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Abstract. This paper examines in detail an alternative ranking prob-
lem for search engines, movie recommendation, and other similar rank-
ing systems motivated by the requirement to not just accurately predict
pairwise ordering but also preserve the magnitude of the preferences
or the difference between ratings. We describe and analyze several cost
functions for this learning problem and give stability bounds for their
generalization error, extending previously known stability results to non-
bipartite ranking and magnitude of preference-preserving algorithms. We
present algorithms optimizing these cost functions, and, in one instance,
detail both a batch and an on-line version. For this algorithm, we also
show how the leave-one-out error can be computed and approximated
efficiently, which can be used to determine the optimal values of the
trade-off parameter in the cost function. We report the results of ex-
periments comparing these algorithms on several datasets and contrast
them with those obtained using an AUC-maximization algorithm. We
also compare training times and performance results for the on-line and
batch versions, demonstrating that our on-line algorithm scales to rela-
tively large datasets with no significant loss in accuracy.

1 DMotivation

The learning problem of ranking has gained an increasing amount of interest
in the machine learning community over the last decade, in part due to the re-
markable success of web search engines and recommender systems (Freund et al.,
1998; Crammer & Singer, 2001; Joachims, 2002; Shashua & Levin, 2003; Cortes
& Mohri, 2004; Rudin et al., 2005; Agarwal & Niyogi, 2005). The recent Net-
flix challenge has further stimulated the learning community fueling its research
with invaluable datasets (Netflix, 2006).

The goal of information retrieval engines is to return a set of documents,
or clusters of documents, ranked in decreasing order of relevance to the user.
The order may be common to all users, as with most search engines, or tuned
to individuals to provide personalized search results or recommendations. The
accuracy of this ordered list is the key quality measure of theses systems.



In most previous research studies, the problem of ranking has been formu-
lated as that of learning from a labeled sample of pairwise preferences a scoring
function with small pairwise misranking error (Freund et al., 1998; Herbrich
et al., 2000; Crammer & Singer, 2001; Joachims, 2002; Rudin et al., 2005; Agar-
wal & Niyogi, 2005). But this formulation suffers some short-comings.

Firstly, most users inspect only the top results. Thus, it would be natural
to enforce that the results returned near the top be particularly relevant and
correctly ordered. The quality and ordering of the results further down the list
matter less. An average pairwise misranking error directly penalizes errors at
both extremes of a list more heavily than errors towards the middle of the list,
since errors at the extremes result in more misranked pairs. However, one may
wish to explicitly encode the requirement of ranking quality at the top in the cost
function. One common solution is to weigh examples differently during training
so that more important or high-quality results be assigned larger weights. This
imposes higher accuracy on these examples, but does not ensure a high-quality
ordering at the top. A good formulation of this problem leading to a convex
optimization problem with a unique minimum is still an open question.

Another shortcoming of the pairwise misranking error is that this formulation
of the problem and thus the scoring function learned ignore the magnitude of
the preferences. In many applications, it is not sufficient to determine if one
example is preferred to another. One may further request an assessment of how
large that preference is. Taking this magnitude of preference into consideration is
critical, for example in the design of search engines, which originally motivated
our study, but also in other recommendation systems. For a recommendation
system, one may choose to truncate the ordered list returned where a large gap
in predicted preference is found. For a search engine, this may trigger a search
in parallel corpora to display more relevant results.

This motivated our study of the problem of ranking while preserving the
magnitude of preferences, which we will refer to in short by magnitude-preserving
ranking.® The problem that we are studying bears some resemblance with that
of ordinal regression (McCullagh, 1980; McCullagh & Nelder, 1983; Shashua &
Levin, 2003; Chu & Keerthi, 2005). It is however distinct from ordinal regression
since in ordinal regression the magnitude of the difference in target values is
not taken into consideration in the formulation of the problem or the solutions
proposed. The algorithm of Chu and Keerthi (2005) does take into account
the ordering of the classes by imposing that the thresholds be monotonically
increasing, but this still ignores the difference of target values and thus does not
follow the same objective. A crucial aspect of the algorithms we propose is that
they penalize misranking errors more heavily in the case of larger magnitudes of
preferences.

We describe and analyze several cost functions for this learning problem and
give stability bounds for their generalization error, extending previously known
stability results to non-bipartite ranking and magnitude of preference-preserving
algorithms. In particular, our bounds extend the framework of (Bousquet &

3 This paper is an extended version of (Cortes et al., 2007).



Elisseeff, 2000; Bousquet & Elisseeff, 2002) to the case of cost functions over
pairs of examples, and extend the bounds of Agarwal and Niyogi (2005) beyond
the bi-partite ranking problem. Our bounds also apply to algorithms optimizing
the so-called hinge rank loss.

We present several algorithms optimizing these cost functions, and in one in-
stance detail both a batch and an on-line version. For this algorithm, MPRank,
we also show how the leave-one-out error can be computed and approximated
efficiently, which can be used to determine the optimal values of the trade-off pa-
rameter in the cost function. We also report the results of experiments comparing
these algorithms on several datasets and contrast them with those obtained us-
ing RankBoost (Freund et al., 1998; Rudin et al., 2005), an algorithm designed
to minimize the exponentiated loss associated with the Area Under the ROC
Curve (AUC), or pairwise misranking. We also compare training times and per-
formance results for the on-line and batch versions of MPRank, demonstrating
that our on-line algorithm scales to relatively large datasets with no significant
loss in accuracy.

The remainder of the paper is organized as follows. Section 2 describes and
analyzes our algorithms in detail. Section 3 presents stability-based generaliza-
tion bounds for a family of magnitude-preserving algorithms. Section 4 presents
the results of our experiments with these algorithms on several datasets.

