
Margin-Based Ranking Meets Boosting in the

Middle?

Cynthia Rudin1, Corinna Cortes2, Mehryar Mohri3, and Robert E. Schapire4

1 Howard Hughes Medical Institute, New York University
4 Washington Place, Room 809, New York, NY 10003

rudin@nyu.edu
2 Google Research, 1440 Broadway, New York, NY 10018

corinna@google.com
3 Courant Institute, New York University, 719 Broadway, New York, NY 10003

mohri@cs.nyu.edu
4 Princeton University, Department of Computer Science

35 Olden St., Princeton NJ 08544
schapire@cs.princeton.edu

Abstract. We present several results related to ranking. We give a gen-
eral margin-based bound for ranking based on the L∞ covering number
of the hypothesis space. Our bound suggests that algorithms that maxi-
mize the ranking margin generalize well.
We then describe a new algorithm, Smooth Margin Ranking, that pre-
cisely converges to a maximum ranking-margin solution. The algorithm
is a modification of RankBoost, analogous to Approximate Coordinate
Ascent Boosting.
We also prove a remarkable property of AdaBoost: under very natural
conditions, AdaBoost maximizes the exponentiated loss associated with
the AUC and achieves the same AUC as RankBoost. This explains the
empirical observations made by Cortes and Mohri, and Caruana and
Niculescu-Mizil, about the excellent performance of AdaBoost as a rank-
ing algorithm, as measured by the AUC.

1 Introduction

Consider the following supervised learning problem: Sylvia would like to get some
recommendations for good movies before she goes to the theater. She would like a
ranked list that agrees with her tastes as closely as possible, since she will see the
movie closest to the top of the list that is playing at the local theater. For many
pairs of movies she has seen, she will tell the learning algorithm whether she likes
the first movie better than the second. This allows her to rank whichever pairs
of movies she wishes, allowing for the possibility of ties between movies, and the
possibility that certain movies cannot necessarily be compared by her, e.g, she
may not compare action movies with cartoons. Another advantage of this type
of scoring over real-valued scoring is that Sylvia does not need to normalize her

? This work is partially supported by NSF grant CCR-0325463.

2 Cynthia Rudin, Corinna Cortes, Mehryar Mohri, and Robert E. Schapire

own scores in order to compare with the rankings of another person; she just
compares rankings on pairs of movies. Sylvia does not need to be consistent,
since she may rank a > b > c > a. Each pair of movies such that Sylvia ranks
the first above the second is called a “crucial pair”.

The learning algorithm has access to a set of n individuals (“weak rankers”, or
“ranking functions”) who also rank pairs of movies. The learning algorithm must
combine the views of the weak rankers in order to match Sylvia’s preferences,
and generate a recommendation list that will generalize her views. This type
of problem was studied in depth by Freund et al. [7], where the RankBoost
algorithm was introduced.

In order to give some indication that an algorithm will generalize well (e.g.,
we want the ranking algorithm to predict movies that Sylvia will like), one often
considers generalization bounds. Generalization bounds show that a small prob-
ability of error will most likely be achieved through a balance of the empirical
error and the complexity of the hypothesis space. This complexity can by mea-
sured by an informative quantity, such as the VC dimension, covering number,
Rademacher complexity, or a more specialized quantity, such as the bipartite
rank shatter coefficient [1], which was used to derive a generalization bound
specifically for the case of bipartite ranking. The “bipartite” ranking problem is
a special case of the ranking problem where there are only two classes, a positive
class, i.e., “good movies”, and a negative class, i.e., “bad movies”.

When deriving generalization bounds, it is illustrative to consider the “sep-
arable” case, where all training instances are correctly handled by the learning
algorithm so the empirical error is zero. The separable case in ranking means
that the algorithm’s chosen ranking is consistent with all crucial pairs; the al-
gorithm ranks the first instance in each crucial pair above the second. In the
bipartite ranking problem, the separable case means that all positive instances
are ranked above all negative instances, and the Area Under the ROC Curve
(AUC) is exactly one.

In the separable case for classification, one important indicator of a classifier’s
generalization ability is the “margin”, e.g., for boosting [15] and support vector
machines. Although the empirical success of an algorithm depends on many
factors (e.g., the type of data and how noisy it is), margin-based bounds often
do provide a reasonable explanation (though not a complete understanding) of
the success of many algorithms, both empirically and theoretically. Although
there has been some work devoted to generalization bounds for ranking [7, 1],
the bounds that we are aware of are not margin-based, and thus do not provide
this useful discrimination between ranking algorithms in the separable case.

In Section 3, we provide a margin-based bound for ranking in a general
setting. Our bound uses the L∞ covering number as the complexity measure for
the hypothesis space.

Since we are providing a general margin-based bound for ranking, we derive
algorithms which create large margins. For the classification problem, it was
proved that AdaBoost does not always maximize the margin [12]. In fact, Ada-
Boost does not even necessarily make progress towards increasing the margin at

Margin-Based Ranking Meets Boosting 3

every iteration. In analogy, RankBoost does not directly maximize the ranking
margin, and it may not increase the margin at every iteration. In Section 4.1 we
introduce a Smooth Margin Ranking algorithm, and prove that it makes progress
towards increasing the “smooth” ranking margin at every iteration; this is the
main step needed to prove convergence and convergence rates. This algorithm is
analogous to Approximate Coordinate Ascent Boosting [14, 13] in its derivation,
but the analogous proof that progress occurs at each iteration is much trickier;
hence we present a sketch of this proof here.

