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Abstract ditional O(n?|Vp|?) complexity, leading to an over-

_ . _ all O(n®|Vp|?) parsing complexity, wher¢Vp| is
We present a method for induction of concise anghe nymber of delexicalized non-terminals (Eisner,
accurate probabilistic context-free grammars for ef1997)_ Even with special modifications to the ba-
ficient use in early stages of a multi-stage parsingic cyk algorithm, such as those presented by Eis-
technique. The method is based on the use of Stgar ang Satta (1999), improvements to the stochastic

tistical tests to determine if a non-terminal Combi‘model are obtained at the expense of efficiency.
nation is unobserved due to sparse data or hard SYN1 addition to the significant cost in efficiency

tactic constraints. Experimental results show that

. . . . . _“Ihcreasing the non-terminal set impacts parame-
using this method, high accuracies can be ach|ev_?gf estimation for the stochastic model. With

with a non-terminal set that is orders of magni- . .
) . . > . more productions, much fewer observations per

tude smaller than in typically induced probabilistic . . . i
. . roduction are available and one is left with the
context-free grammars, leading to substantial speeg-

ups in parsing. The approach is further used in com-Ope that a subsequent smoothing technique can

C . S : effectively deal with this problem, regardless of
bination with an existing reranker to provide com- . .
" . the number of non-terminals created. Klein and
petitive WSJ parsing results.

Manning (2003b) showed that, by making certain
linguistically-motivated node label annotations, but
avoiding certain other kinds of state splits (mainly

There is a very severe speed vs. accuracy tradedfxical annotations) models of relatively high accu-
in stochastic context-free parsing, which can be exacy can be built without resorting to smoothing.
plained by the grammar factor in the running-timel'he resulting grammars were small enough to al-
complexity of standard parsing algorithms such a9w for exhaustive CYK parsing; even so, parsing
the CYK algorithm (Kasami, 1965; Younger, 1967).speed was significantly impacted by the state splits:
That algorithm has complexit (n?| P|), wherenis ~ the test-set parsing time reported was about 3s for
the length in words of the sentence parsed,|@tjds ~average length sentences, with a memory usage of
the number of grammar productions. Grammar nonlGB.

terminals can be split to encode richer dependen- This paper presents an automatic method for de-
cies in a stochastic model and improve parsing aciding which state to split in order to create concise
curacy. For example, the parent of the left-hand sidend accurate unsmoothed probabilistic context-free
(LHS) can be annotated onto the label of the LHgrammars (PCFGs) fazfficientuse in early stages
category (Johnson, 1998), hence differentiating, fasf a multi-stage parsing technique. The method is
instance, between expansions of a VP with parenti@&sed on the use of statistical tests to determine if
and parent VP. Such annotations, however, tend & non-terminal combination is unobserved due to
substantially increase the number of grammar prdhe limited size of the samplesédmpling zerp or
ductions as well as the ambiguity of the grammaibecause it is grammatically impossiblstr(ctural
thereby significantly slowing down the parsing algozerd. This helps introduce arelatively small number
rithm. In the case of bilexical grammars, where catef new non-terminals with little additional parsing
egories in binary grammars are annotated with theoverhead. Experimental results show that, using this
lexical heads, the grammar factor contributes an adaethod, high accuracies can be achieved with orders

1 Introduction
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Figure 1:Five representations of anary productiony = 4. (a) Original production (b) Right-factored productior) Right-
factored Markov order-2 (d) Right-factored Markov ordefe] Right-factored Markov order-0

of magnitude fewer non-terminals than in typicallyMaking such a Markov assumption is closely re-
induced PCFGs, leading to substantial speed-upsla@ted to grammar transformations required for cer-
parsing. The approach can further be used in comtiin efficient parsing algorithms. For example, the
nation with an existing reranker to provide competi-CYK parsing algorithm takes as input a Chomsky
tive WSJ parsing results. Normal Form PCFG, i.e., a grammar where all pro-
The remainder of the paper is structured as foductions are of the forrKk — YZ or X — a,
lows. Section 2 gives a brief description of PCFGvhere X, Y, and Z are non-terminals and a ter-
induction from treebanks, including non-terminalminal symbolt. Binarized PCFGs are induced from
label-splitting, factorization, and relative frequencya treebank whose trees have been factored so that
estimation. Section 3 discusses the statistical criteri@ary productions withn >2 become sequences of
that we explored to determine structural zeros and—1 binary productions. Full right-factorization in-
thus select non-terminals for the factored PCFG. Firolves concatenating the final-1 categories from
nally, Section 4 reports the results of parsing experthe RHS of am-ary production to form a new com-
ments using our exhaustivebest CYK parser with posite non-terminal. For example, the original pro-
the concise PCFGs induced from the Penn WSJ tregtiction NP— DT JJ NN NNS shown in Figure 1(a)

bank (Marcus et al., 1993). is factored into three binary rules, as shown in Fig-
] ] ure 1(b). Note that a PCFG induced from such right-
2 Grammar induction factored trees is weakly equivalent to a PCFG in-

