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Abstract. This paper presents a novel paradigm for learning languages
that consists of mapping strings to an appropriate high-dimensional fea-
ture space and learning a separating hyperplane in that space. It initi-
ates the study of the linear separability of automata and languages by
examining the rich class of piecewise-testable languages. It introduces
a high-dimensional feature map and proves piecewise-testable languages
to be linearly separable in that space. The proof makes use of word
combinatorial results relating to subsequences. It also shows that the
positive definite kernel associated to this embedding can be computed in
quadratic time. It examines the use of support vector machines in com-
bination with this kernel to determine a separating hyperplane and the
corresponding learning guarantees. It also proves that all languages lin-
early separable under a regular finite cover embedding, a generalization
of the embedding we used, are regular.

1 DMotivation

The problem of learning regular languages, or, equivalently, finite automata, has
been extensively studied over the last few decades.

Finding the smallest automaton consistent with a set of accepted and re-
jected strings was shown to be NP-complete by Angluin [1] and Gold [12]. Pitt
and Warmuth [21] further strengthened these results by showing that even an ap-
proximation within a polynomial function of the size of the smallest automaton
is NP-hard. These results imply the computational intractability of the general
problem of passively learning finite automata within many learning models, in-
cluding the mistake bound model of Haussler et al. [14] or the PAC-learning
model of Valiant [16]. This last negative result can also be directly derived from
the fact that the VC-dimension of finite automata is infinite.

On the positive side, Trakhtenbrot and Barzdin [24] showed that the smallest
finite automaton consistent with the input data can be learned exactly provided
that a uniform complete sample is provided, whose size is exponential in that of
the automaton. The worst case complexity of their algorithm is exponential but
a better average-case complexity can be obtained assuming that the topology
and the labeling are selected randomly [24] or even that the topology is selected
adversarially [9].

The model of identification in the limit of automata was introduced and
discussed by Gold [11]. Deterministic finite automata were shown not to be



identifiable in the limit from positive examples [11]. But positive results were
given for the identification in the limit of the families of k-reversible languages
[2] and subsequential transducers [20]. Some restricted classes of probabilistic
automata such as acyclic probabilistic automata were also shown by Ron et al.
to be efficiently learnable [22].

There is a wide literature dealing with the problem of learning automata
and we cannot survey all these results in such a short space. Let us mention
however that the algorithms suggested for learning automata are typically based
on a state-merging idea. An initial automaton or prefix tree accepting the sample
strings is first created. Then, starting with the trivial partition with one state per
equivalence class, classes are merged while preserving an invariant congruence
property. The automaton learned is obtained by merging states according to the
resulting classes. Thus, the choice of the congruence determines the algorithm.

This work departs from this established paradigm in that it does not use the
state-merging technique. Instead, it initiates the study of the linear separation of
automata or languages by mapping strings to an appropriate high-dimensional
feature space and learning a separating hyperplane, starting with the rich class
of piecewise-testable languages.

Piecewise-testable languages form a non-trivial family of regular languages.
They have been extensively studied in formal language theory [18] starting with
the work of Imre Simon [23]. A language L is said to be n-piecewise-testable,
n € N, if whenever v and v have the same subsequences of length at most n and
w is in L, then v is also in L. A language L is said to be piecewise testable if it
is m-piecewise-testable for some n € N.

For a fixed n, n-piecewise-testable languages were shown to be identifiable in
the limit by Garcia and Ruiz [10]. The class of n-piecewise-testable languages is
finite and thus has finite VC-dimension. To the best of our knowledge, there has
been no learning result related to the full class of piecewise-testable languages.