In the bipartite ranking problem, we want our recommendation list to mini-
mize the misranking error, e.g., the probability that a bad movie is ranked above
a good movie. The empirical version of this misranking error is closely related to
the AUC. RankBoost [7] minimizes an exponentiated version of this misranking
error, in analogy with the classification algorithm AdaBoost, which minimizes
an exponentiated version of the margins of training instances.

Although AdaBoost and RankBoost were derived analogously for the settings
of classification and ranking, the parallels between these algorithms are deeper
than their derivations. Cortes and Mohri [5] and Caruana and Niculescu-Mizil [3]
have noted that AdaBoost experimentally seems to be very good at the bipartite
ranking problem, even though it was RankBoost that was explicitly designed to
solve this problem, not AdaBoost. That is, AdaBoost often achieves a large AUC.
In Section 5, we show an important reason for these observations. Namely, if the
weak learning algorithm is capable of producing the constant classifier, i.e., the
classifier whose value is always one, then remarkably, AdaBoost and RankBoost
will produce the same solution.

We proceed from the most general to the most specific. In Section 3 we
provide a margin based bound for general ranking, which holds for each element
of the hypothesis space. In Sections 4.1 and 4.2 we fix the form of hypothesis
space to match that of RankBoost, i.e., the space of binary functions. Here, we
discuss coordinate-based ranking algorithms such as RankBoost, and introduce
the Smooth Margin Ranking algorithm. In Section 5, we focus on the bipartite
ranking problem. Here, we discuss conditions for AdaBoost to act as a bipartite
ranking algorithm by minimizing the exponentiated loss associated with the
AUC. Sections 3 and 4.2 focus on the separable case, and Sections 4.1 and 5
focus on the non-separable case.

The main contributions of this paper are: 1) a margin-based ranking bound,
2) a theorem stating that our Smooth Margin Ranking algorithm makes progress
at every iteration towards increasing the smooth ranking margin, and 3) condi-
tions when AdaBoost acts as a bipartite ranking algorithm.

2 Notation

The training set, denoted by S, is {xi}i=1,...,m, where xi ∈ X ⊂ R
N . The set X

may be finite or infinite. In the case of the movie ranking problem, the xi’s are the
movies and X is the database. The instances xi ∈ X are chosen independently
and at random (iid) from a fixed but unknown probability distribution D on X .

4 Cynthia Rudin, Corinna Cortes, Mehryar Mohri, and Robert E. Schapire

The notation x ∼ D means x is chosen randomly according to D, and S ∼ Dm

means the m elements of the training set S are chosen iid according to D.
The values of the “truth” function π : X ×X → {0, 1}, which is defined over

pairs of instances, are analogous to the “labels” in classification. If π(x̄, x̃) = 1,
the pair x̄, x̃ is a crucial pair, i.e., x̄ should be ranked more highly than x̃. We
require only that π(x̄, x̄) = 0, meaning x̄ cannot be ranked higher than itself,
and also π(x̄, x̃) = 1 implies π(x̃, x̄) = 0, meaning that if x̄ is ranked higher than
x̃, that x̃ cannot be ranked higher than x̄. (It is possible that these assumptions
may be dropped.) It is possible to have π(a, b) = 1, π(b, c) = 1, and π(c, a) = 1;
this forces us to be in the non-separable case. The quantity E := Ex̄,x̃∼Dπ(x̄, x̃) is
the expected fraction of pairs in the database that are crucial pairs, 0 ≤ E ≤ 1/2.
We assume that π is a deterministic (non-noisy) function, and that for each pair
of training instances xi,xk, we receive π(xi,xk).

Our goal is to construct a ranking function f : X → R, which gives a real
valued score to each instance in X . We do not care about the actual values of
each instance, only the relative values; for crucial pair x̄, x̃, we do not care if
f(x̄) = .4 and f(x̃) = .1, only that f(x̄) > f(x̃). Also, f ∈ L∞(X) (or if |X | is
finite, f ∈ `∞(X)).

In the usual setting of boosting for classification, ∀x, |f(x)| ≤ 1, and the
margin of training instance i (with respect to classifier f) is yif(xi), where
yi is the classification label, yi ∈ {−1, 1} [15]. The margin of classifier f is
the minimum margin over all training instances, mini yif(xi). Intuitively, the
margin tells us how much f can change before one of the training instances is
misclassified; it gives us a notion of how stable the classifier is.

For the ranking setting, we define an analogous notion of margin. Here, we
can normalize f so that |f | ≤ 1. The margin of crucial pair i,k with respect
to ranking function f will be defined as f(xi) − f(xk). The margin of ranking
function f , is the minimum margin over all crucial pairs,

µf := min
{i,k|[π(xi,xk)=1]}

f(xi) − f(xk).

Intuitively, the margin tells us how much the ranking function can change be-
fore one of the crucial pairs is misranked. As with classification, we are in the
separable case whenever the margin of f is positive.

3 A Margin-Based Bound for Ranking

In this section, we provide a bound which gives us an intuition for separable-case
ranking and yields theoretical encouragement for margin-based ranking algo-
rithms. The quantity we hope to minimize is analogous to the misclassification
probability for classification; for two randomly chosen instances, if they are a
crucial pair, we want to minimize the probability that these instances will be
misranked. That is, we want to minimize:

PD{misrankf}:=PD{f(x̄)≤f(x̃)|[π(x̄, x̃)=1]}=Ex̄,x̃∼D[1[f(x̄)≤f(x̃)]π(x̄, x̃)]

E
.