A context-free gramma = (V, T st P), or CFG duced from the original treebank, i.e., it describes
in short, consists of a set of non-terminal symbsls "€ same language.

a set of terminal symbolg, a start SymboBT cv, From such a factorization, one can make a
and a set of productio® of the form: 4 — « Markov assumption for estimating the production

whereA € V anda € (V UT)*. APCFGis a probabilities by simply recording only the labels of

CFG with a probability assigned to each productiont€ firstx children dominated by the composite fac-
red label. Figure 1 (c), (d), and (e) show right-

Thus, the probabilities of the productions expandinéo
actored trees of Markov orders 2, 1 and 0 respec-

a given non-terminal sum to one. ¢ - - )
tively.? In addition to being used for smoothing
2.1 Smoothing and factorization as mentioned above, these factorizations reduce the

PCFEGs induced from the Penn Treebank have maiZe of the non-terminal set, which in turn improves
productions with long sequences of non-terminal§ YK efficiency. The efficiency benefit of making a

on the RHS. Probability estimates of the RHS give¥arkov assumption in factorization can be substan-
the LHS are often smoothed by making a Markov 1our implementation of the CYK algorithm has been ex-
assumption regarding the conditional independendended to allow for unary productions with non-terminals on

: the RHS in the PCFG.
ofa (_:ategory on thOS? more tharcategories away Note that these factorizations do not provide exactly the
(Collins, 1997; Charniak, 2000): stated Markov order for all dependencies in the productions

because we are restricting factorization to only produocadyi

n productions. For example, in Figure 1(e), the probabilitthe
P(X — Y1..Yn)=P(Mi[X) [[P(Vil X, V1 Vi) final NNS depends on the preceding NN, despite the Markov
=2 order-0 factorization. Because of our focus on efficient CYK
~ P(Y1|X) H P(Yi|X,Yi_p - Yio1). we accept these higher order dependencies rather thancprodu

bl ing unary productions. Only n-ary rules>2 are factored.



PCFG Time (s) | Words/s 4 |P| LR LP F
Right-factored 4848 6.7 | 10105 | 23220 69.2 | 73.8| 71.5
Right-factored, Markov order-2 1302 249 2492 11659] 68.8| 73.8 | 71.3
Right-factored, Markov order-1 445 72.7 564 | 6354 68.0| 73.0| 70.5
Right-factored, Markov order-0 206 157.1 99| 3803| 61.2| 65.5| 63.3
Parent-annotated, Right-factored, Markov ordef-2 7510 | 43| 5876 22444] 76.2| 783 77.2

Table 1:Baseline results of exhaustive CYK parsing using diffepgababilistic context-free grammars. Grammars are tchine
from sections 2-21 of the Penn WSJ Treebank and tested oard#irices of section 24 (no length limit), given weighkedest
POS-tagger output. The second and third columns reporthégarsing time in seconds and the number of words parsed pe
second. The number of non-terming®|, is indicated in the next column. The last three columns shmndbeled recall (LR),
labeled precision (LP), and F-measure (F).