2 Algorithms

Let S be a sample of m labeled examples drawn i.i.d. from a set X according to
some distribution D:

(xluyl)v"W(xmaym)EXX]R' (1)

For any i € [1,m], we denote by S~% the sample derived from S by omitting
example (z;,v;), and by S* the sample derived from S by replacing example
(wi,y;) with an other example (x},y;) drawn i.i.d. from X according to D. For
convenience, we will sometimes denote by y, = y; the label of a point z = x; € X.

The quality of the ranking algorithms we consider is measured with respect
to pairs of examples. Thus, a cost functions ¢ takes as arguments two sample
points. For a fixed cost function ¢, the empirical error R(h,S) of a hypothesis
h: X — R on a sample S is defined by:

R(h,S) = %ch(h,xi,xj). (2)

The true error R(h) is defined by

R(h) = By wople(h, z,2)]. 3)



2.1 Cost functions

We introduce several cost functions related to magnitude-preserving ranking.
The first one is the so-called hinge rank loss which is a natural extension of the
pairwise misranking loss (Cortes & Mohri, 2004; Rudin et al., 2005). It penalizes
a pairwise misranking by the magnitude of preference predicted or the nth power
of that magnitude (n =1 or n = 2):

n n [0, 0 (h(a) = h(@))(Yar = y2) =0
ciin (h, 2,2") = { (') — h(x))|", otherwise. (4)

ciir does not take into consideration the true magnitude of preference ¥, — y,
for each pair (z,2’) however. The following cost function has this property and
penalizes deviations of the predicted magnitude with respect to the true one.
Thus, it matches our objective of magnitude-preserving ranking (n = 1,2):

cyp (h, @, 2') = [(h(z') = h(@)) = (Yo = y2)|". (5)

A one-sided version of that cost function penalizing only misranked pairs is given
by (n =1,2):

n n 0, i (@) = (@) (Yor — Ya) 20
civp (b, 2, 27) = { ‘(h(:v') —h(z) = (Yo — ym)‘n, otherwise. (6)

Finally, we will consider the following cost function derived from the e-insensitive
cost function used in SVM regression (SVR) (Vapnik, 1998) (n = 1, 2):

e mary = [0 [() = h@) = (g = )] < €
svr(h,z,2) = { ](h(:v’) —h(2)) = (Yo — Y) — e‘", otherwise. @

Note that all of these cost functions are convex functions of h(x) and h(z’).

2.2 Objective functions

The regularization algorithms based on the cost functions cy;p and cgy corre-
spond closely to the idea of preserving the magnitude of preferences since these
cost functions penalize deviations of a predicted difference of score from the
target preferences. We will refer by MPRank to the algorithm minimizing the
regularization-based objective function based on cyp:

1 m m
F(h,S):|\h|\§(+Om—ZZ vip (B @i, 5), (8)
and by SVRank to the one based on the cost function cgy g

1 m m N
F(h,S) = ”h”%(+CWZZCSVR(h7$i7$j)' (9)

i=1 j=1

For a fixed n, n = 1, 2, the same stability bounds hold for both algorithms as seen
in the following section. However, their time complexity is significantly different.



2.3 MPRank

We will examine the algorithm in the case n = 2. Let & : X — F be the
mapping from X to the reproducing Hilbert space. The hypothesis set H that
we are considering is that of linear functions h, that is Vo € X, h(z) = w - &(z).
The objective function can be expressed as follows

F(hS) =l + oz 3 3 [0 8ay) — w- @) = (3~ o))’

i=1 j=1

20 & _—
= [w|* + g Z [|w - &(x;) — yil|* — 2C |Jw - & — |7,
=1

where & = L 3" &(x;) and § = = 3" y;. The objective function can thus
be written with a single sum over the training examples, which results in a more
efficient computation of the solution.

Let N be the dimension of the feature space F'. For ¢ =1,...,m, let M, €
RYM*1 denote the column matrix representing ®(x;), Mg € RY¥*! a column
matrix representing @, W € RV*! a column matrix representing the vector w,
My € R™*! a column matrix whose ith component is y;, and My € R™*! a
column matrix with all its components equal to 7. Let Mx, Mg € RYX™ he
the matrices defined by:

My =[M,, ... M, | Mx=[Mg... Mg|. (10)
Then, the expression giving F' can be rewritten as
2C 2C
F=[WIP 4+ 2= [MEW — My — 2= [MEW - Mg |

The gradient of F' is then given by: VF = 2W + %MX(M;W — My) —
%MX(M;W — My). Setting VF = 0 yields the unique closed form solution
of the convex optimization problem:

W = C'(1+C'(Mx — Mg)(Mx - Mg)") ™ (Mx = Mg)(My — My), (11)

where C” = 2¢. Here, we are using the identity MyM} — MM} = (Mx —
Mg)(My —Mg) ", which is not hard to verify. This provides the solution of the
primal problem. Using the fact the matrices (I+C’(Mx —Mx)(Mx —Mx) ") !
and Mx — My commute leads to:

W = C'(Mx — Mg)(I+C'(Mx — Mg)(Mx — Mg)T) " (My — My). (12)
This helps derive the solution of the dual problem. For any 2’ € X,
h(z') = C'K'(I+K) ' (My — My), (13)

where K’ € R ™ is the row matrix whose jth component is

K(2' ;) — %ZK(z',xk) (14)
k=1



and K is the kernel matrix defined by

1 - 1 m 1 m m
a(K)ZJ:K(I“IJ —E; xz,xk>+K(IJ,$k W};;K(Ik,xl),

for all 7, 7 € [1, m]. The solution of the optimization problem for MPRank is close
to that of a kernel ridge regression problem, but the presence of additional terms
makes it distinct, a fact that can also be confirmed experimentally. However,
remarkably, it has the same computational complexity, due to the fact that the
optimization problem can be written in terms of a single sum, as already pointed
out above. The main computational cost of the algorithm is that of the matrix
inversion, which can be computed in time O(N?) in the primal, and O(m?) in
the dual case, or O(N?t%) and O(m?*®), with a ~ .376, using faster matrix
inversion methods such as that of Coppersmith and Winograd.