(1)

Margin-Based Ranking Meets Boosting 5

The numerator of (1) is the fraction of pairs that are both crucial and incorrectly
ranked by f , and the denominator, E := Ex̄,x̃∼Dπ(x̄, x̃) is the fraction of pairs
that are crucial pairs. Thus, PD{misrankf} is the proportion of crucial pairs that
are incorrectly ranked by f .

Since we do not know D, we may use only empirical quantities that rely on
our training sample. An empirical quantity analogous to PD{misrankf} is:

PS{misrankf} := PS{marginf ≤ 0} := PS{f(xi) ≤ f(xk)|[π(xi,xk) = 1]}

:=

∑m

i=1

∑m

k=1[1(f(xi)≤f(xk))π(xi,xk)]
∑m

i=1

∑m

k=1 π(xi,xk)
.

We make this definition more general, by allowing it to include a margin of θ ≥ 0:

PS{marginf ≤ θ} := PS{f(xi) − f(xk) ≤ θ|[π(xi,xk) = 1]}

=

∑m
i=1

∑m
k=1[1(f(xi)−f(xk)≤θ)π(xi,xk)]
∑m

i=1

∑m

k=1 π(xi,xk)
,

i.e., PS{marginf ≤ θ} is the fraction of crucial pairs in S × S with margin no
larger than θ.

We want to bound PD{misrankf} in terms of an empirical, margin-based
term and a complexity term. The type of complexity we choose is the L∞ cov-
ering number of the hypothesis space F , F ⊂ L∞(X). (Upper bounds on the
covering number can be calculated; see [6]). The covering number N (F , σ) is
defined as the minimum number of balls of radius σ needed to cover F , using
the L∞ metric. The following theorem is proved in Appendix A:

Theorem 1. For ε > 0, θ ≥ 0, for all f ∈ F ,

PS∼Dm

[

PD{misrankf}≤PS{marginf ≤θ}+ε
]

≥1−N
(

F ,
εθ

8

)

2 exp

[−m(εE)2

8

]

.

That is, with probability depending on m, E, θ, ε, and F , the misranking prob-
ability is less than the fraction of instances with margin below θ, plus ε.

We have chosen to write our bound in terms of E, but we could equally
well have used an analogous empirical quantity, namely Exi,xk∼Sπ(xi,xk) =

1
m(m−1)

∑m

i=1

∑m

k=1 π(xi,xk). This is an arbitrary decision; we cannot maximize

E in practice because the data is random. Either way, the bound tells us that the
margin should be an important quantity to consider in the design of algorithms.

As a special case of the theorem, we consider the case of a finite hypothesis
space F , where the covering number achieves its largest value (for any θ), i.e.,
N
(

F , εθ
4

)

= |F|. Now we can solve for ε:

δ := |F|2 exp

[

−m(εE)2

8

]

=⇒ ε =
1√
m

√

8

E2
(ln 2|F| + ln(1/δ)).

This could be compared directly with Theorem 1 of Schapire et al [15]. Cucker
and Smale [6] have reduced the factor ε2 to a factor of ε in certain cases; it is
possible that this bound may be tightened, especially in the case of a convex com-
bination of weak rankers. An interesting open problem is to prove generalization

6 Cynthia Rudin, Corinna Cortes, Mehryar Mohri, and Robert E. Schapire

bounds using Rademacher complexity or a more specialized bound analogous to
those of Koltchinskii and Panchenko [10]; here the trick would be to find an ap-
propriate symmetrization step. In any case, our bound indicates that the margin
is an important quantity for generalization.

4 Coordinate-Based Ranking Algorithms

In the previous section we presented a uniform bound that holds for all f ∈ F .
In the following we discuss how a learning algorithm might pick one of those
functions, in order to make PD{misrankf} as small as possible, based on intuition
gained from the bound of Theorem 1; the bound reveals the margin to be a
useful quantity in the learning process, so it deserves consideration in our design
of algorithms.

In Section 4.1, we discuss RankBoost’s objective function F̃ . Then, we de-
scribe a coordinate descent algorithm on this objective. In Section 4.2 we define
the smooth ranking margin G̃, present the Smooth Margin Ranking algorithm,
and prove that it makes progress towards increasing G̃ at each iteration and
converges to a maximum margin solution.

4.1 Coordinate Descent on RankBoost’s Objective

We consider the hypothesis space F to be the class of convex combinations of
“weak” rankers {hj}j=1,...,n, where hj : X → {0, 1}. We assume that if hj is
a weak ranker, that 1 − hj is not chosen as a weak ranker; this assumption
avoids the complicated seminorm notation in earlier work [13]. The function f is

constructed as a normalized linear combination of the hj ’s: f =
∑

j λjhj

/

||λ||1,
where ||λ||1 =

∑

j λj .
We construct a structure M, which describes how each individual weak ranker

j ranks each crucial pair i, k. We define M element-wise as: Mikj := hj(xi) −
hj(xk). Thus, Mikj ∈ {−1, 0, 1}. Since M has three indices, we need to define
right multiplication: (Mλ)ik :=

∑n
j=1 Mikjλj =

∑n
j=1 λjhj(xi) − λjhj(xk) for

λ ∈ R
n and left multiplication: (dT M)j :=

∑

i,k|[π(xi,xk)=1] dikMikj for d ∈
R

#crucial, where “#crucial” is the number of crucial pairs.
Just as AdaBoost can be represented as a coordinate descent algorithm on

a specific objective function of λ (see [9]), so can RankBoost. The objective
function for RankBoost is:

F̃ (λ) :=
∑

{i,k|[π(xi,xk)=1]}

e−(Mλ)ik .

