
International Journal of Foundations of Computer Science

c© World Scientific Publishing Company

The Design Principles and Algorithms of a Weighted Grammar Library

CYRIL ALLAUZEN

allauzen@research.att.com

AT&T Labs – Research

180 Park Avenue

Florham Park, NJ 07932, USA

and

MEHRYAR MOHRI

mohri@cs.nyu.edu

Courant Institute of Mathematical Sciences

New York University

719 Broadway, 12th Floor

New York, NY 10003, USA

and

BRIAN ROARK

roark@cslu.ogi.edu

Center for Spoken Language Understanding

OGI School of Science & Engineering

Oregon Health & Science University

20000 NW Walker Road

Beaverton, Oregon 97006, USA

ABSTRACT

We present the software design principles, algorithms, and utilities of a general weighted
grammar library, the GRM Library, that can be used in a variety of applications in
text, speech, and biosequence processing. Several of the algorithms and utilities of this
library are described, including in some cases their pseudocodes and pointers to their
use in applications. The algorithms and the utilities were designed to support a wide
variety of semirings and the representation and use of large grammars and automata of

several hundred million rules or transitions.

1. Introduction

Most modern grammars used in text and speech processing [24] or bioinformatics [11]

are statistical models derived from large datasets. They may be probabilistic context-free

grammars, or more generally weighted context-free grammars. In all cases, the weights

play a crucial role in their definition since they can be used to rank alternative sequences.

This constituted our original motivation for the creation of a general weighted grammar

library and the design of fundamental algorithms for creating, modifying, compiling, and

1

approximating large weighted statistical or rule-based grammars. Three essential principles

guided our design of this grammar library (the GRM Library):

Generality. To generalize the applicability of our algorithms, as much as possible, we

defined generic algorithms, i.e. algorithms that work with as general a weight set

or algebra as possible. This approach followed a general principle of separation of

algorithms and algebras [21, p. 347] that can be viewed as a mathematical analogue

of the classical software engineering principle of separation of algorithms and data

structures. Many of the algorithms we devised and implemented support a wide

variety of weight sets (or semirings). In some cases, we extended existing algorithms

to work with different semirings. An interesting example of this extension is our

generalized algorithm for constructing weighted suffix automata.

Another motivation for the design of a grammar library was the need for more

general text and automata processing algorithms, which, in many cases, constitute

the first step of the creation of a statistical grammar. An example is the requirement

to compute from the input, the counts of some fixed sequences to create statistical

language models. When the input is not just text, but a sequence of weighted

automata output by a speech recognizer or an information extraction system, novel

algorithms and utilities are needed.

Efficiency. While keeping a high degree of generality, the algorithms were also designed

to be very efficient so as to support the representation and use of grammars and

automata of several hundred million rules or transitions. The representations and

functions of a general weighted-transducer library (the FSM library [23]), served as

the basis for the design of the GRM library. The utilities of our library were used for

real-time applications such as the dynamic modification of large weighted grammars

in the context of spoken-dialog applications, or for rapid creation of statistical gram-

mars from a very large set of several million sentences or weighted automata. The

principle of efficiency also led us to select algorithms that could scale. An example

is our choice of an algorithm for regular approximation of context-free grammars.

Our experiments showed that several existing approximation algorithms worked only

with grammars of a few hundred rules [22]. This motivated the introduction and

implementation of faster approximation algorithms leading to minimal deterministic

automata practical for applications such as speech recognition [22]. We will report

empirical results to illustrate the efficiency of our algorithms and their implementa-

tions.

Modularity. The principle of generality helped us avoid redundancy and create a modular

core of algorithms. For this, we also benefited from the modularity and generality

of our weighted transducer library (FSM Library) which served as the basis for

many of our implementations. Both libraries are implemented in C and share the

same data representations, the same binary file format and the same command-

line interface style. In the FSM library, the memory representation of a weighted

automaton or transducer is determined by the use of an FSM class that defines

methods for accessing and modifying it. The efficient implementation of several

algorithms required the definition of new classes in the GRM library: the edit,

2

replace, and failure classes. The failure class is described in this article; other classes

are defined in detail in the documentation of the library.

This paper gives a general description of several algorithms and utilities of the GRM

library, including in some cases their pseudocode, and points out their application to text

and speech processing tasks. It also provides an overview of the command-line utilities of

the library and a flavor of its C-level programs through a number of examples and code

samples. Three main categories of algorithms and utilities of the library are described:

statistical language modeling algorithms and tools, local grammar and text processing

utilities, and context-free grammar compilation and approximation.a

2. Statistical language models

The GRM library includes utilities for counting n-gram occurrences in corpora of text

or speech, and for estimating and representing n-gram language models based upon these

counts. The use of weighted finite-state transducers allows for an efficient algorithm for

computing the expected value of n-gram sequences given a weighted automaton. Failure

transitions provide a natural automata encoding of stochastic language models in the

tropical semiring. Some of the algorithmic details related to these utilities are presented

in [3]. Here, we give a brief tutorial on their use.

2.1. Notation

The weighted automata considered in this paper are defined over the tropical or the

log semirings. A weighted automaton A is defined as a 6-tuple (Q,Σ, E, i, F, ρ), where Q

is the set of states, Σ the alphabet, E ⊆ Q×Σ∪ {ε} ×R×Q the set of transitions, i ∈ Q

the initial state, F ⊆ Q the set of final states, and ρ : F → R the final weight function.

We denote by p[e] the origin of a transition e ∈ E, l[e] its label, w[e] its weight, and n[e]

its destination state. The set of outgoing transitions of a state q is denoted by E[q]. A

weighted automaton is deterministic if no two transitions leaving the same state share the

same label. We also denote by δ(q, σ) the set of states reached by transitions leaving q

and labeled with σ.