tial, given the reduction of both non-terminals andhe sum of the exponential of the weights of all can-
productions, which improves the grammar constantlidates with that tag at positiansoftmax).
With standard right-factorization, as in Figure 1(b), The parser is an exhaustive CYK parser that takes
the non-terminal set for the PCFG induced from se@advantage of the fact that, with the grammar fac-
tions 2-21 of the Penn WSJ Treebank grows frontorization method described, factored non-terminals
its original size of 72 to 10105, with 23220 produc-can only occur as the second child of a binary pro-
tions. With a Markov factorization of orders 2, 1 andduction. Since the bulk of the non-terminals result
0 we get non-terminal sets of size 2492, 564, and 9&pom factorization, this greatly reduces the number
and rule production sets of 11659, 6354, and 3808f possible combinations given any two cells. When
respectively. parsing with a parent-annotated grammar, we use a
These reductions in the size of the non-terminalersion of the parser that also takes advantage of the
set from the original factored grammar result in arpartitioning of the non-terminal set, i.e., the fact that
order of magnitude reduction in complexity of theany given non-terminal has already its parent indi-
CYK algorithm. One common strategy in statisti-cated in its label, precluding combination with any
cal parsing is what can be termed an approximaton-terminal that does not have the same parent an-
coarse-to-fine approach: a simple PCFG is used fwtated.
prune the search space to which richer and more Table 1 shows baseline results for standard right-
complex models are applied subsequently (Chafactorization and factorization with Markov orders
niak, 2000; Charniak and Johnson, 2005). Produ®-2. Training consists of applying a particular gram-
ing a “coarse” chart as efficiently as possible is thugiar factorization to the treebank prior to inducing
crucial (Charniak et al., 1998; Blaheta and Charniala PCFG using maximum likelihood (relative fre-
1999), making these factorizations particularly usequency) estimation. Testing consists of exhaustive

ful. CYK parsing of all sentences in the development set
(no length limit) with the induced grammar, then de-
2.2 CYK parser and baselines transforming the maximum likelihood parse back to

] ] ] o the original format for evaluation against the refer-
To illustrate the importance of this reduction in nonypce parse. Evaluation includes the standard PAR-
terminals for efficient parsing, we will present baseggya| measures labeled precision (LP) and labeled
line parsing results for a development set.  FOfgcq|| (LR), plus the harmonic mean (F-measure) of

these baseline trials, we trained a PCFG on Sefese two scores. We also present a result using

tions 2-21 of the Penn WSJ Treebank (40K Sensarent annotation (Johnson, 1998) with a 2nd-order
tences, 936k words), and evaluated on section

arkov assumption. Parent annotation occurs prior

(1346 sentences, 32k words). The parser takes @Syeapank factorization. This condition is roughly
input the weightedk-best POS-tag sequences of %quivalent to thé = 1,v = 2 in Klein and Manning
perceptron-trained tagger, using the tagger docg@2003by_

mented in Hollingshead et al. (2005). The number g,y these results, we can see the large efficiency
of tagger candidatek for all trials reported in this

paper was 0.2, wheren is the length of the string. *Their Markov order-2 factorization does not follow the lin-

E the weiahted:-best list. we derive a condi- ear order of the children, but rgthgrlncludes the head%@ids

] rom g ' = - one other, whereas our factorization does not involve itieat
tional probability of each tag at positiarby taking tion of the head child.



NP

TN

benefit of the Markov assumption, as the size of the
non-terminal and production sets shrink. However,

.. . . NP NP:
the efficiency gains come at a cost, with the Markov N
order-0 factored grammar resulting in a loss of a full o CC NN

8 perce_ntage p?'”tS of _F-rp_easure accuracy. Parqflbure 2:Markov order-0 local tree, with possible non-local
annotation provides a significant accuracy IMProveEstate-split information.

ment over the other baselines, but at a substantial
efficiency cost. by replacing the factored non-terminal NP: with
Note that the efficiency impact is not a strict funcNP:CC:NN whenever there is a CC and an NN com-

tion of either the number of non-terminals or pro-ining to form a factored NP non-terminal.
ductions. Rather, it has to do with the number of The expansion of the factored non-terminals is not
competing non-terminals in cells of the chart. Somé&he only event that we might consider. For exam-
grammars may be very large, but less ambiguous Ri€, a frequent left-most child of the first child of the
away that reduces the number of cell entries, so thafoduction, or a common left-corner POS or lexi-
only a very small fraction of the productions need t¢al item, might never occur with certain productions.
be applied for any pair of cells. Parent annotatiofror example, ‘SBAR-IN S’ and ‘IN—of" are both
does just the opposite — it increases the number 6pmmon IOrOdUCtIOﬂS_, but they never co-occur. We
cell entries for the same span, by creating entries fé@cus on left-most children and left-corners because
the same constituent with different parents. Somef the factorization that we have selected, but the
non-terminal annotations, e.g., splitting POS-tags byame idea could be applied to other possible state
annotating their lexical items, result in a large gramsplits.
mar, but one where the number of productions that Different statistical criteria can be used to com-
will apply for any pair of cells is greatly reduced. pare the counts of two events with that of their co-

Ideally, one would obtain the efficiency benefitoccurrence. This section examines several possible
of the small non-terminal set demonstrated with thériteria that are presented, for ease of exposition,
Markov order-0 results, while encoding key gramWith general sequences of events. For our specific
matical constraints whose absence results in an #UrPose, these sequences of events would be two
curacy loss. The method we present attempts f§l€ productions.
achieve this by using a statistical test to determing .