We perform standard coordinate descent on F̃ to derive “Coordinate Descent
RankBoost”. The direction chosen at iteration t (i.e., the choice of weak ranker
jt) in the “optimal” case (where the best weak ranker is chosen at each iteration)

is given by: jt ∈ argmax
j

[

−dF̃ (λt+αej)
dα

∣

∣

∣

α=0

]

= argmax
j

(dT
t M)j , where the

Margin-Based Ranking Meets Boosting 7

“weights” dt,ik are defined over pairs of instances by: dt,ik = 0 for non-crucial

pairs, and for crucial pair i, k: dt,ik := e−(Mλt)ik/F̃ (λt). One can see that the
chosen weak ranker is a natural choice, namely, jt is the most accurate weak
ranker with respect to the weighted crucial training pairs.

Define I+ := {i, k|Mikjt
= 1, π(xi,xk) = 1} (although I+ is different for

each t, we eliminate the subscript), also I− := {i, k|Mikjt
= −1, π(xi,xk) = 1}.

Also define d+ :=
∑

I+
dt,ik and d− :=

∑

I−
dt,ik . The step size at iteration t is

αt, where αt satisfies the equation for the line search along direction jt:

0 = −dF̃ (λt + αejt
)

dα

∣

∣

∣

α=αt

⇒ αt =
1

2
ln

d+

d−
. (2)

Thus, we have derived the first algorithm, Coordinate Descent RankBoost.
RankBoost, as it is described by Freund et al. [7], is similar, but differs by the

ordering of steps: the formula for αt is calculated first (via (2)), and afterwards
jt is determined using knowledge of the formula for αt. For RankBoost, there
may not be a natural interpretation of this type of weak learning algorithm as
there is for Coordinate Descent RankBoost.

It is interesting that for AdaBoost’s objective function, the plain coordinate
descent algorithm and the variation (choosing the coordinate with knowledge of
the step size) actually turn out to both yield the same algorithm, i.e., AdaBoost.

4.2 Smooth Margin Ranking

The value of F̃ does not directly tell us anything about the margin, only whether
the margin is positive. Using any λ that yields a positive margin, we can actually
make F̃ arbitrarily small by multiplying λ by a large positive constant, so the
objective is arbitrarily small, yet the margin may not be maximized. Actually,
the same problem occurs for AdaBoost. It has been proven [12] that for certain
M’s, AdaBoost does not converge to a maximum margin solution, nor does it
even make progress towards increasing the margin at every iteration. Since the
calculations are identical for RankBoost, there are certain cases in which we can
similarly expect RankBoost not to converge to a maximum margin solution.

In earlier work, we proposed a smooth margin function which one can maxi-
mize in order to achieve a maximum margin solution for the classification prob-
lem [13]. We also proposed a coordinate ascent algorithm on this function which
makes progress towards increasing the smooth margin at every iteration. Here,
we present the analogous smooth ranking function and the Smooth Margin Rank-
ing algorithm. The smooth ranking function G̃ is defined as follows:

G̃(λ) :=
− ln F̃ (λ)

||λ|| .

With proofs identical to those of Rudin et al. [13], one can show that:

G̃(λ) < µ(λ) ≤ ρ, where (3)

ρ = min{d|
P

ik dik=1,dik≥0} maxj(d
T M)j = max{λ̄|

P

j λ̄j=1,λ̄j≥0} mini(Mλ̄)i, i.e.,

the smooth ranking margin is less than the true margin, and the true margin is
no greater than ρ, the min-max value of the game defined by M (see [8]).

8 Cynthia Rudin, Corinna Cortes, Mehryar Mohri, and Robert E. Schapire

We define the Smooth Margin Ranking algorithm, which is approximately
coordinate ascent on G̃. As usual, the input to the algorithm is matrix M.
We will only define this algorithm when G̃(λ) is positive, so that we only use
this algorithm once the data has become separable; we can use RankBoost or
Coordinate Descent RankBoost to get us to this point.

We will define iteration t + 1 in terms of the quantities known at itera-
tion t, namely: the current value of the objective gt := G̃(λt), the weights
dt,ik := e−(Mλt)ik/F̃ (λt), the direction jt = argmax

j
(dT

t M)j , and the edge

rt := (dT
t M)jt

. The choice of jt is the same as for Coordinate Descent Rank-
Boost, also see [13]. The step size αt is chosen to obey (6) below, but we need
more definitions before we state its value. We define recursive equations for F̃
and G̃, and then use these to build up to (6). We also have st = ||λt||1 and
st+1 = st + αt, and gt+1 = G̃(λt + αtejt

).
As before, I+ := {i, k|Mikjt

= 1, π(xi,xk) = 1}, I− := {i, k|Mikjt
=

−1, π(xi,xk) = 1}, and now, I0 := {i, k|Mikjt
= 0, π(xi,xk) = 1}. Also d+ :=

∑

I+
dt,ik, d− :=

∑

I−
dt,ik , and d0 :=

∑

I0
dt,ik. So, by definition, d++d−+d0 =

1. Now, rt becomes rt = d+ − d−. Define the factor τt and its “derivative” τ ′
t :

τt := d+e−αt + d−eαt + d0, and τ ′
t := −d+e−αt + d−eαt .

We derive a recursive equation for F̃ , true for any α:

F̃ (λt + αejt
) =

∑

{i,k|π(xi,xk)=1}

e(−Mλt)ike−Mikjt
α = F̃ (λt)(d+e−α + d−eα + d0).