2.2. Corpora

For counting purposes, a corpus is a sequence (or archive) of weighted automata in the

log semiring. A corpus of strings such as that of Figure 1(a) can be compiled into such

an archive with the utility of the FSM library farcompilestrings, where the prefix FAR

stands for FSM ARchive. The binary representation of a sequence of word lattices (acyclic

weighted automata of alternative word strings, e.g., output from a speech recognizer) can

be simply concatenated together to form an archive, a FAR file. For posterior counts from

word lattices, weights should be pushed toward the initial state and the total cost should

be removed, using fsmpush.

aSome of the algorithms and utilities of the original version of this library, e.g., the algorithms
and utilities for the compilation of weighted context-dependent rules, were presented elsewhere
[20].

3

corpus.txt wl

hello ε 0
bye hello 1
hello bye 2
bye bye <s> 3

</s> 4

0

2
<s>/4

3hello/2
1</s>/4

4
bye/3

hello/2

bye/2

</s>/2

</s>/2

bye/1

(a) (b)

Fig. 1. (a) Example of a small corpus (corpus.txt) and its corresponding word
list (wl). (b) Count automaton output by the commands: farcompilestrings

-i wl corpus.txt | grmcount -n2 -s"<s>" -f"</s>" -i wl > bg.fsm.

2.3. Counting

We define the expected count (the count for short) c(x) of the sequence x in A as:

c(x) =
P

u∈Σ∗ |u|x [[A]](u), where |u|x denotes the number of occurrences of x in the string

u, and [[A]](u) the weight associated to u by A. The transducer of Figure 2 can be used to

provide the count of x in A through composition with A, projection onto output labels,

and epsilon-removal. While we have been mentioning just acyclic automata, e.g., strings

and lattices, the algorithm can count from cyclic weighted automata, provided that cycle

weights are less than one, a requirement for A to represent a distribution. There exists a

general algorithm for computing efficiently higher order moments of the distributions of

the counts of a sequence x in a weighted automaton A [8].

The utility grmcount takes an archive of weighted automata and produces a count

automaton as shown in Figure 1(a)-(b). Optional arguments include the n-gram order,

and the start and final symbols, which are represented by <s> and </s> respectively in

the examples of this section. These symbols are automatically appended by grmcount to

the beginning and end of each automaton to be counted.

In addition to grmcount, the utility grmmerge is provided, which takes k count files of

the format produced by grmcount, and combines the counts into a single file of the same

format. This allows counting to be parallelized, and the results combined. These counting

utilities are used as follows:

grmcount -n2 -s3 -f4 foo.far > foo.2g.counts.fsm

grmmerge foo.counts.fsm bar.counts.fsm > foobar.counts.fsm

The following source code shows how the grmcount utility just described can be imple-

mented with a simple call to the library function GRMCountNgrams.

Fsm ifsm, cfsm = NULL;

int start = 3, stop = 4, order = 2;

FILE *fp = fopen("foo.far", "rb");

for(nfsm = 1; ifsm = FSMArchiveRead(fp, "foo.far", nfsm); nfsm++)

cfsm = GRMCountNgrams(ifsm, cfsm, order, start, stop, FSMDestruct);

FSMDump("foo.2g.counts.fsm", cfsm);

fclose(fp);

4

0

a:ε/1
b:ε/1

1/1x:x/1

a:ε/1
b:ε/1

Fig. 2. Counting transducer for sequence x.

2.4. Creating a back-off model from counts

The counts described in the previous section can be used in a variety of applications,

e.g., to compute expected counts and gradients for machine learning algorithms. They can

also be used to produce n-gram back-off language models, commonly used in many natural

language processing applications, e.g., automatic speech recognition, speech synthesis,

information retrieval, or machine translation.

An n-gram model is based on the Markovian assumption that the probability of the

occurrence of a word only depends on the n− 1 preceding words. Thus,

P(w1 . . . wk) =
kY

i=1

P(wi | hi) (1)

where the conditioning history hi has length at most n−1: |hi| ≤ n−1. Let c(hw) denote

the count of n-gram hw and let bP(w | h) be the maximum likelihood probability of w

given h, estimated from counts. bP is often adjusted to reserve some probability mass for

unseen n-gram sequences. Denote by eP(w | h) the adjusted conditional probability. For

all n-grams h = wh′ where h ∈ Σk for some k ≥ 1, we refer to h′ as the Katz back-off

n-gram of h [12]. Conditional probabilities in a back-off model are of the form:

P(w | h) =

 eP(w | h) if c(hw) > 0
αhP(w | h′) otherwise

(2)

where αh is a factor that ensures a normalized model. In practice, for numerical stability,

negative log probabilities are used.

Back-off language models admit a natural representation by weighted automata us-

ing failure transitions. A failure transition is a special transition that is taken when no

standard transition with the desired input label is found (see section 3.1). The set of

states of the weighted automaton representing a back-off model is defined by associat-

ing a state qh to each n-gram h of order strictly less than n found in the corpus, i.e.

Q = {qh : |h| < n and c(h) > 0}. Its transition set E consists of failure transitions labeled

by φ and of regular transitions:

E = {(qwh′ , φ, αh, qh′) : qwh′ ∈ Q} ∪ {(qh, w, P̃(w|h)), nhw) : c(hw) > 0}

where nhw is defined as qhw if |hw| < n and as qh′w if |hw| = n.