2.4 SVRank

We will examine the algorithm in the case n = 1. As with MPRank, the hy-
pothesis set H that we are considering here is that of linear functions h, that is
Vo € X,h(z) = w- P(x). The constraint optimization problem associated with
SVRank can thus be rewritten as

minimize F(h,S) = ||w|]* + ii (&5 +&55)
w- (B(a;) — Dl >>—<_- Ty < ety

subject to { (y; — yz) —w - (P(x;) — P(x;)) < e+&;
gijv ’L*j 20,

for all 7,5 € [1,m]. Note that the number of constraints are quadratic with
respect to the number of examples. Thus, in general, this results in a problem
that is more costly to solve than that of MPRank.

Introducing Lagrange multipliers a;;, a;; > 0, corresponding to the first two
sets of constraints and S;;, ;; > 0 for the remaining constraints leads to the
following Lagrange function

L=lwl®+C Y (& + &)+

i=1 j=1

aij(w - (D(x5) — D(23)) — (Y5 — Yi) — €+ &ij)+
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Taking the gradients, setting them to zero, and applying the Karush-Kuhn-
Tucker conditions leads to the following dual maximization problem

maximize — E E Oézg akl—akl)Kijykl_

i,j=1k,l=1
m m
e > (aj;—aiy)+ > (o — o) (y; — vi)
ig=1 i5=1

subject to 0 < vz, af; < C, Vi, j € [1,m],

where K;ju = K(z;,z1) + K(xj, 1) — K(z,21) — K(xj,xr). This quadratic
optimization problem can be solved in a way similar to SVM regression (SVR)
(Vapnik, 1998) by defining a kernel K’ over pairs with K'((x;,z;), (xk, 1)) =
Kij i, for all i, 4, k,1 € [1,m], and associating the target value y; —y; to the pair
(Ii’ Ij)'

The computational complexity of the quadratic programming with respect
to pairs makes this algorithm less attractive for relatively large samples.

2.5 On-line Version of MPRank

Recall from Section 2.3 that the cost function for MPRank can be written as

m

F(h,8) = ol + 223" (- () ) — (w- &~ 7).

i=1

(15)

This expression suggests that the solution w can be found by solving the following
optimization problem

minimize F = ||w||* + Z{Z
subject to (w - P(x;) — yz) (w b—y)=¢fori=1,...,m

Introducing the Lagrange multipliers (; corresponding to the ith equality con-
straint leads to the following Lagrange function:

L(w,& B) = |[w]* + % D= 8 ((w-b(x:) —y:) — (w-2—9) — &)
=1 =1

Setting OL/0w = 0, we obtain w = 5 31" | 3;(®(z;)—P), and setting OL/9E; = 0
leads to §; = — 4% (3;. Substituting these expression backs in and letting a;; = 3;/2
result in the optimization problem

max(imlze —ZZaza] (@i, xj) C’Za +2Zazyzu (16)

=1 j=1

m

i 1
Z (i, xp) + K (2, 21)) +W Z K(xp,xp)

SIH

where K (2, 2;) = K (27, 1;)—

and y; = y; — ¥.



Based on the expressions for the partial derivatives of the Lagrange function,
we can now describe a gradient descent algorithm that avoids the prohibitive
complexity of MPRank that is associated with matrix inversion:

1 fori<—1tomdo «a; <0

2 repeat

3 for i —1tom

4 do o; «— «a; + 77[2(y~i — Z;n:l o K(x,x5)) — %ai]
5 until convergence

The gradient descent algorithm described above can be straightforwardly
modified to an on-line algorithm where points in the training set are processed in
T passes, one by one, and the complexity of updates for ith point is O(7) leading
to an overall complexity of O(T - m?). Note that even using the best matrix
inversion algorithms, one only achieves a time complexity of O(m?2*%), with
a ~ .376. In addition to a favorable complexity if T = o(m37%), an appealing
aspect of the gradient descent based algorithms is their simplicity. They are quite
efficient in practice for datasets with a large number of training points.

2.6 Leave-One-Out Analysis for MPRank

The leave-one-out error of a learning algorithm is typically costly to compute as it
in general requires training the algorithm on m subsamples of the original sample.
This section shows how the leave-one-out error of MPRank can be computed and
approximated efficiently by extending the techniques of Wahba (1990).

The standard definition of the leave-one-out error holds for errors or cost
functions defined over a single point. The definition can be extended to cost func-
tions defined over pairs by leaving out each time one pair of points (x;, ;),i # j
instead of a single point.

To simplify the notation, we will denote hg_ (4, 2,3 by hij and hg_(; .1y by
hsor. The leave-one-out error of an algorithm L over a sample S returning the
hypothesis h;; for a training sample S — {x;, z;} is then defined by

1 m m

i=1 j=1,i#j

The following proposition shows that with our new definition, the fundamental
property of LOO is preserved.