Thus, we have defined τt so that F̃ (λt+1) = F̃ (λt + αtejt
) = F̃ (λt)τt. We use

this to write a recursive equation for G̃:

G̃(λt + αejt
) =

− ln(F̃ (λt + αejt
))

st + α
= gt

st

st + α
− ln (d+e−α + d−eα + d0)

st + α
.

For our algorithm, we set α = αt in the above expression:

gt+1 = gt

st

st + αt

− ln τt

st + αt

⇒ gt+1 − gt = − 1

st+1
[gtαt + ln τt] . (4)

With this notation we write the equation for αt for Smooth Margin Ranking.
For plain coordinate ascent, the update α∗ solves:

0 =
dG̃(λt + αejt

)

dα

∣

∣

∣

α=α∗

=
1

st + α∗



−G̃(λt+α∗ejt
)+





−dF̃ (λt+αejt
)/dα

∣

∣

∣

α=α∗

F̃ (λt)







 .

We could solve this equation numerically for α∗ to get a smooth margin coor-
dinate ascent algorithm, however, we avoid this line search. To get the update
rule for Smooth Margin Ranking, we set αt to solve:

0=
1

st+αt






−G̃(λt)+







−dF̃ (λt+αejt
)/dα

∣

∣

∣

α=αt

F̃ (λt)












=

1

st+αt

(

−gt+
−τ ′

tF̃ (λt)

τtF̃ (λt)

)

gtτt=−τ ′
t . (5)

Margin-Based Ranking Meets Boosting 9

This expression can be solved analytically for αt, which makes the algorithm
as easy to implement as RankBoost:

αt = ln

[

−gtd0 +
√

g2
t d2

0 + (1 + gt)(1 − gt)(1 + rt − d0)(1 − rt − d0)

(1 + gt)(1 − rt − d0)

]

. (6)

The following theorem states that the algorithm makes significant progress
towards increasing the value of G̃ at every iteration. An analogous statement
was an essential tool for proving properties of Approximate Coordinate Ascent
Boosting [13], although the proof here (for which we give a sketch) is significantly
more difficult, since we cannot use the important trick used in our previous work
for (the equivalent of) Lemma 1. As usual, the weak learning algorithm always
achieves an edge of at least ρ for the calculation to hold.

Theorem 2.

gt+1 − gt ≥
1

2

αt(rt − gt)

st+1
.

Sketching the proof, we consider αt, τt, d+, and d− as functions of three basic
independent variables r := rt, g := gt and, d0, with ranges 0 < r < 1, 0 ≤ g < r,
and 0 ≤ d0 ≤ 1 − r. Define

Γr,g,d0
:=

− ln τt

αt

, and Br,g,d0
:=

Γr,g,d0
− g

r − g
.

Lemma 1. Br,g,d0
> 1/2.

This lemma is a monstrous calculus problem in three variables, for which the
proof will be given in a longer version of this paper. Using only this lemma, we
can prove the theorem directly.

Proof. (of Theorem 2) Let us unravel the notation a bit. Lemma 1 says:

− ln τt

αt

= Γr,g,d0
>

rt + gt

2
⇒ − ln τt >

(rt + gt)αt

2
.

Incorporating the recursive equation (4),

gt+1 − gt =
1

st+1
[−gtαt − ln τt] >

αt

st+1

[

−gt +
(rt + gt)

2

]

=
1

2

αt(rt − gt)

st+1
. ut

Theorem 2 is the main step in proving convergence theorems, for example:

Theorem 3. The smooth ranking margin ranking algorithm converges to a max-
imum margin solution, i.e., limt→∞ gt = ρ.

Besides Theorem 2, the only other key step in the proof of Theorem 3 is:

Lemma 2.

lim
t→∞

αt

st+1
= 0.

10 Cynthia Rudin, Corinna Cortes, Mehryar Mohri, and Robert E. Schapire

We omit the proof of Lemma 2, which uses (4), monotonicity and boundedness
of the gt sequence, and then (5).

Proof. (Of Theorem 3) The values of gt constitute a non-decreasing sequence
which is uniformly bounded by 1. Thus, a limit g∞ exists, g∞ := limt→∞ gt.
By (3), we know gt ≤ ρ for all t. Thus, g∞ ≤ ρ. Suppose g∞ < ρ, i.e., that
ρ − g∞ 6= 0. One can use an identical calculation to the one in Rudin et al. [13]
to show that this assumption, together with Theorem 2 and Lemma 2 imply
that limt→∞ αt = 0. Using this fact along with (5), we find:

g∞= lim
t→∞

gt=lim inf
t→∞

gt=lim inf
t→∞

−τ ′
t

τt

=lim inf
t→∞

−(−d+e−αt+d−eαt)

d+e−αt+d−eαt +d0
= lim inf

t→∞

rt

1
≥ρ.

This is a contradiction with the original assumption that g∞ < ρ. It follows that
g∞ = ρ, or limt→∞(ρ − gt) = 0. Thus, the smooth ranking algorithm converges
to a maximum margin solution. ut

5 AdaBoost and RankBoost in the Bipartite Problem

In the bipartite ranking problem, every training instance falls into one of two
categories, the “positive class” Y+ and the “negative class” Y−. Here, π(xi,xk) =
1 only when xi ∈ Y+ and xk ∈ Y−. Define yi = +1 when xi ∈ Y+, and yi = −1
otherwise. The function F̃ now becomes an exponentiated version of the AUC,
that is, since the step function obeys 1x<0 ≤ e−x, we have:

|Y+||Y−|(1 − AUC(λ)) =
∑

i∈Y+

∑

k∈Y−

1(Mλ)ik<0 ≤
∑

i∈Y+

∑

k∈Y−

e−(Mλ)ik = F̃ (λ).