Figure 3 gives the pseudocode of the algorithm to change the topology of a weighted

automaton A encoding counts of n-grams of order at least n to the topology of a back-off

model of order n. The discounting, smoothing and normalization steps need to be applied

subsequently. For each call of AddBackoff except from the initial one (q = q′ = i), q′ is the

back-off of q, thus a failure transition from q to q′ is added (line 1). For every outgoing

transition e, the back-off state of n[e] is identified as q′′ lines 3-4. If the order of the n-gram

5

AddBackoff(A, q, q′, k, n)
1 if q 6= q′ then E ← E ∪ {(q, φ, 0, q′)}
2 for e ∈ E[q] do

3 if q = q′ then q′′ ← q′

4 else q′′ ← δ(q′, l[e])
5 if k + 1 < n then AddBackoff(A,n[e], q′′, k + 1, n)
6 else n[e]← q′′

MakeModel(A,n)
7 AddBackoff(A, i, i, 0, n)
8 if n > 1
9 then let e ∈ E[i] such that l[e] =<s>
10 i← n[e]; E ← E − {e}
11 create a new state f

12 for e ∈ E do if l[e] =</s> then n[e]← f

13 F ← {f}
14 remove non accessible and non coaccessible states

Fig. 3. Pseudocode of the algorithm to change the topology of a weighted
automaton A encoding counts to the topology of a back-off model of order n.

0/0
1

</s>/0.410bye/1.108

4

ε/3.500 </s>/0.810

bye/1.098

2

hello/1.504 </s>/0.005

ε/4.704
3

bye/0.698

ε/4.481
hello/0.698

Fig. 4. Bigram language model with ε back-off arcs.

corresponding to e is strictly less than n, AddBackoff is called to set the back-off state of

n[e] to q′′. Otherwise, n[e] is set to q′′. This corresponds to the case where nhw is qh′w

and not qhw . If the order n is at least 2, the initial state is set to the state representing the

n-gram <s> (lines 8-10) and every transition labeled by </s> is redirected to the unique

final state of the model, representing the n-gram </s> (lines 11-14).

The utility grmmake takes counts in the format produced by grmcount and produces a

back-off model in the tropical semiring:

grmmake foo.2g.counts.fsm > foo.2g.lm.fsm

Figure 4 shows the bigram language model in the tropical semiring that results from the

counts in Figure 1. The smoothing technique that is used by default is Katz back-off [12],

but the utility also provides for alternative estimation methods, such as absolute discount-

ing [27] and Kneser-Ney smoothing [13]. As previously mentioned, back-off transitions are

naturally represented as failure transitions, but the grmmake utility produces them with

ε-transitions, a convenient off-line approximation. These ε-transitions can be changed to

failure transitions using grmconvert.

The utility grmshrink takes a model output from grmmake and removes transitions

when their absence results in a change to the model of magnitude less than some thresh-

old. Two methods are provided, the weighted difference method [29] and the relative

6

entropy method [31]. The utility grmconvert converts a model output from grmmake or

grmshrink to a failure class model or an interpolated model. Also, an exact off-line model

can be produced from grmconvert, using ε-transitions instead of failure transitions, as

detailed in [3]. These utilities are used as follows:

grmshrink -c 4 foo.2g.lm.fsm > foo.2g.s4.lm.fsm

grmconvert -t failure foo.2g.lm.fsm >foo.fail.2g.lm.fsm

2.5. Applications and benchmarks

The GRM library statistical language modeling utilities can be used in the manner

presented here to produce language models for use in, e.g., automatic speech recognition

(ASR) or machine translation (MT). One benefit for ASR of encoding such models as

weighted finite automata lies in the ability to compose the models offline with other speech

transducers, including pronunciation dictionaries, context-dependent phone transducers,

and hidden Markov models, and optimizing the resulting transducers for efficient decoding

[26, 25, 24].

The models built for these applications are often very large, so the utilities must

scale up to handle automata of tens or hundreds of millions of states and transitions. To

demonstrate the scalability of the utilities presented here, table 1 shows model sizes and

training times for three training corpora, of size one, ten and a hundred million words. All

of the training corpora are from the LDC North American Business (NAB) corpus, and

training was performed on an Intel Pentium 4 3.2GHz CPU with 2GB of RAM.

In addition to its use for generative n-gram language models, such as those produced

by grmmake, the counts produced by grmcount can also feed other parameter estimation

techniques from the machine learning literature. For example, conditional log-linear mod-

els, such as conditional random fields [15], have been used for a range of sequence learning

tasks, including shallow parsing [30] and named entity extraction [17]. Recently the count-

ing utility from the GRM Library was used to efficiently calculate feature gradients for a

related discriminative n-gram language modeling approach [28]. Briefly, let xj be utter-

ance j of n training examples D; let yj be the true transcription of xj ; and let Zj be the set

of candidate transcriptions of xj (i.e. a weighted word lattice). Then, in this approach, the

derivative (or gradient) of the conditional log likelihood L(D) with respect to a particular

parameter αi is

∂L(D)

∂αi

=
nX

j=1

2
4fi(yj)−

X

z∈Zj

p(z)P
z′∈Zj

p(z′)
fi(z)

3
5 (3)

where fi(z) is the count of feature i in transcript z. In the case of n-gram models, fi would

be a particular n-gram feature count. The utility grmcount was used in [28] for counting

both terms of the sum above: fi(yj) and
P

z∈Zj
p(z|Zj)fi(z). This latter sum is simply

the expected count of the n-gram feature fi in the weighted word lattice Zj with the costs

pushed. This efficient counting approach scaled effectively to millions of parameters and

hundreds of thousands of training word lattices. In addition, the failure-class was used to

encode the resulting model efficiently for intersection with word lattices. See [28] for more

details on the approach.

7

Table 1. Counts of n-grams, states and transitions and run times of the GRM
utilities used to create a trigram model from a corpus (including I/O’s) on an
Intel Pentium 4 3.2GHz CPU with 2GB of RAM.