Proposition 1. Let m > 2 and let h' be the hypothesis returned by L when
trained over a sample S’ of size m — 2. Then, the leave-one-out error over a
sample S of size m is an unbiased estimate of the true error over a sample of
size m — 2:

Es-p[LOO(L, $)] = R(K), (18)



Proof. Since all points of S are drawn i.i.d. and according to the same distribu-
tion D,

1 m
Es~p[LOO(L,S)] = ——— Z Es~ple(hij, zi, 7)) (19)
m(m — 1) Wy ¥
1 m
= —0 ESND,z,z’ S[C(hacx/a €T, :E/)] (20)
m(m —1) zsz;é )
= ESND,m,m’ES[C(hm;E’u$7$I)] (21)
This last term coincides with Eg/ ; o/p,|5/|=m—2[c(haer, T, 2")] = R(R). a

In Section 2.3, it was shown that the hypothesis returned by MPRank for a
sample S is given by h(2') = C'K'(I+ K)~!(My — My) for all 2’ € M. Let
K. be the matrix derived from K by replacing each entry K;; of K by the sum
of the entries in the same column E;n:l K,;. Similarly, let K, be the matrix
derived from K by replacing each entry of K by the sum of the entries in the
same row, and let K,. be the matrix whose entries all are equal to the sum of
all entries of K. Note that the matrix K can be written as:

1 - 1 1
—K=K-—(K, +K. —K.,.. 22
2 (K, Ko+ (22)
Let K” and U be the matrices defined by:
1 _
K'=K-—K, and U=CK"'(I+K) " (23)
m

Then, for all i € [1,m], h(z;) = >_}"; Uir(yr — 7). In the remainder of this sec-
tion, we will consider the particular case of the n = 2 cost function for MPRank,
et (hy i, w5) = [(h(;) — y5) — (@) — )]

Proposition 2. Let h' be the hypothesis returned by MPRank when trained on
S—{w;,x;} and let B = 257" W (wi). For all i,j € [1,m], let Vi; = Uy; —
L Ekg{i,j} U,i,. Then, the following identity holds for cip(h', i, ;).

(1= Vi) (1= Vi) = Vi Vi ] *Gup (W, 21, 35) = (24)
(1= Vi = Vi) (h(z;) = y;) — (1= Vji = V) (h(z:) — ys)
—[(1 =V = Vi) (Vi + Vi) (A =V = Vi) (Vi + Vi) (W — 17)]2 .
Proof. By Equation 15, the cost function of MPRank can be written as:

F = full?+ 223 [(haw) — w) — (R~ 9] (25)

k=1

where h = = >~ | h(xy). B’ is the solution of the minimization of F' when the
terms corresponding to z; and x; are left out. Equivalently, one can keep these



terms but select new values for y; and y; to ensure that these terms are zero.
Proceeding this way, the new values y; and y; must verify the following:

W (xi) —yi =h(x;) =y =W —y, (26)

with o/ = L[/ (z;) + v/ (7;) + > kg ijy Yl Thus, by Equation 23, A'(x;) is given

m

by h'(x;) = Y7, Uik(yx — 7). Therefore,

W) —yi= Y Uiy =7)+Uilyl 7)) + Uij(y; = 7) — s
kg {i,}
= > Uiy -9 - U@ —7) + Uu(h (z:) — 1)
kg {i,} kg {i,}
+U; (W (25) — ') — v
= (h(z:) = ys) = Uisly: = 9) = Ui (y; —9)—y_ Ui(@ —7)
ke {i i}
+Uii (W' (i) — B') + Uy (b () — B)
= (h(x:) —yi) + Usi(h' (@) — yi) + Ui (W' () — y5) — (Uis + Uig) (W — 7))
- > Ua@ -7
kg {i,}
= (h(x:) — i) + Usi(h' (@) — yi) + Ui (W' () — y5) — (Uis + Ugg) (W — )
= 3 Ui [ @) — )+ () — ) — 200 — )]
ke {i,}
= (h(x:) —ys) + V(W' (2:) — i) + Vi (W' (z5) — y5) — (Vi + Vi) (W — 7).
Thus,

(1= Vi) (W' () = yi) = Vig (W' (5) — y;) = (h(2:) — i) — (Vi + Vi) (W = 9),
Similarly, we have
= V(W (@) —yi) + (1= V) (W () —y;) = (h(x;) —y;) — (Vj; + V) (W = 7).

Solving the linear system formed by these two equations with unknown variables
(R (x3) — yi) and (B'(x;) — y;) gives:

[(1—=V) (1= Vi) = Vi Vi [(B (i) — yi) = (1= V) (h(w:) — yi) + Vi (h(z5) — ;)
—[(Vii + Vij)(1 = V) + (V4 + Vi) Vil (K = §).

Similarly, we obtain:
[(1=V)(1 = Vi) = Vi V] (B (25) — ;) = Vii(h(x:) = yi) + (1 = Vi) (h(z5) — y;)
—[(Vii + Vij) Vi + (Vjj + Vi) (1 = Vi) |(W = 5).

Taking the difference of these last two equations and squaring both sides yields
the expression of ¢3;p(h', z;, x;) given in the statement of the proposition. O



Given R/, Proposition 2 and Equation 17 can be used to compute the leave-one-
out error of h efficiently, since the coefficients U;; can be obtained in time O(m?)
from the matrix (I + K)~! already computed to determine h.

Note that by the results of Section 2.3 and the strict convexity of the objective
function, A’ is uniquely determined and has a closed form. Thus, unless the
points x; and z; coincide, the expression [(1—V;;)(1—Vy;) — V; V] factor of
cp(W, 2, x;) cannot be null. Otherwise, the system of linear equations found
in the proof is reduced to a single equation and h'(z;) (or A'(x;)) is not uniquely
specified.