This paper introduces an embedding of all strings in a high-dimensional fea-
ture space and proves that piecewise-testable languages are finitely linearly sep-
arable in that space, that is linearly separable with a finite-dimensional weight
vector. The proof is non-trivial and makes use of deep word combinatorial results
relating to subsequences. It also shows that the positive definite kernel associ-
ated to this embedding can be computed in quadratic time. Thus, the use of
support vector machines in combination with this kernel and the correspond-
ing learning guarantees are examined. Since the VC-dimension of the class of
piecewise-testable languages is infinite, it is not PAC-learnable and we cannot
hope to derive PAC-style bounds for this learning scheme. But, the finite linear
separability of piecewise-testable helps us derive weaker bounds based on the
concept of the margin.

The linear separability proof is strong in the sense that the dimension of the
weight vector associated with the separating hyperplane is finite. This is related
to the fact that a regular finite cover is used for the separability of piecewise
testable languages. This leads us to study the general problem of separability
with other finite regular covers. We prove that languages separated with such
regular finite covers are necessarily regular.

The paper is organized as follows. Section 2 introduces some preliminary def-
initions and notations related to strings, automata, and piecewise-testable lan-
guages. Section 3 presents the proof of the finite linear separability of piecewise-



testable languages using a subsequence feature mapping. The subsequence kernel
associated to this feature mapping is shown to be efficiently computable in Sec-
tion 4. Section 5 uses margin bounds to examine how the support vector machine
algorithm combined with the subsequence kernel can be used to learn piecewise-
testable languages. Section 6 examines the general problem of separability with
regular finite covers and shows that all languages separated using such covers
are regular.

2 Preliminaries

In all that follows, X' represents a finite alphabet. The length of a string x € X*
over that alphabet is denoted by |z| and the complement of a subset L C X* by
L = X*\ L. For any string x € X*, we denote by x[i] the ith symbol of z, i < |z|.
More generally, we denote by «[i : j], the substring of contiguous symbols of x
starting at z[i] and ending at x[j].

A string x is a subsequence of y € X* if x can be derived from y by erasing
some of y’s characters. We will write = C y to indicate that x is a subsequence of
y. The relation C defines a partial order over X*. For x € X", the shuffle ideal
of = is defined as the set of all strings containing = as a subsequence:

M(z) ={ue X"z Cup =X 2[1]X"... Xx[n]X".

The definition of piecewise-testable languages was given in the previous section.
An equivalent definition is the following: a language is piecewise-testable (PT for
short) if it is a finite Boolean combination of shuffle ideals [23].

We will often use the subsequence feature mapping ¢ : X* — RN which

associates to z € X* a vector ¢(z) = (Yu)uex+ whose non-zero components
correspond to the subsequences of = and are all equal to one:*
1 ifulCx,
Yu = {0 otherwise. (1)

3 Linear Separability of Piecewise-Testable Languages

This section shows that any piecewise-testable language is finitely linearly sep-
arable for the subsequence feature mapping.

We will show that every piecewise-testable language is given by some decision
list of shuffle ideals (a rather special kind of Boolean function). This suffices to
prove the finite linear separability of piecewise-testable languages since decision
lists are known to be linearly separable Boolean functions [3].

We will say that a string v € X* is decisive for a language L C X*, if
[I(u) C L or II(u) C L. The string u is said to be positive-decisive for L when
I(u) C L (negative-decisive when IIT(u) C L). Note that when v is positive-
decisive (negative-decisive),

xrell(u)=ax €L (resp.z €lll(u) =z ¢ L). (2)

4 Elements u € X* can be used as indices since X* and N are isomorphic.



Lemma 1 (Decisive strings). Let L C X* be a piecewise-testable language,
then there exists a decisive string u € X* for L.

Proof. We will prove that this property (existence of a decisive string) holds
for shuffle ideals and that it is preserved under the Boolean operations (nega-
tion, intersection, union). This will imply that it holds for all finite Boolean
combinations of shuffle ideals, i.e., for all PT languages.

By definition, a shuffle ideal III(u) admits u as a decisive string. It is also
clear that if w is decisive for some PT language L, then u is also decisive for
L. Thus, the existence of a decisive string is preserved under negation. For the
remainder of the proof, L, and L, will denote two PT languages over X.