The AUC has been written as the Wilcoxon-Mann-Whitney statistic (see [5]).
We now show that AdaBoost minimizes RankBoost’s loss function F̃ under

a very natural condition, namely, whenever the positive and negative instances
contribute equally to AdaBoost’s loss function.

We define AdaBoost’s matrix MAda element-wise by MAda
ij = yihj(xi).

Each crucial pair i, k has i ∈ Y+ and k ∈ Y−, so elements of M are: Mikj =
hj(xi) − hj(xk) = yihj(xi) + ykhj(xk) = MAda

ij + MAda
kj . (To change from Ada-

Boost’s usual {−1, 1} hypotheses to RankBoost’s usual {0, 1} hypotheses, divide

by 2.) Define vector qλ element-wise by qλ,i := e−(MAda
λ)i for i = 1, ..., m. Us-

ing this notation, we will write the objective functions for both AdaBoost and
RankBoost. First, we define the following:

F+(λ) :=
∑

i∈Y+

qλ,i and F−(λ) :=
∑

k∈Y−

qλ,k.

The objective function for AdaBoost is F (λ) := F+(λ) + F−(λ). The objective
function for RankBoost is: F̃ (λ) = F+(λ)F−(λ). Thus, the balance between the
positive and negative instances is different between the algorithms.

We define “F-skew”, which measures the imbalance between positive and
negative instances.

F-skew(λ) := F+(λ) − F−(λ).

Margin-Based Ranking Meets Boosting 11

Theorem 4. Assume MAda is such that infλ F̃ (λ) > 0 (the non-separable
case). For any sequence {λt}∞t=1 such that

lim
t→∞

F (λt) = inf
λ

F (λ) (7)

and lim
t→∞

F-skew(λt) = 0, then

lim
t→∞

F̃ (λt) = inf
λ

F̃ (λ). (8)

Proof. It is possible that F or F̃ may have no minimizers. So, to describe (7)
and (8), we use the trick from Collins et al. [4], who considered F and F̃ as
functions of a variable where the infimum can be achieved. Define, for matrix
M̄ ∈ R

m̄×n, the function

FM̄(λ) :=

m̄
∑

i=1

e−(M̄λ)i .

Define P̄ := {p|∀i pi ≥ 0, ∀j (pT M̄)j = 0} and Q̄ := {q|∀i qi = e−(M̄λ)i for
some λ}. We may thus consider F̄M̄ as a function of q̄, F̄M̄(q̄) =

∑m̄
i=1 q̄i, where

q̄ ∈ Q̄. We know that since all q̄i’s are positive, the infimum of F̄ occurs in a
bounded region of q̄ space, which is just what we need.

Theorem 1 of Collins et al., which is taken directly from Lafferty, Della Pietra,
and Della Pietra [11] implies that the following are equivalent:

1. q̄∗ ∈ P̄∩ closure (Q̄).
2. q̄∗ ∈ argminq̄∈ closure(Q̄)F̄M̄(q̄).

Moreover, either condition is satisfied by exactly one vector q̄∗.
The objective function for AdaBoost is F = F̄MAda and the objective for

RankBoost is F̃ = F̄M, so the theorem holds for both objectives separately. For
function F , denote q̄∗ as q∗, also P̄ as PAda and Q̄ as QAda. For function F̃ ,
denote q̄∗ as q̃∗, also P̄ as P̃ and Q̄ as Q̃. Rewriting q∗ ∈ PAda:

∑

i∈Y+

q∗i MAda
ij +

∑

k∈Y−

q∗kMAda
kj = 0 ∀ j. (9)

Define qt element-wise by: qt,i := e−(MAda
λt)i , for i = 1, ..., m where the

λt’s are a sequence that obey (7), for example, a sequence produced by Ada-
Boost. Thus, qt ∈ QAda automatically. Since F (qt) converges to the minimum
of F , one can show that the sequence of qt’s converges to q∗ in `p. Now define

vectors q̃t element-wise by q̃t,ik := qt,iqt,k = exp[−(MAda
λt)i − (MAda

λt)k] =

exp[−(Mλt)ik]. Automatically, q̃t ∈ Q̃. For any pair i, k the limit of the q̃t,ik’s
is q̃∞ik := q∗i q∗k. Thus, we need only to show q̃∞ = q̃∗. We will do this by showing

q̃∞ ∈ P̃ ; due to the uniqueness of q̃∗ as P̃ ∩closure(Q̃) , this will yield q̃∞ = q̃∗.
Our assumption that the F-skew vanishes can be rewritten as:

lim
t→∞

[
∑

i∈Y+

qt,i −
∑

k∈Y−

qt,k] = 0, i.e.,

12 Cynthia Rudin, Corinna Cortes, Mehryar Mohri, and Robert E. Schapire

∑

i∈Y+

q∗i =
∑

k∈Y−

q∗k . (10)

Consider the quantities (q̃∞T M)j . Remember, if these quantities are zero for

every j, then q̃∞ ∈ P̃ and we have proved the theorem.

(q̃∞T M)j = (
∑

k∈Y−

q∗k)(
∑

i∈Y+

q∗i MAda
ij) + (

∑

i∈Y+

q∗i)(
∑

k∈Y−

q∗kMAda
kj).