Corpus size (million words)
Counts of 1 10 100

unigrams 29,830 72,858 138,103

bigrams 312,216 1,649,338 8,027,537

trigrams 626,460 4,562,590 31,020,778

states 342,047 1,722,197 8,165,641

transitions 1,310,550 8,006,980 47,352,056

time (s) Corpus size (million words)
1 10 100

farcompilestrings -iwl -u<unk> Corpus >far 5.1 48.4 480.9

grmcount -n3 -iwl -s<s> -f</s> far >c.fsm 28.5 324.6 5736.3

grmmake c.fsm >m.fsm 7.7 51.9 373.7

grmshrink m.fsm > m.s.fsm 6.9 66.7 591.4

grmconvert -t fail m.s.fsm >m.fs.fsm 2.6 17.3 110.7

total 50.8 508.9 7293.0

2.6. Comparison with other utilities

The statistical language modeling utilities of the GRM library are similar in many

ways to those of the SRI Language Modeling Toolkit (SRILM toolkit) [32], but there are

some key differences. The SRILM toolkit provides a large variety of scripts and utilities

for not only counting and creating language models, but also for the use and manipulation

of these models. Since the models produced by the GRM library are in the format used by

the FSM library, they can be readily used and manipulated with existing FSM utilities.

Hence additional utilities are not part of the core GRM library.

For example, to score a string with a language model, the string must simply be encoded

as an automaton (farcompilestrings) and intersected with the model (fsmintersect). Many

of the same modeling options are provided by the utilities in both the SRILM toolkit

and the GRM library, as well as count merging and model pruning capabilities. Class-

based modeling is included explicitly in the SRILM toolkit, but, as shown in [3], general

class-based models can be straightforwardly represented with the GRM library, without

requiring additional utilities, through the use of weighted transducers [7]. With such an

approach, classes can be (weighted) regular languages, rather than just a finite set of words

or a finite list of sequences of words.

The GRM library provides some features that are not covered by the SRILM Toolkit.

It allows for counting from weighted automata, e.g., word lattices, which is crucial in a

number of text and speech processing applications. Also, the use of failure transitions for

the representation of language models and its off-line approximation based on ε-transitions

provide efficient and useful encodings for intersection and composition with other finite

automata and finite-state transducers. Finally the GRM’s tight coupling with the FSM

library allows one to benefit from the wide range of utilities of that library. In reverse,

some of the features provided by the SRILM Toolkit, e.g., different discounting methods

such as that of Witten-Bell are not provided by the current release of the GRM library

8

typedef struct fsm_rec {

void *data;

FSMTypes type;

FSMClass clas;

Smr smr;

SYSHandle hdl;

int refcnt;

} *Fsm;

typedef struct failure_rec {

Fsm fsm;

int phi;

unsigned char side;

DSTPool match_pool;

} *Failure;

Fig. 5. Definition of the C types Fsm and Failure

but are likely to be available in future versions. The SRILM Toolkit also provides a utility

for converting its models to and from that of the FSM library.

3. Local Grammars and Text Processing

The GRM library includes several utilities for text processing. This section briefly

reviews the relevant utilities.

3.1. Failure transitions

There exists a general technique for representing the transitions of automata in an

implicit manner, which can lead to substantial savings in space [1, 19]. The method is

based on the use of failure transitions. A failure transition is a specific type of transitions

with the semantic of ’otherwise’: it is taken when no regular transition with the desired

input label is found. Failure transitions are used in the GRM library to represent local

grammars (Section 3.2) and back-off language models (Section 2.4).

The use of failure transitions is made possible in the GRM library through a dedicated

FSM class, the failure class. In the FSM library, a weighted automaton or transducer is

represented by an object of type Fsm defined figure 5. The basic idea is that the member

data points to the actual memory representation and clas specifies methods to access this

memory representation. For instance, clas->start is a pointer to a function that takes as

argument an Fsm fsm and returns the index of the initial state of the weighted automata

or transducer represented by fsm.

The failure class is defined as an object FSMFailureClass of type FSMClass. In an fsm

of that class, the data pointers is of the type Failure defined figure 5. The member fsm

is the representation of the underlying automata or transducer without failure transitions,

phi specifies the label of failure transitions, side specifies, if fsm is a transducer, whether

the failure transitions are defined on the input or output side. FSMFailureClass->start

is then a pointer to the function failure start defined by:

static int failure_start(Fsm fsm){

Failure failure = (Failure) FSMData(fsm);

return FSMStart(failure->fsm);}

where FSMData(fsm) is a macro defined as fsm->data and FSMStart(fsm) a macro defined

as fsm->clas->start(fsm). This function simply returns the initial state of the failure

class representation which is the same as that of the underlying representation.

The utility grmfailure can convert a regular FSM representation to a failure class

9

representation by interpreting transitions labeled with the symbol phi specified by the

option -p as failure transitions:

grmfailure -p phi A.fsm > A.failure.fsm

The conversion can be done at the C library level as follows:

Fsm fsm = FSMLoad("A.fsm");

int phi = 18, side = 0;

fsm = GRMFailure(fsm, phi, side);

FSMDump("A.failure.fsm", fsm);

3.2. Local Grammars

3.2.1. Algorithm.

Let A be a deterministic finite automaton and let L(A) be the regular language ac-

cepted by A. An algorithm constructing a compact representation of the deterministic

automaton representing Σ∗L(A) using failure transitions was given by [19]. The following

is the pseudocode of that algorithm in the case where A is acyclic.