For larger values of m, the average value of h over the sample S should not
be much different from that of A/, thus we can approximate h’ by h. Using this
approximation, for a sample with distinct points, we can write for L =MPRank

1 (1= Vi = Vij)(h(z;) —y5) = (1 = Vi = Vjj) (h(xi) = yi)
LOO(L, S)"‘m(m_l); [(1= V) (1= Vi) — Vi V]
A= Vi = Vi) (Vi + Vi) = (1= Vi = Vi) (Vi + Vi) (h—7)
[(1 —V;)(1—=Vy)— Vijvji}

This can be used to determine efficiently the best value of the parameter C' based
on the leave-one-out error.

Observe that the sum of the entries of each row of K or each row of K is
zero. Let M; € R™*! be column matrix with all entries equal to 1. In view of
this observation, KM; = 0, thus (I + K)M; = M;, (I +K)"'M; = M;, and
UM, = C'K"(I+K)"'M; = C'K"M; = 0. This shows that the sum of the
entries of each row of U is also zero, which yields the following identity for the
matrix V:

B 1 B U; +U;;  (m—1)U; + Uy
VU - UU m — Z Ulk - U?,_] + m—2 = m—9 . (27)
kg{i,j}
Hence the matrix V computes
m B m B m—1
> Viklys —9) =Y Vis(us = 9) = — hlx:). (28)
k=1 k=1

These identities further simplify the expression of matrix V and its relationship
with h.

3 Stability bounds

Bousquet and Elisseeff (2000) and Bousquet and Elisseeff (2002) gave stability
bounds for several regression and classification algorithms. This section shows
similar stability bounds for ranking and magnitude-preserving ranking algo-
rithms. This also generalizes the results of Agarwal and Niyogi (2005) which
were given in the specific case of bi-partite ranking.

The following definitions are natural extensions to the case of cost functions
over pairs of those given by Bousquet and Elisseeff (2002).



Definition 1. A learning algorithm L is said to be uniformly B-stable with re-
spect to the sample S and cost function c if there exists B > 0 such that for all
Se (X xR)™ and i € [1,m],

Vz,z' € X, |c(hs,z,2") — c(hg-i,z,2")| < B. (29)

Definition 2. A cost function c is is o-admissible with respect to a hypothesis
set H if there exists 0 > 0 such that for all h,h' € H, and for all xz,2' € X,

le(h,2,2") = c(W, 2, 2")| < o(|AR(2")| + |Ah(z)]), (30)
with Ah = h' — h.

3.1 Magnitude-preserving regularization algorithms

For a cost function ¢ such as those just defined and a regularization function IV,
a regularization-based algorithm can be defined as one minimizing the following
objective function:

Flh8) = N+ O 323l (31)
i=1 j=1

where C' > 0 is a constant determining the trade-off between the emphasis on
the regularization term versus the error term. In much of what follows, we will
consider the case where the hypothesis set H is a reproducing Hilbert space
and where N is the squared norm in a that space, N(h) = ||h||% for a kernel
K, though some of our results can straightforwardly be generalized to the case
of an arbitrary convex N. By the reproducing property, for any h € H, Vo €
X, h(z) = (h, K(z,.)) and by Cauchy-Schwarz’s inequality,

Ve e X, |h(x)| < ||h|lx vV K (z,z). (32)

Assuming that for all z € X, K(x,2) < k2 for some constant x > 0, the in-
equality becomes: Vo € X, |h(x)| < k| h|x. With the cost functions previously
discussed, the objective function F is then strictly convex and the optimization
problem admits a unique solution. In what follows, we will refer to the algo-
rithms minimizing the objective function F' with a cost function defined in the
previous section as magnitude-preserving regularization algorithms.

Lemma 1. Assume that the hypotheses in H are bounded, that is for all h € H
and x € S, |h(z)—yz| < M. Then, the cost functions cfir, chip: Clivps and iy
are all o, -admissible with o1 =1, o9 = 4M.

Proof. We will give the proof in the case of cy;p, n = 1,2, the other cases can
be treated similarly.
By definition of cj;p, for all z,2" € X,

leap (W, 2,2) = eygp(hy @, 2)] = [|(B (@) = B (2) = (yor —9)l = (33)
|(A(z") = 1(x)) = (g2 — ya)I|.



Using the identity [|X' —Y|—|X - V|| < |X’' — X|, valid for all X, X".Y € R,
it follows that

|Cll\/IP(h/7 €, x/) - Cll\/IP(hv Z, x/)l < |Ah(I/) - Ah($)| (34)
< [An(a)| + |Ah(z)], (35)

which shows the o-admissibility of cjp with o = 1. For ¢3;p, for all z,2’ € X,

|Cl2\/IP(h/7 ‘T7$/) - 012\/IP(h7 T, x/)l = ||(h/(.%'/) - h/(.’L')) - (yw’ - yw)|2 (36)
=[(n(a") = h(2)) = (Yo = ya) |
< |Ah(z") = Ah(@)|(IW (") = yar| + (37)
(") = yar| + |1 (2) = yal + |1(2) = )
< AM(|AR()] + [Ah(2)]), (38)
which shows the o-admissibility of c¢ip with o = 4M. O

Proposition 3. Assume that the hypotheses in H are bounded, that is for all
he H andx € S, |h(x)—ys| < M. Then, a magnitude-preserving regqularization

algorithm as defined above is [(B-stable with 3 = %.