Incorporating (10), which is the condition that F-skew(q∗) = 0, (11) becomes:

(q̃∞T M)j = (
∑

i∈Y+

q∗i)[
∑

i∈Y+

q∗i MAda
ij +

∑

k∈Y−

q∗kMAda
kj].

In fact, according to (9), the bracket in this expression is zero for all j. Thus,
q̃∞ ∈ P̃ . We have proved the theorem. ut

Corollary 1. If the constant weak hypothesis ∀x, hj(x) = 1 is one of the weak

classifiers used to construct MAda, and the {λt}t sequence obeys (7), then
lim

t→∞
F-skew(λt) = 0, and {λt}t thus obeys (8) by Theorem 4.

That is, any algorithm which minimizes F (such as AdaBoost) solves the rank-
ing problem whenever the weak learning algorithm is capable of producing the
constant hypothesis.

Proof. Recall that q∗ ∈ PAda. Specifically writing this condition just for the
constant weak classifier yields:

0 =
∑

i∈Y+

q∗i yi1 +
∑

k∈Y−

q∗kyk1 =
∑

i∈Y+

q∗i −
∑

k∈Y−

q∗k = lim
t→∞

F-skew(λt). ut

Thus, AdaBoost and RankBoost are closely related indeed, since under this very
weak condition (e.g., when the constant weak classifier is included), AdaBoost
minimizes RankBoost’s objective function. Given these results, it is now under-
standable (but still surprising) that AdaBoost performs so well as a ranking
algorithm. One can directly use the convergence of the qt’s to show that Ada-
Boost produces exactly the same AUC value as RankBoost under this weak
condition (in addition to the same value of the exponential loss). We expand on
this in future work.

6 Conclusion

The three main results presented in this paper yield many new directions for
future research. We gave a margin-based bound for general ranking. It is worth
investigating the design of more specialized margin-based bounds for ranking.
We described a new ranking algorithm, Smooth Margin Ranking, that maxi-
mizes the margin. It would be natural to compare the empirical performance of

Margin-Based Ranking Meets Boosting 13

the Smooth Margin Ranking algorithm and RankBoost. Finally, given the AUC
optimization result proved for AdaBoost, one may ask why RankBoost, or an-
other ranking algorithm, is needed in the non-separable case? The answer may
lie in the convergence rate of AdaBoost versus that of RankBoost, which we are
currently studying. Our observations suggest that RankBoost (understandably)
has faster convergence to a high AUC value.

References

[1] Shivani Agarwal, Thore Graepel, Ralf Herbich, Sariel Har-Peled, and Dan Roth.
Generalization bounds for the area under the ROC curve. Journal of Machine

Learning Research, 6:393–425, 2005.
[2] Olivier Bousquet. New approaches to statistical learning theory. Annals of the

Institute of Statistical Mathematics, 55(2):371–389, 2003.
[3] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of super-

vised learning algorithms using difference performance metrics. Technical Report
TR2005-1973, Cornell University, 2005.

[4] Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, Ada-
Boost and Bregman distances. Machine Learning, 48(1/2/3), 2002.

[5] Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate minimiza-
tion. In Advances in Neural Information Processing Systems 16, 2004.

[6] Felipe Cucker and Steve Smale. On the mathematical foundations of learning.
Bull. Amer. Math. Soc., (39):1–49, 2002.

[7] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boost-
ing algorithm for combining preferences. In Machine Learning: Proceedings of the

Fifteenth International Conference, 1998.
[8] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative

weights. Games and Economic Behavior, 29:79–103, 1999.
[9] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-

sion: A statistical view of boosting. The Annals of Statistics, 38(2):337–374, April
2000.

[10] Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and
bounding the generalization error of combined classifiers. The Annals of Statistics,
30(1), February 2002.

[11] John D. Lafferty, Stephen Della Pietra, and Vincent Della Pietra. Statistical
learning algorithms based on Bregman distances. In Proceedings of the Canadian

Workshop on Information Theory, 1997.
[12] Cynthia Rudin, Ingrid Daubechies, and Robert E. Schapire. The dynamics of Ada-

Boost: Cyclic behavior and convergence of margins. Journal of Machine Learning

Research, 5:1557–1595, December 2004.
[13] Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Analysis of boost-

ing algorithms using the smooth margin function: A study of three algorithms.
Submitted, 2004.

[14] Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Boosting based on a
smooth margin. In Proceedings of the Sixteenth Annual Conference on Computa-

tional Learning Theory, pages 502–517, 2004.
[15] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the

margin: A new explanation for the effectiveness of voting methods. The Annals

of Statistics, 26(5):1651–1686, October 1998.

14 Cynthia Rudin, Corinna Cortes, Mehryar Mohri, and Robert E. Schapire

A Proof of Theorem 1

We owe inspiration for this proof to the works of Cucker and Smale [6], Koltchinskii
and Panchenko [10], and Bousquet [2].

We define a Lipschitz function φ : R → R (with Lipschitz constant Lip(φ)) which
acts as our loss function, and gives us the margin. We will later use the same piecewise
linear definition of φ as Koltchinskii and Panchenko [10], but for now, we require
∀z, 0 ≤ φ(z) ≤ 1 and φ(z) = 1 for z < 0. Since φ(z) ≥ 1[z≤0], we can define an upper
bound for the misranking probability, namely PD{misrankf} ≤ PDφf , where:

PDφf :=
Ex̄,x̃∼D[φ(f(x̄) − f(x̃))π(x̄, x̃)]

Ex̄,x̃∼Dπ(x̄, x̃)
.