If w; is positive-decisive for L; and ug is positive-decisive for Lo, III(u1) N
IM(ug) C L = LyNLg. I (uy )N (us) is not empty since it contains, for example,
uyug. For any string v € I(uy) NI (ug), OI(u) C OI(uy) N II(uz), thus any
such wu is positive-decisive for L. Similarly, when wu; is negative-decisive for L
and ug negative-decisive for Ly any u € III(u;) U II(us2) is negative-decisive for
L = LN Ls. Finally, if u; is positive-decisive for L; and us negative-decisive for
Lo then any u € I(ug) is negative-decisive for L = Ly N Ly C Ly. This shows
that the existence of a decisive string is preserved under intersection.

The existence of a decisive string is also preserved under union. If wp is
positive-decisive for L; and us positive-decisive for Lo, then any u € I (up) U
I (uz) is positive-decisive for L = L; U Ly. Similarly, when w; is negative-
decisive for Ly and us negative-decisive for Lo, any uw € IIT(up) N II(ug) # 0
is negative-decisive for L = L; U Lo. Lastly, if uy is positive-decisive for L,
and uy is negative-decisive for Lo then any w € I(u;) is positive-decisive for
L=1L1ULs. a

We say that u is minimally decisive for L if it admits no proper subsequence
v C u that is decisive for L.

Lemma 2 (Finiteness of the set of minimally-decisive strings). Let L C
2% be a PT language and let D C X* be the set of all minimally decisive strings
for L, then D is a finite set.

Proof. Observe that D is a subsequence-free subset of X*: no element of D is a
proper subsequence of another. Thus, the finiteness of D follows directly from
Theorem 1 below. a

The following result, on which Lemma 2 is based, is a non-trivial theorem of word
combinatorics which was originally discovered, in different forms, by Higman [15]
in 1952 and Haines [13] in 1969. The interested reader could refer to [19, Theorem
2.6] for a modern presentation.

Theorem 1 ([13,15]). Let X be a finite alphabet and L C X* a language
containing no two distinct strings x andy such that x C y. Then L is finite.

The definitions and the results just presented can be generalized to decisive-
ness modulo a set V: we will say that a string u is decisive modulo some V C 1*
if VNII(u) € L or VNII(u) C L. As before, we will refer to the two cases
as positive- and negative-decisiveness modulo V and similarly define minimally
decisive strings modulo V. These definitions coincide with ordinary decisiveness
when V = X%,



Lemma 3 (Finiteness of the set of minimally-decisive strings modulo
V). Let L,V C X* be two PT languages and let D C X* be the set of all
minimally decisive strings for L modulo V', then D is a non-empty finite set.

Proof. Lemma 1 on the existence of decisive strings can be generalized straight-
forwardly to the case of decisiveness modulo a PT language V: if L,V C X*
are PT and V # (), then there exists u € V such that u is decisive modulo V'
for L. Indeed, by Lemma 1, for any language of the form III(s) there exists a
decisive string u € V N II(s). The generalization follows by replacing ITI(X)
with V' NIII(X) in the proof of Lemma 1.

Similarly, in view of Lemma 2, it is clear that there can only be finitely many
minimally decisive strings for L modulo V. a

Theorem 2 (PT decision list). If L C X* is PT then L is equivalent to some
finite decision list A over shuffle ideals.

Proof. Consider the sequence of PT languages Vi, Vs, ... defined according to
the following process:

- =X

— When V; # (), V; 11 is constructed from V; in the following way. Let D; C V; be
the nonempty and finite set of minimally decisive strings w for L modulo V;.
The strings in D, are either all positive-decisive modulo V; or all negative-
decisive modulo V;. Indeed, if u € D; is positive-decisive and v € D; is
negative-decisive then uwv € II(u) N II(v), which generates a contradiction.
Define o; as 0; = 1 when all strings of D; are positive-decisive, o; = 0 when
they are negative-decisive modulo V; and define V;;1 by:

Vigr = Vi \II(D;), (3)
with TII(D;) = U, p, T(u).