Proof. Fix the cost function to be ¢, one of the o,-admissible cost function
previously discussed. Let hg denote the function minimizing F'(h,S) and hg-»
the one minimizing F'(h, S~%). We denote by Ahg = hg-» — hs.

Since the cost function ¢ is convex with respect to h(z) and h(z'), R(h, S) is
also convex with respect to h and for ¢ € [0, 1],

R(hs + tAhs, S7%) — R(hs, S7%) < t [fz(hs,k ,S7F) — R(hs, s—k)} . (39)
Similarly,
R(hg-x —tAhg, 87%) — R(hg-x,S7F) < t [fz(hs, S7EY — R(hg-+, s—’f)] . (40)
Summing these inequalities yields

R(hs +tAhs, S™") = R(hs, S™%) + R(hg—r — tAhs, S7%) — R(hg—x,S™%) < 0. (41)

By definition of hg and hg-« as functions minimizing the objective functions,
for all t € [0, 1],

F(hs,S)—F(hs+tAhs,S) <0 and F(hg-x,S ") = F(hg-r —tAhs,S™%) < 0. (42)

Multiplying Inequality 41 by C' and summing it with the two Inequalities 42 lead
to

A+ ksl = llhs +tAhs|% + [hg-# | — [lhs—» — tARs||F < 0. (43)



with A = C (fz(hs, S) — R(hs,S~")+ R(hs + tAhg, S~%) — R(hs + tAhs, S)).
Since

A= % [ Zc(hg,xi,xk) —c(hs +tAhg, z;, )+
iy (44)
Z c(hs,zr, i) — c(hs + tAhg, x), ;)]
ik
by the o,-admissibility of c,
2Cto,
m2

4Cto,k

m

4] < > (1Ahs(xi)| + [Ahs(x:)]) <

i#k

[PAVEY

Using the fact that ||h||% = (h, h) for any h, it is not hard to show that
IhslF = llhs + tAhs|% + [lhs-x |7 — [hg-+ — tAhs]|lF = 2t(1 — )| Ahs| %

In view of this and the inequality for | 4|, Inequality 43 implies 2¢(1—t)|| Ahg]|% <
4Ctour | Ahg||k, that is after dividing by ¢ and taking t — 0,

2Coy,
||k < 257n8 (45)
m

By the o,-admissibility of ¢, for all z,2’ € X,

lc(hs, @, a") = c(hg-x, z,2")| < on(|Ahs(2')] + |Ahs()]) (46)
S ZO'nHHAhSnK (47)
2,2
m

This shows the g-stability of the algorithm with § =

2 2
4Co, K
—

To shorten the notation, in the absence of ambiguity, we will write in the
following R(hg) instead of R(hg, S).

Theorem 1. Let ¢ be any of the cost functions defined in Section 2.1. Let L be
a uniformly B-stable algorithm with respect to the sample S and cost function c
and let hg be the hypothesis returned by L. Assume that the hypotheses in H are
bounded, that is for all h € H, sample S, and x € S, |h(x) — y.| < M. Then,
for any € >0,

D L me®
SPrD [|R(h5) — R(hg)| > e+ 20| <2e 2Bm+@M™MT, (49)

Proof. We apply McDiarmid’s inequality (McDiarmid, 1998) to @#(S) = R(hs) —
R(hsg, S). We will first give a bound on E[®(S)] and then show that &(S) satisfies
the conditions of McDiarmid’s inequality.

We will denote by S*J the sample derived from S by replacing x; with

and x; with 2, with 2} and z’; sampled i.i.d. according to D.



Since the sample points in S are drawn in an i.i.d. fashion, for all 4, j € [1,m],

N 1 m m
Es[R(hs, 5)] = — > Ele(hs, zi,x))] (50)
i=1 j=1
:ESND[C(hS,Ii,Ij)] (51)
= Egiioplc(hgii, z), )] (52)
= ES,wé,m;va[c(hSi’j71";71";‘)]' (53)

Note that by definition of R(hs), Es[R(hs)] = Es s ~plc(hs, z}, 2})]. Thus,

[RRad]
Es[®(S)] = Eszu[c(hs, v}, 2%) — c(hgis, 2}, 2})], and by B-stability (Proposi-
tion 3)

|Es[@(9)]| < Es,za[lc(hs, x5, @) — c(hsi, 2}, 25)[] + (54)
Es o ollc(hgi, o), 2) — c(hgis, o), )] (55)
< 2. (56)
Now,
|R(hs) — R(hgr)| = | Eslc(hs, z,2") — c(hgr, 2, 2)]] (57)
< Esllc(hs, z,2") — c(hgr, z,2")]] (58)
< B (59)

Forany z,2" € X, |c(hs, xk, xj)—c(hgr, i, 2})| < Eg[lc(hgr, z, 2" )—c(hgr, z, 2')|]
(2M)™, where n =1 or n = 2. Thus, we have

R(hs) — RO < —5 33 lelhs, mi,3y) — elhsw,zoa) + (60)

itk j#k
1 m
WZ|C(hSaIk7xj)_C(hSkaI;ij”+ (61)
j=1
1 m
WZ|C(hSaIk7$j) — c(hgk, 5,27, (62)
i=1
1 2 m n n
< W(m ﬁ)+m2(2M) =pB+202M)"/m. (63)
Thus,
B(S) — B(S*)| < 2(8+ (2M)" /m), (64)
and @(9) satisfies the hypotheses of McDiarmid’s inequality. O

The following Corollary gives stability bounds for the generalization error of
magnitude-preserving regularization algorithms.

