θ)dθ)

Since Φlog is continuous, by Leibniz Integral Rule, the best-in-class hypothesis w∗
̃̀
trades,Hlin

= (cos t∗̃̀
trades

, sin t∗̃̀
trades

) for
̃̀
trades satisfies that U′

trades(t∗̃̀
trades

) = 0, that is,

− 1

2
Φlog(cos(π − t∗̃̀

trades
)) + 1

2
Φlog(cos(−t∗̃̀

trades
)) − 3

2
Φlog(sin(π − t∗̃̀

trades
)) + 3

2
Φlog(sin(−t∗̃̀

trades
)) = 0

Ô⇒ 1

2
[Φlog(cos t∗̃̀

trades
) −Φlog(− cos t∗̃̀

trades
)] − 3

2
[Φlog(sin t∗̃̀

trades
) −Φlog(− sin t∗̃̀

trades
)] = 0

Ô⇒ t∗̃̀
trades

≠ π
2
− β = t∗`γ , where β = arccos(0.1).

Therefore, ̃̀trades with any λ > 0 is not Hlin-consistent with respect to `γ .

On the other hand, for the linear hypothesis set Hlin, Φsmooth can be written as

Φsmooth = Φρ(yh(x)) +
1

ρ
(yh(x) − inf

x′∶∥x−x′∥≤γ
yh(x′))

= Φρ(yw ⋅ x) + 1

ρ
(yw ⋅ x − inf

x′∶∥x−x′∥≤γ
yw ⋅ x′)

= Φρ(yw ⋅ x) + γ
ρ
.

(17)

Then, the generalization error of Φsmooth can be expressed as

RΦsmooth
(h) = γ

ρ
+ 1

2π
∫

π

0

1

2
Φρ(cos(θ − t)) + 3

2
Φρ(sin(θ − t))dθ

= γ
ρ
+ 1

2π
∫

π−t

−t

1

2
Φρ(cos θ) + 3

2
Φρ(sin θ)dθ (change of variables)

= γ
ρ
+Usmooth(t). (Usmooth(t) = 1

2π ∫
π−t
−t

1
2
Φρ(cos θ) + 3

2
Φρ(sin θ)dθ)

Let ρ = 0.3 ∈ (0.1,
√

0.99) = (cosβ, sinβ). Note that arccos(ρ) = arccos(0.3) ∈ (π
4
, π

2
). Since Φρ is continuous, by

Leibniz Integral Rule, the best-in-class hypothesis w∗
Φsmooth,Hlin

= (cos t∗Φsmooth
, sin t∗Φsmooth

) for Φsmooth satisfies that
U′

smooth(t∗Φsmooth
) = 0, that is,

1

2
[Φρ(cos t∗Φsmooth

) −Φρ(− cos t∗Φsmooth
)] − 3

2
[Φρ(sin t∗Φsmooth

) −Φρ(− sin t∗Φsmooth
)] = 0. (18)

By solving (18) and plugging the solutions in Usmooth(t), we obtain t∗Φsmooth
= π

2
− β, which is consistent with t∗`γ .

Therefore, Φsmooth with ρ = 0.3 is Hlin-consistent with respect to `γ on this distribution.
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