We show that this process terminates, that is Viy.1 = () for some N > 0. As-
sume the contrary. Then, the process generates an infinite sequence Dy, Do, .. ..
Construct an infinite sequence X = (z,)nen by selecting a string z,, € D,, for
any n € N. By construction, D,,+1 C II(D,) for all n € N, thus all strings
x, are necessarily distinct. Define a new sequence (yn)nen by: y1 = 21 and
Yn+1 = Ty(n), Where ¢ : N — N is defined for all n € N by:

W(n) = {min{k e N:{y1,...,Yn, Tk} is subsequence-free}, if such a k exists,

o0 otherwise.

(4)

We cannot have 1(n) # oo for all n > 0 since the set Y = {y1, 92, ...} would then
be (by construction) subsequence-free and infinite. Thus, 1)(n) = oo for some
n > 0. But then any xj, k € N, is a subsequence of an element of {y1,...,yn}.
Since the set of subsequences of {y1,...,y,} is finite, this would imply that X
is finite and lead to a contradiction.

Thus, there exists an integer N > 0 such that Vi1 = 0 and the process
described generates a finite sequence D = (D1, ..., Dy) of nonempty sets as
well as a sequence o = (0;) € {0,1}". Let A be the decision list

(II(D4),01),. .., (II(DN),oN)- (5)



Let A, : 2* — {0,1}, n=1,..., N, be the mapping defined for all z € X* by:

N _Jon if . € II(D,,),
Ve e X", An(z) = {An+1(x) otherwise, (6)
with Ayy1(x) = on. It is straightforward to verify that A, coincides with the
characteristic function of L over (J;_, III(D;). This follows directly from the
definition of decisiveness. In particular, since

n—1
Va= () IL(D) (7)
i=1
and VN+1 = @,
N
Y mo;) = =7, (8)
i=1
and A coincides with the characteristic function of L everywhere. ad

Using this result, we show that a PT language is linearly separable with a finite-
dimensional weight vector.

Corollary 1. For any PT language L, there exists a weight vector w € RY with
finite support such that L = {x : sgn({w, ¢(x))) > 0}, where ¢ is the subsequence
feature mapping.

Proof. Let L be a PT language. By Theorem 2, there exists a decision list
(III(D4),01),-..,(II(Dy),on) equivalent to L where each D,,, n =1,..., N, is
a finite set. We construct a weight vector w = (w,)ues+ € RY by starting with
w = 0 and modifying its coordinates as follows:

+(| > wy| +1) ifo; =1,
{veUX, ;1 Diiw, <0}

—(| Z wy| +1)  otherwise,
{veULL, 41 Ditwy>0}

Yu € D,, w,=

(9)

in the order n = N, N —1,...,1. By construction, the decision list is equivalent
to {z : sgn({w, ¢(x))) > 0}. Since each D,, n = 1,..., N, is finite, the weight
vector w has only a finite number of non-zero coordinates. ad

The dimension of the feature space associated to ¢ is infinite, the next section
shows that the kernel associated to ¢ can be computed efficiently however.

4 Efficient Kernel Computation

The positive definite symmetric kernel K associated to the subsequence feature
mapping ¢ is defined by:

Va,y € X%, K(w,y) = ((x),0(y)) = > [wTa][uCy], (10)

ue X



where [P] represents the 0-1 truth value of the predicate P. Thus, K (z,y) counts
the number of subsequences common to x and y, without multiplicity.

This subsequence kernel is closely related to but distinct from the one de-
fined by Lodhi et al. [17]. Indeed, the kernel of Lodhi et al. counts the num-
ber of occurrences of subsequences common to z and y. Thus, for example
K (abc,acbe) = 8, since the cardinal of the set of common subsequences of abe
and acbe, {e,a,b,c, ab, ac,be, abe}, is 8. But, the kernel of Lodhi et al. (without
penalty factor) would instead associate the value 9 to the pair (abe, acbe).