.1 Notation

structural zerosand modifying the factorization to
remove the probability mass assigned to them.  This section describes several statistical criteria to

determine if a sequence of two events should be
3 Detecting Structural Zeros viewed as a structural zero. These tests can be gen-
eralized to longer and more complex sequences, and
The main idea behind our method for detectingo various types of events, e.g., word, word class, or
structural zeros is to search for events that are imule production sequences.
dividually very frequent but that do not co-occur. Given a corpug’, and a vocabulary:, we denote
For example, consider the Markov order-O biby ¢, the number of occurrences afin C. Letn
nary rule production in Figure 2. The produc-be the total number of observations@n We will
tion NP—NP NP: may be very frequent, as is thedenote bya the set{b € ¥ : b # a}. Hencec; =
NP:—CC NN production, but they never co-occurn — c,. LetP(a) = 2, and forb € %, let P(a|b) =
together, because NP does not conjoin with NNz, Note thatcz, = ¢ — cqp.
in the Penn Treebank. If the counts of two such
eventss andb, e.g., NP>NP NP: and NR>CC NN 3.2 Mutual information
are very large, but the count of their co-occurrencghe mutual information between two random vari-
is zero, then the co-occurrence @fandb can be aplesX andY is defined as
viewed as a candidate for the list of events that
are structurally inadmissible. The probability mass I(X;Y) = ZP(x,y) log P(%l;(/) 1)

for the co-occurrence aof andb can be removed oy P(2)P(y)



For a particular event sequence of length twpthis  is that the context of event does not change the

suggests the following statistic: probability of seeingh. These discrete conditional
probabilities follow a binomial distribution, hence
I(ab) = logP(ab) —logP(a) —logP(b) the likelihood ratio is

= log Cab — 10g Cq — log cp + ]ogn
B[P<b)7 Cab, Ca] B[P(b), Cab, Ca]

Unfortunately, forc,, = 0, I(ab) is not finite. If we A= B[P(bla), cap, ca] B[P(b|a), cap, ca)’ ©)
assume, however, that all unobserved sequences are

iven some: count, then whem,, = 0,
J b whereB[p, z,y] = p*(1 — p)V~*( Z ). In the spe-

I(ab) = K —logcq —loga, (@) cial case where,, = 0, P(bja) = P(b), and this

whereK is a constant. Since we need these statistié&P' €510 ¢an be simplified as follows:

only for ranking purposes, we can ignore the con- (1= P(b))eP(b)at (1 — P(b))ce—cas

stant factor.
4 P(a)7w (1~ P(bfa))erew
3.3 Logoddsratio = (1—=P(b))™. (6)
Another statistic that, like mutual information, is ill-
defined with zeros, is thieg odds ratio The log-likelihood ratio, denoted liy?, is known to

A be asymptoticallyt’2-distributed. In this case,
log(0) = log cqap + log cz5 — log cap — log ¢ .
) G? = —2c,log(1 — P(b)), 7)
Here again, it:,;, = 0, log (@) is not finite. But, if we
assign to all unobserved pairs a small coynhen  and with the binomial distribution, it has has one
cab = 0, cay = ¢, and the expression becomes  degree of freedom, thus the distribution will have
. asymptotically a mean of one and a standard devia-
log(0) = K +log cz; — logcp, —logc,.  (3) tion of /2.
We experimented with all of these statistics.
o L e While they measure different ratios, empirically they
Foranyi,j € X, defineji;; = =. The Pearson gaam 1o produce very similar rankings. For the

chi-squared test of independence is then defined @§periments reported in the next section, we used

3.4 Pearson chi-squared

follows: the log-likelihood ratio because this statistic is well-
) (cii—itij)? (new—cicy) defined with zeros and is preferable to the Pearson
A= Z fij Z neic; chi-squared when dealing with rare events.
i € {a,a} i € {a,a}
je{bb} je{bb}

. .4 Experimental results
In the case of interest for ug,, = 0 and the statistic

simplifies to: We used the log-likelihood ratio statisti¢? to rank
unobserved eventsh, wherea C P andb € V. Let

V, be the original, unfactored non-terminal set, and
letw € (V, :)* be a sequence of zero or more non-
35 Loglikelihood ratio terminal/colon symbol pairs. Suppose we have a fre-
Pearson’s chi-squared statistic assumes a normal@uent factored non-termind :aB for X, B € V,.
approximately normal distribution, but that assumpThen, if the set of production’ — Y X:aA with

tion typically does not hold for the occurrences ofd € V, is also frequent, buK — Y X:aB is un-
rare events (Dunning, 1994). It is then preferable tobserved, this is a candidate structural zero. Simi-
use the likelihood ratio statistic which allows us tdar splits can be considered with non-factored non-
compare the null hypothesis, thatb) = P(bja) = terminals.