Corollary 1. Let L be a magnitude-preserving reqularization algorithm and let
¢ be the corresponding cost function and assume that for allx € X, K (z,x) < k2.
Assume that the hypothesis set H is bounded, that is for all h € H, sample S,
and x € S, |h(x) — yz| < M. Then, with probability at least 1 — 4,

<



— forn=1,

=~ 8Kk2C 2 2
hs) < R(h 2(2K2 Z oo =
R(hs) < R(hg) + ——+ (HC—I—M)\/mog&, (65)
— forn =2,

~ 128k2CM? 2 2
Rihs) < R(hs) + M hvpaenie + Dy —log s (66)

m

2 2
4Co, K
—

Proof. By Proposition 3, these algorithms are [-stable with g =

These bounds are of the form R(hg) < R(hg)+ O(\/%) Thus, they are effective
for values of C' < /m.

4 Experiments

In this section, we report the results of experiments with two of our magnitude-
preserving algorithms, MPRank and SVRank.

The algorithms were tested on four publicly available data sets, three of which
are commonly used for collaborative filtering: MovieLens, Book-Crossings, and
Jester Joke. The fourth data set is the Netflix data. The first three datasets are
available from the following URL:

http://www.grouplens.org/taxonomy/term/14.
The Netflix data set is available at

http://www.netflixprize.com/download.

4.1 MovieLens Dataset

The MovieLens dataset consists of approximately 1M ratings by 6,040 users for
3,900 movies. Ratings are integers in the range of 1 to 5. For each user, a different
predictive model is designed. The ratings of that user on the 3,900 movies (not
all movies will be rated) form the target values y;. The other users’ ratings of
the ¢th movie form the ith input vector x;.

We followed the experimental set-up of Freund et al. (1998) and grouped the
reviewers according to the number of movies they have reviewed. The groupings
were 20 — 40 movies, 40 — 60 movies, and 60 — 80 movies.

Test reviewers were selected among users who had reviewed between 50 and
300 movies. For a given test reviewer, 300 reference reviewers were chosen at
random from one of the three groups and their rating were used to form the
input vectors. Training was carried out on half of the test reviewer’s movie
ratings and testing was performed on the other half. The experiment was done
for 300 different test reviewers and the average performance recorded. The whole



Table 1. Performance results for MPRank, SVRank, and RankBoost.

DATA SET MEAN SQUARED DIFFERENCE MEAN 1-NORM DIFFERENCE

MPRANK SVRANK RB0oOST MPRANK SVRANK RBoOST
MOVIELENS 2.01 2.43 12.88 1.04 1.17 2.59
20-40 + 0.02 £+ 0.13 =+ 2.15 + 0.05 £ 0.03 =+ 0.04
MOVIELENS 2.02 2.36 20.06 1.04 1.15 2.99
40-60 + 0.06 £ 0.16 =+ 2.76 + 0.02 £ 0.07 =+ 0.12
MOVIELENS 2.07 2.66 21.35 1.06 1.24 3.82
60-80 + 0.05 £ 0.09 =+ 2.71 + 0.01 £ 0.02 =+ 0.23
JESTER 51.34 55.00 77.08 5.08 5.40 5.97
20-40 + 290 +£5.14 +£17.1 + 0.15 £ 0.20 =+ 0.16
JESTER 46.77 57.75 80.00 4.98 5.27 6.18
40-60 + 203 £514 £ 18.2 +0.13 £ 0.20 =£0.11
JESTER 49.33 56.06 88.61 4.88 5.25 6.46
60-80 + 3.11 £4.26 =+ 18.6 +0.14 £ 0.19 =+ 0.20
NETFLIX 1.58 1.80 57.5 0.92 0.95 6.48
DENSITY:32% + 0.04 +£0.05 +£7.8 + 0.01 £ 0.02 =+ 0.55
NETFLIX 1.55 1.90 23.9 0.95 1.02 4.10
DENSITY:46% + 0.03 £ 0.06 =£2.9 + 0.01 £ 0.02 =+ 0.23
NETFLIX 1.49 1.93 12.33 0.94 1.06 3.01
DENSITY:58% + 0.03 £ 0.06 4+ 1.47 + 0.01 £ 0.02 =+ 0.15
Books 4.00 3.64 7.58 1.38 1.32 1.72

+ 3.12 £+ 3.04 +£9.95 + 0.60 £ 0.56 =+ 1.05

process was then repeated ten times with a different set of 300 reviewers selected
at random. We report mean values and standard deviation for these ten repeated
experiments for each of the three groups. Missing review values in the input
features were populated with the median review score of the given reference
reviewer.

4.2 Jester Joke Dataset

The Jester Joke Recommender System dataset contains 4.1M continuous ratings
in the range -10.00 to +10.00 of 100 jokes from 73,496 users. The experiments
were set up in the same way as for the MovieLens dataset.

4.3 Netflix Dataset

The Netflix dataset contains more than 100M ratings by 480,000 users for 17,700
movies. Ratings are integers in the range of 1 to 5. We constructed three subsets



of the data with different user densities. Subsets were obtained by thresholding
against two parameters: the minimum number of movies rated by a user and
the minimum of ratings for a movie. Thus, in choosing users for the training
and testing set, we only consider those users who have reviewed more than 150,
500, or 1500 movies respectively. Analogously, in selecting the movies that would
appear in the subset data, we only consider those movies that have received at
least 360, 1200, or 1800 reviews. The experiments were then set-up in the same
way as for the MovieLens dataset. The mean densities of the three subsets (across
the ten repetitions) were 32%, 46% and 58% respectively. Finally, the test raters
were selected from a mixture of the three densities.