A string with n distinct symbols has at least 2" possible subsequences, so a
naive computation of K (z,y) based on the enumeration of the subsequences of
x and y is inefficient. We will show however that K (z,y) can be computed in
quadratic time, O(|X||z||y|), using a method suggested by Derryberry [8] which
turns out to be somewhat similar to that of Lodhi et al.

For any symbol a € X and a string u € X*, define last,(u) to be 0 if a does
not occur in u and the largest index 7 such that u[i] = a otherwise. For z,y € X*,
define K’ by:

Vo,y € 5%, K'(z,y)= Y [uCa][uCyl (11)

ueX+

Thus, K'(x,y) is the number of nonempty subsequences without multiplicity
common to z and y. For any a € ¥, define K, by:

Vao,y € X%, Ko(w,y)= Y [uCa][uCy] (12)

ueX*a

be the number of such subsequences ending in a. Then, by definition of K’,

Vz,y e X*, K'(x,y) = Z K, (z,y). (13)
acy

By definition, if a does not appear in  and or y, then K,(x,y) = 0. Otherwise,
let ua be a common subsequence of z and y with u # ), then u is a non-empty
subsequence of x and y. Thus,

o if last,(x) =0 or last,(y) =0
Ka(z,y) = { 1+ K'(z[1 : lasty(z) — 1], y[1 : last,(y) — 1]) otherwise, (14)
where the addition of 1 in the last equation accounts for the common subse-
quence ua = a with « = € which is not computed by K’. The subsequence kernel
K, which does count the empty string € as a common subsequence, is given by
K(x,y) = K'(x,y) + 1. A straightforward recursive algorithm based on Equa-
tion 14 can be used to compute K in time O(|X’'||z||y|), where X' C X is the
alphabet reduced to the symbols appearing in z and y.

The kernel of Lodhi et al. [17] was shown to be a specific instance of a
rational kernel over the (4, x) semiring [6]. Similarly, it can be shown that the
subsequence kernel just examined is related to rational kernels over the (+, x)
semiring.



5 Learning Linearly Separable Languages

This section deals with the problem of learning PT languages. In previous sec-
tions, we showed that using the subsequence feature mapping ¢, or equivalently a
subsequence kernel K that can be computed efficiently, PT languages are finitely
linearly separable.

These results suggest the use of a linear separation learning technique such
as support vector machines (SVM) combined with the subsequence kernel K
for learning PT languages [5,7,25]. In view of the estimate of the complexity
of the subsequence kernel computation presented in the previous section, the
complexity of the algorithm for a sample of size m where zpyax is the longest
string is in O(QP(m)) + m? |Tmax|? |¥]), where QP(m) is the cost of solving a
quadratic programming problem of size m, which is at most O(m?).

We will use the standard margin bound to analyze the behavior of that al-
gorithm. Note however that since the VC-dimension of the set of PT languages
is infinite, PAC-learning is not possible and we need to resort to a weaker guar-
antee.

Let (z1,91),- -5 (Tm, Ym) € X x {—1,+1} be a sample extracted from a set
X (X = X* when learning languages). The margin p of a hyperplane with weight
vector w € RY over this sample is defined by:

yi (w, (i)

i=tm ]

The sample is linearly separated by w iff p > 0. Note that our definition holds
even for infinite-size samples.

The linear separation result shown for the class of PT languages is in fact
strong. Indeed, for any weight vector w € RY, let supp(w) = {i : w; # 0} denote
the support of w, then the following property holds for PT languages.