LocalGrammar(A)
1 E ← E ∪ {(i, φ, i)}
2 Enqueue(S, i)
3 while S 6= ∅ do

4 p← Dequeue(S)
5 for e ∈ E[p] do

6 q ← δ(p, φ)
7 while q 6= i and δ(q, l[e]) = undefined do q ← δ(p, φ)
8 if p 6= i and δ(q, l[e]) 6= undefined

9 then q ← δ(q, l[e])
10 if δ(n[e], φ) = undefined

11 then δ(n[e], φ)← q

12 if q ∈ F then F ← F ∪ {n[e]}
13 L[n[e]] = L[n[e]] ∪ {n[e]}
14 Enqueue(S, n[e])
15 else if there exists r ∈ L[o[n[e]]] such that (r, φ, q) ∈ E

16 then n[e]← r

17 else if o[q] 6= n[e]
18 then create new state r

19 for e′ ∈ E[n[e]] such that l[e′] 6= φ do

20 E ← E ∪ {(r, l[e′], o[n[e′]])}
21 E ← E ∪ (r, φ, q)
22 o[r]← o[n[e]]
23 if o[n[e]] ∈ F then F ← F ∪ {r}
24 L[o[n[e]]] = L[o[n[e]]] ∪ {r}
25 n[e]← r

26 Enqueue(S, r)
27 else n[e]← q

10

0 1a 2b 3a 4b
c 0

φ

1a
φ

2b
φ

3

a
φ

4b

5

c

φ

φ

(a) (b)

Fig. 6. (a) A deterministic finite automaton A and (b) a deterministic automa-
ton recognizing Σ∗L(A) where transitions labeled with φ are failure transitions.

The general algorithm of [19] can be seen as a generalization to the case of an arbitrary

deterministic automaton A of the classical algorithms of [14] and [1] which were designed

for strings or trees. When A is a tree, the complexity of the algorithm of [19] coincides

with that of [1]: it is linear in the sum of the lengths of the strings accepted by A. The

following describes the algorithm and the pseudocode.

The algorithm takes as input a deterministic unweighted automaton A and modifies

it to represent the corresponding local grammar. States of A are visited in the order of a

breadth-first search using a FIFO queue S. In the description that follows, we will say for

short that x is recognized in q when there is a path from i to q labeled by x.

Each state q admits a failure transition labeled by φ. The destination state of that

transitions is the failure state of q, that is the state where the longest proper suffix of the

strings recognized in q prefix of L(A) is recognized. Two distinct paths reaching q may

correspond to two distinct failure states for q. In that case, q must be duplicated. Thus,

the algorithm maintains the two following attributes: o[q], the original state from which q

was copied and, if q was originally in A (i.e. o[q] = q), L[q] the set of states obtained by

copying q.

For each state p extracted from the queue (line 4), each of the outgoing transition e

is examined. The (candidate) failure state q of n[e] is determined (lines 6-10) as the first

state on the failure path of p that has an outgoing transition labeled by l[e]. If n[e] does

not already have a failure state, its failure state is set to q and n[e] is added to the queue

(lines 10-14). If there exists a state r that has the same original state as n[e] and has q as

a failure state, then the destination of e is changed to r (lines 15-16). If q is not a copy

of n[e], then a new state r is created by copying n[e], the failure state of r is set to q, the

destination state of e is changed to r and r is added to the queue (lines 17-26). Otherwise,

the destination state of e is changed to q (line 27).

When A is not acyclic, the condition of the test of line 17 needs to be generalized as

described in detail in [19].

3.2.2. Utility.

The algorithm of [19] was implemented in the GRM Library. The library utility

grmlocalgrammar takes as input a deterministic finite automaton A and returns a de-

terministic finite automaton recognizing Σ∗L(A) represented with failure transitions. The

symbol used to label the failure transitions can be specified through the option -p:

grmlocalgrammar -p phi A.fsm > sigma-star.A.fsm

11

3.2.3. Examples and Applications.

A deterministic finite automaton A is given by Figure 6(a) and the corresponding

automaton recognizing Σ∗L(A) is given by Figure 6(b), the failure transitions being la-

beled with φ. The main applications of local grammars are string-matching [1, 19] and

disambiguation as a first step before part-of-speech tagging or parsing [18].

3.3. Weighted Suffix Automata

3.3.1. Algorithms.

The suffix automaton of a string u is the minimal deterministic finite automaton recog-

nizing the set of suffixes of u [5, 9]. Its size is linear in the length of u. More precisely, its

number of states is between |u| and 2|u| − 1 and its number of transitions between |u|+ 1

and 3|u|−2. This automaton can be obtained by minimizing the suffix trie of u. A crucial

advantage of suffix automata is that, unlike suffix trees, they do not require the use of

’compact’ transitions (transitions labeled with strings) for the size to be linear in |u|. In

[9], the notion of weighted suffix automaton was introduced. It is defined over the tropical

semiring and has the same topology as the suffix automaton. Let SA(u) be the weighted

suffix automaton of a string u and let x be a suffix of u. The weight associated by SA(u)

to x is the position of the suffix x in u. A string x is a factor of u iff it is the label of a path

π in SA(u) starting from the initial state. The weight of π gives the position of the first

occurrence of x in u. A weighted suffix automaton can be built by an on-line algorithm

deriving SA(uσ) from SA(u) for σ ∈ Σ. This algorithm is based on the definition of failure

transitions similar to the suffix links defined in a suffix tree. The complexity of the on-line

construction algorithm is O(log(|Σ|)|u|) in time and O(|u|) in space, which is the same as

the complexity of the best algorithms for constructing suffix trees.

The weighted suffix oracle SO(u) of a string u is an approximation of the suffix au-

tomaton recognizing a superset of the set of suffixes of u [2]. It has exactly |u|+ 1 states

and at most 2|u| − 1 transitions. The weight associated by SO(u) to a string x is the

position in u where x would occurs if x was a suffix of u. The construction algorithm

is a simplified version of the on-line construction algorithm of the suffix automaton, its

complexity is O(log(|Σ|)|u|) in time and O(|u|) in space. The pseudocode of the algorithm

for the construction of the weighted suffix automaton (case where oracle = false) and

oracle (oracle = true) of a string u is given below.