P(bla) = 2, with the hypothesis thd?(b|a) = < There are two state split scenarios we consider in
andP(bla) = %ab In words, the null hypothesis this paper. Scenario 1 is for factored non-terminals,

XQ — Ca% cgcb CaC,2, 05012, __ NCaCp (4)

n ncg nc, nCacy cacy



which are always the second child of a binary pro- ~ Unobserved production G2
. y . . yp (added NT(s) in bold) score
duction. For use in Equation 7, PP IN[that] NP 1631
SBAR — IN[thai] S[LVP] 5712.1
ca = Y (X —=YXaA) SBAR = IN[of] S 5270.5
Acv, SBAR — WHNP[LWDT] SLVP.TO] | 4299.9
VP — AUX VP[MD] 3972.1
o = c(XaB) forBel, SBAR= IN[in] S 3652.1
Cap = C(X — YXQB) NP — NP VP[VB] 3236.2
' NP — NN NP:CC:NP 2796.3
P(h) = c(X:aB) ‘ SBAR — WHNP SL.VP.VBG] 2684.9
ZAEVO c(X:aA) Table 2: Top ten non-terminals to add, and the unobserved

] ) ) _productions leading to their addition to the non-termirel s
Scenario 2 is for non-factored non-terminals, which

we will split using the leftmost child, the left-corner but they jointly never occur, since ‘INthat’ is a
POS-tag, and the left-corner lexical item, which aréomplementizer. This split non-terminal also shows
easily incorporated into our grammar factorizatiorp in the second-highest ranked zero, an SBAR with
approach. In this scenario, the non-terminal to bé&hat' complementizer and an S child that consists
split can be either the left or right child in the binaryof a unary VP. The unary-SVP production is very
production. Here we show the counts for the lefeommon, but never with a ‘that’ complementizer in

child case for use in Equation 7: an SBAR.

Note that the fourth-ranked production uses two
Co = Zc(X — Y[aA]Z) split non-terminals. The fifth ranked rule presum-
A ably does not add much information to aid parsing
e, = c(Y[aB]) disambiguation, since the AUX MD tag sequence is
cy = c(X —Y[aB]Z) unlikely*. The eighth ranked production is the first
ol e(Y[aB)) with a factored category, ruling out coordination be-

(0) SV [aA]) tween NN and NP,

Before presenting experimental results, we will
In this case, the possible splits are more complimention some practical issues related to the ap-
cated than just non-terminals as used in factoringoroach described. First, we independently parame-
Here, the first possible split is the left child cat-terized the number of factored categories to select
egory, along with an indication of whether it isand the number of non-factored categories to se-
a unary production. One can further split by indect. This was done to allow for finer control of the
cluding the left-corner tag, and even further byamount of splitting of non-terminals of each type.
including the left-corner word. For example, aTo choose 100 of each, every non-terminal was as-
unary S category might be split as follows: first tosigned the score of the highest scoring unobserved
S[1:VP] if the single child of the S is a VP; next production within which it occurred. Then the 100
to S[1:VP:VBD] if the left-corner POS-tag is VBD; highest scoring non-terminals of each type were
finally to S[1:VP:VBD:went] if the VBD verb was added to the base non-terminal list, which originally
‘went'. consisted of the atomic treebank non-terminals and
Note that, once non-terminals are split by annoMarkov order-0 factored non-terminals.
tating such information, the base non-terminals, e.g., Once the desired non-terminals are selected, the
S, implicitly encode contexts other than the ones thataining corpus is factored, and non-terminals are
were split. split if they were among the selected set. Note, how-
Table 2 shows the unobserved rules with thever, that some of the information in a selected non-
largestG? score, along with the ten non-terminalsterminal may not be fully available, requiring some
that these productions suggest for inclusion imumber of additional splits. Any non-terminal that is
our non-terminal set. The highest scoring unrequired by a selected non-terminal will be selected
observed production is PP- IN[that] NP. It re- —(——— ) , .
. “In fact, we do not consider splits when both siblings are

ceives sucha high score because the _base prOdUCth-tags, because these are unlikely to carry any synthistic
(PP— IN NP) is very frequent, and so is ‘INthat’,  ambiguation.
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Figure 3:F-measure accuracy on development set versus thdgure 4: F-measure accuracy versus words-per-second for
number of non-factored splits for the given run. Pointseepnt (1) no non-factored splits (i.e., only factored categorses

different numbers of factored splits. lected); (2) 500 non-factored splits, which was the bedoper-
ing; and (3) four baseline results.