Definition 1. Let C' be a concept class defined over a set X. We will say that
a concept ¢ € C' is finitely linearly separable, if there exists a mapping ¢ : X —
{0,1}N and a weight vector w € RY with finite support, |supp(w)| < oo, such
that

c={x e X :(w¢(x)) >0} (15)

The concept class C is said to be finitely linearly separable if all ¢ € C are
finitely linearly separable for the same mapping ¢.

Note that in general a linear separation in an infinite-dimensional space does
not guarantee a strictly positive margin p. Points in an infinite-dimensional space
may be arbitrarily close to the separating hyperplane and their infimum distance
could be zero. However, finitely linear separation does guarantee a strictly posi-
tive margin.

Proposition 1. Let C be a class of concepts defined over a set X that is finitely
linearly separable using the mapping ¢ : X — {0,1}Y and a weight vector w €
RN. Then, the margin p of the hyperplane defined by w is strictly positive, p > 0.



Proof. By assumption, the support of w is finite. For any z € X, let ¢'(z)
be the projection of ¢(z) on the span of w, span(w). Thus, ¢'(z) is a finite-
dimensional vector for any z € X with discrete coordinates in {0,1}. Thus, the
set of S = {¢/(z) : € X} is finite. Since for any x € X, (w, ¢(z)) = (w, ¢'()),
the margin is defined over a finite set:

/
zeX [|w]| zeS |||
and is thus strictly positive. ad

The following general margin bound holds for all classifiers consistent with
the training data [4].

Theorem 3 (Margin bound). Define the class F of real-valued functions on
the ball of radius R in R™ as

F=A{z = (wz): |wl| <1,z < R}. (17)

There is a constant ag such that, for all distributions D over X, with probability
at least 1—0 over m independently generated examples, if a classifier sgn(f), with
f € F, has margin at least p on the training examples, then the generalization
error of sgn(f) is no more than

Ofo R2 2 1

— | —=lo +log(=) ) . 18

20 (ot m -+ 1og(5) (15)
Note that the notion of linear separability with a finite sample may be weak.

Any sample of size m can be trivially made linearly separable by using an em-

bedding ¢ : X — {0, 1} mapping each point x to a distinct dimension. However,

the support of the weight vector increases with the size of the sample and is not

1

bounded. Also, the margin p for such a mapping is PN and thus goes to zero

as m increases, and the ratio (R/p)?, where R = 1 is the radius of the sphere
containing the sample points, is (R/p)?> = 4m. Thus, such trivial linear sepa-
rations do not guarantee convergence. The bound of Theorem 3 is not effective
with that value of (R/p)?.

But, the result of the previous sections guarantee linear separability for sam-
ples of infinite size with strictly positive margin.

Theorem 4. Let C be a finitely linearly separable concept class over X with a
feature mapping ¢ : X — {0, 1}, Define the class F of real-valued functions on
the ball of radius R in R™ as

F={z = (w,¢(x)) : |w] <1, [lp()] < R}. (19)

There is a constant cg such that, for all distributions D over X, for any concept
¢ € C, there exists po > 0 such that with probability at least 1 — § over m
independently generated examples according to D, there exists a classifier sgn(f),
with f € F, with margin at least py on the training examples, and generalization

error no more than R2
« 1
= (—2 log® m + log(5)> : (20)

m \ pg



Proof. Fix a concept ¢ € C. By assumption, c is finitely linearly separable by
some hyperplane. By Proposition 1, the corresponding margin pq is strictly pos-
itive, po > 0. po is less than or equal to the margin of the optimal hyperplane p
separating ¢ from X \ ¢ based on the m examples.

Since the full sample X is linearly separable, so is any subsample of size m.
Let f € F be the linear function corresponding to the optimal hyperplane over
a sample of size m drawn according to D. Then, the margin of f is at least as
large as p since not all points of X are used to define f. Thus, the margin of f
is greater than or equal to pg and the statement follows Theorem 3. a

Theorem 4 applies directly to the case of PT languages. Observe that in the
statement of the theorem, pg depends on the particular concept ¢ learned but
does not depend on the sample size m.