SuffixAutomaton(u, oracle)
1 create automaton A with initial state i

2 d[i]← 0; p[i]← 0
3 E ← E ∪ {(i, φ, 0, i)}; F ← {i}
4 p← i

5 for k ∈ [0, |u| − 1] do

6 create new state q

7 d[q]← d[p] + 1; p[q]← p[p] + 1
8 while p 6= i and δ(p, uk) = undefined do

9 E ← E ∪ {(p, uk, p[q]− p[p]− 1, q)}
10 p← δ(p, φ)

12

11 if δ(p, uk) = undefined

12 then E ← E ∪ {(i, uk, p[q]− 1, q), (q, φ, 0, i)}
13 else if oracle = true or d[p] + 1 = d[δ(p, uk)]
14 then E ← E ∪ {(q, φ, 0, δ(p, uk))}
15 else create new state r

16 for e ∈ E[δ(p, uk)] do

17 E ← E ∪ {(r, l[e], w[e], n[e])}
18 if l[e] = φ then n[e]← r

19 d[r]← d[p] + 1; p[r]← p[δ(p, uk)]
20 E ← E ∪ {(q, φ, 0, r)}
21 while d[δ(p, uk)] ≥ d[r] do

22 there exists e ∈ E[p] such that l[e] = uk

23 n[e]← r; w[e]← p[p]− p[r]− 1
24 p← δ(p, φ)
25 p← q

26 while p 6= i do

27 F ← F ∪ {p}
28 ρ(p)← p[q]− p[p]
29 p← δ(p, φ)
30 return A

We give a brief overview of the algorithm (see [9] for more details and the proofs). We

will say for short that x is recognized in state q when there is a path from i to q labeled

by x. For every state q, the algorithm maintains two attributes: d[q], the length of the

longest path from i to q, and p[q], the length of the longest suffix than can be read from

q. Every state q has a failure transition labeled with φ, its destination state, the failure

state of q, being the state where the longest proper suffix of the strings recognized in q is

recognized. Note that, when building the suffix automaton, the additional condition that

the longest string recognized in the failure state of q is a suffix of all the strings recognized

in q must be verified.

Starting from line 6, the existing suffix automaton (or oracle) of u0 . . . uk−1 is extended

to construct the suffix automaton (or oracle) of u0 . . . uk. p is the state where u0 . . . uk−1

is recognized. Lines 6-7 create a state q where u0 . . . uk is recognized. While p is not the

initial state and p does not have a transition labeled by uk, a new transition to q labeled

with uk is added and p is set to its failure state (lines 8-10). This loop identifies p as the

potential failure state for q. If p = i, then there was a transition from i to q labeled by uk

and i is set to be the failure state of q (lines 11-12). If the oracle is being constructed, or

if the outgoing transition in p labeled by uk belongs to the longest path to δ(p, uk) from

i, then p is the failure state of q (lines 13-14).

Otherwise, a copy r of δ(p, uk) must be created, the failure state of δ(p, uk) and q must

be set to r (lines 15-20), and the transitions labeled with uk to δ(p, uk) from p and states

along the failure path of p must be redirected to r (lines 21-24). p is then set to q for

the next iteration of the for loop (line 25). Finally, the final states of the automaton are

identified as the states belonging to the failure path from q, the state where u is recognized

(lines 26-29). Note that the automaton created at line 30 contains failure transitions and

is then the local grammar for the suffix automaton or oracle. To obtained the actual suffix

automaton or oracle, the failure transitions need to be removed.

13

0 1a 2b 3b 4a 5b 0/5
1a/0

2/3
b/1

b/0 3b/0
4

a/1

a/0
5/0b/0

(a) (c)

0/5

1a/0

4/3
b/1

2/3b/0

3b/0
5a/1

b/0

a/0
6/0b/0

(b)

Fig. 7. (a) A string u represented by a finite automaton. (b) The weighted
suffix automaton of u. (c) The weighted suffix oracle of u.

Table 2. Running time of grmsuffix on an Intel Pentium 4 3.20GHz CPU with
2GB of RAM, including I/O’s, and size of the suffix automata produced.

Input size Suffix automata
(no. of words) time (s) states transitions

1,000,456 15.1 1,297,378 2,131,255
10,000,873 208.4 13,128,749 21,211,487

3.3.2. Utilities.

The on-line construction algorithms of the weighted suffix automaton and oracle have

been implemented in the GRM library and can be invoked through the grmsuffix command-

line utility:

grmsuffix A.fsm > suffix.fsm

grmsuffix -o A.fsm > oracle suffix.fsm

This utility takes as input a string represented by a finite automaton and returns the

weighted suffix automaton of that string. When the -o option is used, the weighted suffix

oracle is returned instead.

3.3.3. Examples and Applications.

The weighted suffix automaton SA(abbab) of the string abbab is given by Figure 7(b).

The weight associated by SA(abbab) to ab is 3, which is the position in abbab where ab

occurs as a suffix, and the weight of the path starting from the initial state and labeled

with ab is 0, which is indeed the position of the first occurrence of ab in abbab. The

weighted suffix oracle SO(abbab) of abbab is given Figure 7(c). Note that the string abab

is recognized by SO(abbab) although it is not a suffix of abbab.

The (weighted) suffix automaton can be used for indexing [6, 9], string-matching [10, 4]

and compression [9]. The main application of the suffix oracle is string-matching [2]. Table

2 gives the runtime benchmarks for the construction of suffix automata from long inputs

of about one million or ten million words, using grmsuffix on an Intel Pentium 4 3.2GHz

CPU with 2GB of RAM demonstrating the efficiency of the algorithm and the utility.