The empirical error associated with PDφf is:

PSφf :=

Pm

i=1

Pm

k=1 φ(f(xi) − f(xk))π(xi,xk)
Pm

i=1

Pm

k=1 π(xi,xk)
.

First, we upper bound the misranking probability by two terms: the empirical error
term PSφf , and a term characterizing the deviation of PSφf from PDφf uniformly:

PD{misrankf} ≤ PDφf = PDφf − PSφf + PSφf ≤ sup
f̄∈F

(PDφf̄ − PSφf̄) + PSφf .

The proof of the theorem involves an upper bound on the first term. First, define L(f)
as follows: L(f) := PDφf −PSφf . The following lemma (for which the proof is omitted)
is true for every training set S:

Lemma 3. For any two functions f1, f2 ∈ L∞(X),

L(f1) − L(f2) ≤ 4Lip(φ)||f1 − f2||∞.

The following step is due to Cucker and Smale [6]. Let `ε := N
“

F , ε
8Lip(φ)

”

, the

covering number of F by L∞ disks of radius ε
8Lip(φ)

. Define f1, f2, ..., f`ε to be the
centers of such a cover, i.e., the collection of L∞ disks Dp centered at fp and with
radius ε

8Lip(φ)
is a cover for F . The following lemma (proof omitted) shows we do not

lose too much by using fp as a representative for disk Dp.

Lemma 4.

PS∼Dm{ sup
f∈Dp

L(f) ≥ ε} ≤ PS∼Dm{L(fp) ≥
ε

2
}.

Now we incorporate the fact that the training set is chosen randomly.

Lemma 5.

PS∼Dm{L(f) ≥ ε/2} ≤ 2 exp

»

−
m(εE)2

8

–

.

Proof. To make notation easier for this lemma, we introduce some shorthand notation:

topD := Ex̄,x̃∼Dφ(f(x̄) − f(x̃))π(x̄, x̃), botD := E := Ex̄,x̃∼Dπ(x̄, x̃),

topS :=
1

m(m−1)

m
X

i=1

m
X

k=1

φ(f(xi)−f(xk))π(xi, xk), botS:=
1

m(m−1)

m
X

i=1

m
X

k=1

π(xi,xk).

Margin-Based Ranking Meets Boosting 15

Since diagonal terms are π(xi,xi) = 0, topD = ES∼DmtopS and botD = ES∼DmbotS .
Thus, we can bound the difference between topS and topD using large deviation bounds;
same for botS and botD. One can show that the replacement of one instance changes
topS (or botS) by at most 1/m. Thus, McDiarmid’s inequality implies, for every ε1 > 0:

P{topD − topS ≥ ε1} ≤ exp[−2ε21m] and P{botS − botD ≥ ε1} ≤ exp[−2ε21m].

We will specify ε1 in terms of ε later. Consider the following event:

topD − topS < ε1 and botS − botD < ε1.

By the union bound, this event is true with probability at least 1−2 exp[−2ε2
1m]. When

the event is true, we can rearrange the equations to be a bound on L(f) :

L(f) =
topD

botD
−

topS

botS

<
topD

botD
−

topD − ε1
botD + ε1

=: ε/2.

Above, we have just specified the value for ε1 in terms of ε. Let us solve for ε1:

ε1 =
εbotD

2 − ε + 2
topD

botD

≥
εE

4
.

Here, we have used E := botD, and by definition, topD ≤ botD. We directly have:

1 − 2 exp[−2ε21m] ≥ 1 − 2 exp

−2m

»

εE

4

–2
!

.

Therefore, from our earlier application of McDiarmid, with probability at least

1 − 2 exp
h

−m(εE)2

8

i

the following holds: L(f) < ε/2. ut

Proof. (of Theorem 1) Since the Dp are a cover of F , it is true that

sup
f∈F

L(f) ≥ ε ⇐⇒ ∃p ≤ `ε such that sup
f∈Dp

L(f) ≥ ε.

First applying the union bound, then applying Lemma 4, and then Lemma 5, we find:

PS∼Dm



sup
f∈F

L(f) ≥ ε

ff

≤
`ε
X

p=1

PS∼Dm

(

sup
f∈Dp

L(f) ≥ ε

)

≤
`ε
X

p=1

PS∼Dm {L(fp) ≥ ε/2}

≤
`ε
X

p=1

2 exp

»

−
m(εE)2

8

–

= N

„

F ,
ε

8Lip(φ)

«

2 exp

»

−
m(εE)2

8

–

.

Now, with probability at least 1 −N
“

F , ε
8Lip(φ)

”

2 exp
h

−m(εE)2

8

i

, we have

PD{misrankf} ≤ PSφf + ε. Let φ(z) = 1 for z ≤ 0, φ(z) = 0 for z ≥ θ, and let φ(z)
be linear in between with slope 1/θ. Thus, Lip(φ) = 1/θ. Since φ(z) ≤ 1 for z ≤ θ, we
have:

PSφf =

Pm

i=1

Pm

k=1 φ(f(xi) − f(xk))π(xi,xk)
Pm

i=1

Pm

k=1 π(xi,xk)
≤ PS{marginf ≤ θ}.

Thus, with probability at least 1 −N
`

F , εθ
8

´

2 exp
h

−
“

m(εE)2

8

”i

, we have

PD{misrankf} ≤ PS{marginf ≤ θ} + ε. Thus, the theorem has been proved. ut