Note that the linear separating hyperplane with finite-support weight vector
is not necessarily an optimal hyperplane. The following proposition shows how-
ever that when the mapping ¢ is surjective the optimal hyperplane has the same

property.

Proposition 2. Letc € C be a finitely linearly separable concept with the feature
mapping ¢ : X — {0, 1} and weight vector w with finite support, | supp(w)| <
oo, such that ¢(X) = RN. Assume that ¢ is surjective, then the weight vector
w corresponding to the optimal hyperplane for ¢ has also a finite support and

supp(w) C supp(w).

Proof. Assume that @; # 0 for some i & supp(w). We first show that this implies
the existence of two points z_ ¢ ¢ and x4 € ¢ such that ¢(z_) and ¢(xy) differ
only by their ith coordinate.

Let ¢’ be the mapping such that for all x € X, ¢'(z) differs from ¢(z) only
by the ith coordinate and let @’ be the vector derived from @ by setting the
ith coordinate to zero. Since ¢ is surjective, thus ¢=1(¢/(z)) # 0. If x and any
x' € ¢71(¢/(z)) are in the same class for all z € X, then

sgn((, ¢(z))) = sgn((d, ¢/ (x))). (21)

Fix © € X. Assume for example that [¢'(z)]; = 0 and [¢(z)]; = 1, then
(w, ¢’ (z)) = (W', ¢(z)). Thus, in view of Equation 21,

sgn((, ¢(x))) = sgu((, ¢'(x))) = sgn((d', §()))- (22)

We obtain similarly that sgn({(w, ¢(x))) = sgn({(@’, ¢(x))) when [¢'(x)]; = 1 and
[¢(z)]; = 0. Thus, for all z € X, sgn((w, ¢(x))) = sgn({@’, ¢(z))). This leads to
a contradiction, since the norm of the weight vector for the optimal hyperplane
is the smallest among all weight vectors of separating hyperplanes.

This proves the existence of the x_ ¢ ¢ and x4 € ¢ with ¢(z_) and ¢(z)
differing only by their ¢th coordinate.

But, since i ¢ supp(w), for two such points z_ ¢ ¢ and 24 € ¢, (w, d(x_)) =
(w, ¢(z+)). This contradicts the status of sgn({w, #(x))) as a linear separator.
Thus, our original hypothesis cannot hold: there exists no ¢ € supp(w) such that
w; # 0 and the support of w is included in that of w. ad



In the following, we will give another analysis of the generalization error of
SVMs for finitely separable hyperplanes using the following bound of Vapnik
based on the number of essential support vectors:

(Bt 2
Elerror(hy,)] < Tl (23)

where h,,, is the optimal hyperplane hypothesis based on a sample of m points,
error(h,,) the generalization error of that hypothesis, R,,11 the smallest radius
of a set of essential support vectors of an optimal hyperplane defined over a set
of m + 1 points, and pp,41 its margin.

Let ¢ be a finitely separable concept. When the mapping ¢ is surjective,
by Proposition 2, the weight vector w of the optimal separating hyperplane for
¢ has finite support and the margin pg is positive pg > 0. Thus, the smallest
radius of a set of essential support vectors for that hyperplane is R = 1/N(c)
where N(¢) = |supp(w)|. If Rp,41 tends to R when m tends to infinity, then
for all € > 0, there exists M, such that for m > M., R*(m) < N(c) + e In
view of Equation 23 the expectation of the generalization error of the optimal
hyperplane based on a sample of size m is bounded by

E[(F22)]  N(e)+e
Elerror(hy,)] < o < Am i1’ (24)

1

m’

This upper bound varies as

6 Finite Cover with Regular Languages

In previous sections, we introduced a feature mapping ¢, the subsequence map-
ping, for which PT languages are finitely linearly separable. The subsequence
mapping can be defined in terms of the set of shuffle ideals of all strings,
U, = Ul(u), u € X*. A string = can belong only to a finite number of shuf-
fle ideals U, which determine the non-zero coordinates of ¢(x). This leads us to
consider other such mappings based on other regular sets U,, and investigate the
properties of languages linearly separated for such mappings. The main result
of this section is that all such linearly separated languages are regular.