14

0

1
X:ε/.2

2Y:ε/.3

3

Y:ε/.4

4Z:ε/.1
5ε:a/0

6
ε:b/0

7/0

ε:c/0

ε:X/0 ε:Y/0

ε:X/0

0 1a/0.3

2b/0.3

3
c/0.4

a/0.2
4b/0.3

5/0c/0.4

a/0.2

(a) (b)

Fig. 8. (a) Binary representation of the context-free grammar G. (b) Compi-
lation of G into a weighted automaton.

4. Context-Free Grammars

The GRM library includes several utilities for reading, compiling, and approximat-

ing context-free grammars (CFGs) into finite automata. This section briefly reviews the

relevant utilities of the GRM library.

4.1. Textual and Binary Representations

A textual representation of a weighted context-free grammar can be used directly as

input to the GRM utilities. The following illustrates that representation in the case of a

simple CFG.

CFG rules cfg.txt

Z .1 → XY

X .2 → aY

Y .3 → bX | .4 c

Z .1 X Y

X .2 a Y

Y .3 b X | .4 c

The textual representation is a straightforward translation of the classical way a CFG

is written. Since, by definition, the first symbol of each rule is a non-terminal, there is no

need to keep the arrow symbol for indicating the rule derivation. The second symbol of

each line is the weight associated to the rule (in the case of weighted CFGs). The weights

can be elements of an arbitrary semiring.

For efficiency purposes, this textual representation can be turned into a binary format

using the utility grmread. The following is a command-line sequence that generates the

binary representation cfg.bin of the CFG cfg.txt where the file labels is a user-defined

association between the symbols (terminal and non-terminal) and some numbers associ-

ated with them.

grmread -i labels -w cfg.txt >cfg.bin

The flag -w indicates that the input CFG is weighted. In the GRM library, the current

binary representation is in fact that of a weighted transducer, see Figure 8(a). There are

several reasons that motivated that choice. First, this representation makes it natural to

apply grammar operations such as union or concatenation directly at the binary level. Sec-

ondly, and perhaps more importantly, the use of general determinization and minimization

algorithms with this representation increase the sharing (factoring) among grammar rules

15

that start or end the same way, which improves dramatically the time and space needed

for the grammar compilation.

4.2. Compilation and Regular Approximation

When the input weighted context-free grammar is strongly regular, it can be compiled

by the GRM library into an equivalent weighted automaton using the utility grmcfcompile.

A CFG is strongly regular when the rules of each set M of mutually recursive nontermi-

nals are either all right-linear or all left-linear (nonterminals that do not belong to M are

considered as terminals for deciding if a rule of M is right- or left-linear). The following

illustrates the use of the GRM utility grmcfcompile for compiling a CFG given by the

binary representation cfg.bin.

grmcfcompile -i labels -s Z cfg.bin >cfg.fsm

Figure 8(b) shows the result of the compilation of that grammar. The CFG com-

pilation of the GRM library produces an FSM that can be expanded on-demand. The

FSM returned by grmcfcompile is a delayed acceptor, thus, its states and transitions are

expanded as required by the FSM operation that is applied to it.

Not all weighted CFGs are strongly regular and thus can be compiled into weighted

automata using grmcfcompile. We have designed an efficient context-free approxima-

tion algorithm that transforms any context-free grammar into one that is strongly regular

[22]. The algorithm is based on a simple transformation that applies to any context-free

grammar. The resulting grammar contains at most one new nonterminal for any nonter-

minal symbol of the input grammar. The result thus remains readable and if necessary

modifiable. A mapping from an arbitrary CFG generating a regular language into a cor-

responding finite automaton cannot be realized by any algorithm [33]. Thus, in general,

our approximation cannot guarantee that the language is preserved when the grammar

already generates a regular language (neither can any other approximation). However,

this is guaranteed when the grammar is strongly regular.

The GRM utility grmcfapproximate takes as input the binary representation of a CFG

and produces the textual representation of a strongly regular grammar approximating the

input. The approximation creates new non-terminal symbols. The option -o olab speci-

fies a new symbols file to be created, olab, containing the original and the new symbols.

The following illustrates the use of grmcfapproximate.

grmcfapproximate -i lab -o nlab cfg.bin >ncfg.txt

grmread -i nlab ncfg.txt | grmcfcompile -i nlab -s E >cfg.fsm

The grammar cfg.txt below represents a simple grammar of arithmetic expressions. When

applied to cfg.txt, grmcfapproximate returns the strongly regular grammar ncfg.txt

that can be compiled into the automaton cfg.fsm represented by the figure.

16

cfg.txt ncfg.txt cfg.fsm

E E + T

E T

T T * F

T F

F (E)

F a

E’ eps

T’ eps

F’ eps

E E

E’ + T

T’ E’

E T

T’ E’

T T

T’ * F

F’ T’

T F

F’ T’

F (E

E’) F’

F a F’

0

(

1

a
*
+

)

We induced a weighted CFG from sections 2-21 of the Penn Wall St. Treebank [16],

including all unary part-of-speech to lexical terminal productions, resulting in 62 459 rules.

This is a very commonly used broad coverage CFG of English. The grammar is not strongly

regular, hence context-free approximation had to occur before compiling the grammar. The

entire grammar compilation process – reading the grammar with grmread, approximating

it with grmcfapproximate, reading the approximated grammar with grmread and finally

compiling the grammar with grmcfcompile – took a total of 3.25 seconds on an Intel

Pentium 4 3.20GHz CPU with 2GB of RAM.

5. Conclusion

We presented a general weighted grammar library and emphasized its use in several

text and speech processing applications. The binary executables of the library are available

for download from the following URL:

http://www.research.att.com/sw/tools/grm/

The GRM algorithms and utilities can be used in a similar way in many computational

biology applications.

Acknowledgments

We thank our colleagues Donald Hindle, Mark-Jan Nederhof, Fernando Pereira, Michael

Riley, and Richard Sproat for their help and contributions to various aspects of the design

of GRM library.