itself. For example, suppose that NP:CC:NP wWag,racy improvements at relatively small efficiency
chosen as a factored non-terminal. Then the segygi.
ond child of any local tree with that non-terminal  15pie 3 shows the 1-best and reranked 50-best re-
on the LHS must either be an NP or a factorediis for the baseline Markov order-2 model, and
non-terminal with at least the first child identifiedpe best-performing model using factored and non-
as an NP, i.e., NP:NP. If that factored non-terming, iored non-terminal splits. We present the effi-
was not selected to be in the set, it must be adde@iency of the model in terms of words-per-second
The same situation occurs with left-corner tags ang\er the entire dev set, including the longer strings
words, which may be arbitrarily far below the Cate'(maximum length 116 word%) We used the:-best
gory. decoding algorithm of Huang and Chiang (2005)
After factoring and selective splitting of non-with our CYK parser, using on-dematebest back-
terminals, the resulting treebank corpus is used tgointer calculation. We then trained a MaxEnt
train a PCFG. Recall that we use thdest output of reranker on sections 2-21, using the approach out-
a POS-tagger to parse. For each POS-tag and lexigigled in Charniak and Johnson (2005), via the pub-
item pair from the output of the tagger, we reducgicly available reranking code from that pafexve
the word to lower case and check to see if the conyised the default features that come with that pack-
bination is in the set of split POS-tags, in which casgge. The processing time in the table includes the
we split the tag, e.g., IN[that]. time to parse and rerank. As can be seen from the
Figure 3 shows the F-measure accuracy for ourials, there is some overhead to these processes, but
trials on the development set versus the number ¢fie time is still dominated by the base parsing.
non-factored splits parameterized for the trial. From We present thé:-best results to demonstrate the
this plot, we can see that 500 non-factored spliteenefits of using a better model, such as the one we
provides the best F-measure accuracy on the deéwave presented, for producing candidates for down-
set. Presumably, as more than 500 splits are madsyeam processing. Even with severe pruning to only
sparse data becomes more problematic. Figuretde top 50 candidate parses per string, which re-
shows the development set F-measure accuracy veuits in low oracle and reranked accuracy for the
sus the number of words-per-second it takes to parséarkov order-2 model, the best-performing model
the development set, for non-factored splits of O andased on structural zeros achieves a relatively high
500, at a range of factored split parameterizationsracle accuracy, and reaches 88.0 and 87.5 percent
With 0 non-factored splits, efficiency is substantiallyF-measure accuracy on the dev (f24) and eval (f23)
impacted by increasing the factored splits, whereasets respectively. Note that the well-known Char-
it can be seen that with 500 non-factored splits, thatiak parser (Charniak, 2000; Charniak and Johnson,
impact is much less, so that the best performan@005) uses a Markov order-3 baseline PCFG in the
is reached with both relatively few factored non——————— ,
. . . . . The parsing time with our model for average length sen-
terminal splits, and a relatively small efficiency im-gnces (23-25 words) is 0.16 seconds per sentence.
pact. The non-factored splits provide substantial ac- °http://iwww.cog.brown.edu/"mj/code



No. of Development (f24) Eval (f23)
Technique Cands| Time(s) | Words/s | Oracle F| LR LP F LR LP F
Baseline, Markov order-2 1 1302 24.9 71.3 68.8| 73.8| 71.3|| 68.9| 73.9| 71.4
50 1665 19.4 86.2 79.7| 83.3] 815 80.5| 84.0| 82.2
NT splits: factored=200 1 491 65.9 83.7 83.1| 84.3| 83.7|| 82.4| 83.4| 82.9
non-factored=500 50 628 515 93.8 87.4|88.7] 880 87.1| 88.0| 875

Table 3:Parsing results on the development set (f24) and the eieiuset (f23) for the baseline Markov order-2 model and the
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