4.4 Book-Crossing Dataset

The book-crossing dataset contains 1,149,780 ratings for 271,379 books for a
group of 278,858 users. The low density of ratings makes predictions very noisy
in this task. Thus, we required users to have reviewed at least 200 books, and
then only kept books with at least 10 reviews. This left us with a dataset of 89
books and 131 reviewers. For this dataset, each of the 131 reviewers was in turn
selected as a test reviewer, and the other 130 reviewers served as input features.
The results reported are mean values and standard deviations over these 131
leave-one-out experiments.

4.5 Performance Measures and Results

The performance measures we report correspond to the problem we are solving.
The cost function of MPRank is designed to minimize the squared difference
between all pairs of target values, hence we report the mean squared difference
(MSD) over all pairs in the test set of size m’ of a hypothesis h:

1

m/2

> ((hlxy) = b)) = (y; — wi)°- (67)
=1

=1y

M=

The cost function of SVRank minimizes the absolute value of the difference be-
tween all pairs of examples, hence we report the average of the 1-norm difference,
M1D:

1 m m

— 33 hlag) — b)) — (35— i)l (68)
i=1 j=1

The results for MPRank and SVRank are obtained using Gaussian kernels. The

width of the kernel and the other cost function parameters were first optimized

on a held-out sample. The performance on their respective cost functions was

optimized and the parameters fixed at these values.

The results are reported in Table 1. They demonstrate that the magnitude-
preserving algorithms are both successful at minimizing their respective objec-
tive. MPRank obtains the best MSD values and the two algorithms obtain com-
parable M1D values. However, overall, in view of these results and the superior



Table 2. Comparison of MPRank and RankBoost for pairwise misrankings.

DATA SET PAIRWISE MISRANKINGS
MPRANK RBoosT
MovVIELENS 0.471 0.476
40-60 + 0.005 0 £+ 0.007
MovVIELENS 0.442 0.463
60-80 + 0.005 + 0.011
JESTER 0.414 0.479
20-40 + 0.005 + 0.008
JESTER 0.418 0.432
40-60 + 0.007 + 0.005
NETFLIX 0.433 0.447
DENSITY:32% + 0.018 + 0.027
NETFLIX 0.368 0.327
DENSITY:46% + 0.014 + 0.008
NETFLIX 0.295 0.318
DENSITY:58% + 0.006 =+ 0.008

computational efficiency of MPRank already pointed out in the previous section,
we consider MPRank as the best performing algorithm for such tasks.

To further examine the ranking properties of MPRank we conducted a num-
ber of experiments where we compared the pairwise misranking performance
of the algorithm to that of RankBoost, an algorithm designed to minimize the
number of pairwise misrankings (Rudin et al., 2005). We used the same features
for RankBoost as for MPRank that is we used as weak rankers threshold func-
tions over other reviewers’ ratings. As for the other algorithms, the parameter of
RankBoost, that is the number of boosting rounds required to minimize pairwise
misranking was determined on a held-out sample and then fixed at this value.

Table 2 shows a comparison between these two algorithms. It reports the
fraction of pairwise misrankings for both algorithms using the same experimental
set-up as previously described:

m/ 1
Zi,j:l yi>y; Ah(xi) <h(z;)

m/
Zi,j:l Ly >y,

(69)

The results show that the pairwise misranking error of MPRank is comparable to
that of RankBoost. This further increases the benefits of MPRank as a ranking
algorithm.
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Fig. 1. (a) Convergence of the on-line learning algorithm towards the batch solution.
Rounding errors give rise to slightly different solutions. (b) Training time in seconds
for the on-line and the batch algorithm. For small training set sizes the batch version
is fastest, but for larger training set sizes the on-line version is faster. Eventually the
batch version becomes infeasible.

We also tested the performance of RankBoost with respect to MSD and
MI1D (see Table 1). Naturally, RankBoost is not designed to optimize these
performance measure and does not lead to competitive results with respect to
MPRank and SVRank on any of the datasets examined.

4.6 On-line Version of MPRank

Using the Netflix data we also experimented with the on-line version of MPRank
described in Section 2.5. The main questions we wished to investigate were the
convergence rate and CPU time savings of the on-line version with respect to the
batch algorithm MPRank (Equation 13). The batch solution requires a matrix
inversion and becomes infeasible for large training sets.

Figure 1(a) illustrates the convergence rate for a typical reviewer. In this
instance, the training and test sets each consisted of about 700 movies. As can
be seen from the plot, the on-line version converges to the batch solution in
about 120 rounds, where one round is a full cycle through the training set.

Based on monitoring several convergence plots, we decided on terminating
learning in the on-line version of MPRank when consecutive rounds of iterations
over the full training set would change the cost function by less than .01 %.
Figure 1(b) compares the CPU time for the on-line version of MPRank with the
batch solution. For both computations of the CPU times, the time to construct
the Gram matrix is excluded. The figure shows that the on-line version is signifi-



cantly faster for large datasets, which extends the applicability of our algorithms
beyond the limits of intractable matrix inversion.

5 Conclusion

We presented several algorithms for magnitude-preserving ranking problems and
provided stability bounds for their generalization error. We also reported the re-
sults of several experiments on public datasets comparing these algorithms. We
presented an on-line version of one of the algorithms and demonstrated its appli-
cability for very large data sets. We view accurate magnitude-preserving ranking
as an important problem for improving the quality of modern recommendation
and rating systems. An alternative for incorporating the magnitude of prefer-
ences in cost functions is to use weighted AUC, where the weights reflect the
magnitude of preferences and extend existing algorithms. This however, does not
exactly coincide with the objective of preserving the magnitude of preferences.
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