References

1. A. V. Aho and M. J. Corasick. Efficient String Matching: An Aid to Bibliographic
Search. Communications of the ACM, 18(6):333–340, 1975.

2. C. Allauzen, M. Crochemore, and M. Raffinot. Efficient Experimental String Match-
ing by Weak Factor Recognition. In Proceedings of CPM 2001, volume 2089 of
Lecture Notes in Computer Science, pages 51–72, 2001.

3. C. Allauzen, M. Mohri, and B. Roark. Generalized Algorithms for Constructing
Language Models. In Proceedings of ACL 2003), pages 40–47, 2003.

4. C. Allauzen and M. Raffinot. Simple Optimal String Matching. Journal of Algo-
rithms, 36(1):102–116, 2000.

5. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and J. I. Seiferas. The Smallest
Automaton Recognizing the Subwords of a Text. Theoretical Computer Science,
40(1):31–55, 1985.

17

6. A. Blumer, J. Blumer, D. Haussler, R. M. McConnel, and A. Ehrenfeucht. Complete
Inverted Files for Efficient Text Retrieval and Analysis. Journal of the ACM,
34(3):578–595, 1987.

7. P. F. Brown, V. J. D. Pietra, P. V. deSouza, J. C. Lai, and R. L. Mercer. Class-based
n-gram models of natural language. Computational Linguistics, 18(4):467–479, 1992.

8. C. Cortes and M. Mohri. Distribution Kernels Based on Moments of Counts.
In Proceedings of the Twenty-First International Conference on Machine Learning
(ICML 2004), Banff, Alberta, Canada, July 2004.

9. M. Crochemore. Transducers and Repetitions. Theoretical Computer Science,
45(1):63–86, 1986.

10. M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski,
and W. Rytter. Speeding Up Two String-Matching Algorithms. Algorithmica,
12(4/5):247–267, 1994.

11. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge UK, 1998.

12. S. M. Katz. Estimation of Probabilities from Sparse Data for the Language model
Component of a Speech Recogniser. IEEE Transactions on Acoustic, Speech, and
Signal Processing, 35(3):400–401, 1987.

13. R. Kneser and H. Ney. Improved Backing-off for M-gram Language Modeling. In
Proceedings of ICASSP, volume 1, pages 181–184, 1995.

14. D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt. Fast Pattern Matching in Strings.
SIAM Journal on Computing, 6(2):323–350, 1977.

15. J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data. In Proceedings of the 18th
International Conference on Machine Learning, pages 282–289, 2001.

16. M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330,
1993.

17. A. McCallum and W. Li. Early Results for Named Entity Recognition with Condi-
tional Random Fields, Feature Induction and Web-Enhanced Lexicons. In Seventh
Conference on Natural Language Learning (CoNLL), 2003.

18. M. Mohri. Syntactic Analysis by Local Grammars Automata: an Efficient Algo-
rithm. In Proceedings of the International Conference on Computational Lexicogra-
phy (COMPLEX 94). Linguistic Institute, Hungarian Academy of Science, 1994.

19. M. Mohri. String-Matching with Automata. Nordic Journal of Computing,
2(2):217–231, 1997.

20. M. Mohri. Robustness in Language and Speech Technology, chapter Weighted Gram-
mar Tools: the GRM Library, pages 165–186. Kluwer, 2001.

21. M. Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems.
Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

22. M. Mohri and M.-J. Nederhof. Robustness in Language and Speech Technology,
chapter Regular Approximation of Context-Free Grammars through Transforma-
tion, pages 153–163. Kluwer, 2001.

23. M. Mohri, F. C. N. Pereira, and M. Riley. The Design Principles of a Weighted
Finite-State Transducer Library. Theoretical Computer Science, 231:17–32, January
2000. http://www.research.att.com/sw/tools/fsm.

18

24. M. Mohri, F. C. N. Pereira, and M. Riley. Weighted Finite-State Transducers in
Speech Recognition. Computer Speech and Language, 16(1):69–88, 2002.

25. M. Mohri and M. Riley. Integrated Context-Dependent Networks in Very Large
Vocabulary Speech Recognition. In Proceedings of the 6th European Conference on
Speech Communication and Technology (Eurospeech ’99), Budapest, Hungary, 1999.

26. M. Mohri and M. Riley. Network Optimizations for Large Vocabulary Speech
Recognition. Speech Communication, 28(1):1–12, 1999.

27. H. Ney, U. Essen, and R. Kneser. On Structuring Probabilistic Dependences in
Stochastic Language Modeling. Computer Speech and Language, 8(1):1–38, 1994.

28. B. Roark, M. Saraclar, M. Collins, and M. Johnson. Discriminative Language Mod-
eling with Conditional Random Fields and the Perceptron Algorithm. In Proceedings
of the 42nd Annual Meeting of the Association for Computational Linguistics, pages
47–54, 2004.

29. K. Seymore and R. Rosenfeld. Scalable backoff language models. In Proceedings of
ICSLP, volume 1, pages 232–235, Philadelphia, Pennsylvania, 1996.

30. F. Sha and F. Pereira. Shallow Parsing with Conditional Random Fields. In
Proceedings of HLT-NAACL, Edmonton, Canada, 2003.

31. A. Stolcke. Entropy-Based Pruning of Backoff Language Models. In Proc. DARPA
Broadcast News Transcription and Understanding Workshop, pages 270–274, 1998.

32. A. Stolcke. SRILM – An Extensible Language Modeling Toolkit. In Proc. Intl.
Conf. on Spoken Language Processing (ICSLP’2002), volume 2, pages 901–904,
2002.

33. J. Ullian. Partial Algorithm Problems for Context Free Languages. Information
and Control, 11:80–101, 1967.

19