6.1 Definitions

Let U,, C X*, n € N, be a countable family of sets, such any string z € X* lies
in at least one and at most finitely many U,,. Thus, for all x € X,

1< an(a:) < 00,

where v, is the characteristic function of U,:

1 ifxelU,
Yn(z) = {0 otherwise.



Any such family (Uy,)nen is called a finite cover of X*. If additionally, each U,
is a regular set and X* is a member of the family, we will say that (U, )nen is a
reqular finite cover (RFC).

Any finite cover (Up,)nen naturally defines a positive definite symmetric ker-
nel K over X* given by:

VI,yEE*v K(:E,y) :an(x)wn(y)

Its finiteness, symmetry, and positive definiteness follow its construction as a dot
product. K (x,y) counts the number of common sets U,, that = and y belong to.
We may view () as an infinite-dimensional vector in the space RY, in which
case we can write K (z,y) = (¢¥(z),v(y)). We will say that ¢ is an RFC-induced
embedding. Any weight vector w € RY defines a language L(w) given by:

L(w) ={x € X" : (w,¥(x)) > 0}.
Note that since X* is a member of every RFC, K (x,y) > 1.

6.2 Main Result

The main result of this section is that any finitely linearly separable language
under an RFC embedding is regular. The converse is clearly false. For a given
RFC, not all regular languages can be defined by some separating hyperplane.
A simple counterexample is provided with the RFC {0, U, X* \ U, ¥*} where U
is some regular language. For this RFC, U, its complement, X*, and the empty
set are linearly separable but no other regular language is.

Theorem 5. Let ¢ : £* — {0, 1} be an RFC-induced embedding and let w €
RN be a finitely supported weight vector. Then, the language L(w) = {x € X* :
(w,(x)) > 0} is regular.

Proof. Let f:X* — R be the function defined by:

N
f(@) = (w,¥(z)) = Zwiwi(:r), (25)

where the weights w; € R and the integer N = | supp(w)| are independent of .
Observe that f can only take on finitely many real values {r; : k =1,...,K}.
Let L,, C X* be defined by

Ly, = f_l(rk)' (26)

A subset I C {1,2,..., N} is said to be ry-acceptable if ), w; = 7. Any such
rg-acceptable set corresponds to a set of strings Ly C 2™ such that

L1—<ﬂw;1<1>>\ U ' —<HU1>\ U u

il i€{1,..., NI\I i€l i€{L,., NI\I

Thus, L is regular because each U; is regular by definition of the RFC. Each
L,, is the union of finitely many ri-acceptable L;’s, and L is the union of the
L,, for positive 7. O



Theorem 5 provides a representation of regular languages in terms of some sub-
sets of RN, Although we present a construction for converting this represen-
tation to a more familiar one such as a finite automaton, our construction is
not necessarily efficient. Indeed, for some r; there may be exponentially many
rr-acceptable Lys. This underscores the specific feature of our method. Our ob-
jective is to learn regular languages efliciently using some representation, not
necessarily automata.

6.3 Representer Theorem

Let S ={z; : j=1,...,m} C Z* be a finite set of strings and o € R™. The
pair (S, a) defines a language L(S, «) given by:

L(S,a)={ze X" iajK(x,xj) > 0}. (27)

Let w = Y7, a;9(x;). Since each ¢(x;) has only a finite number of non-zero
components, the support of w is finite and by Theorem 5, L(S,a) can be seen
to be regular. Conversely, the following result holds.

Theorem 6. Let ¢ : X* — {0,1} be an RFC-induced embedding and let w €
RN be a finitely supported weight vector. Let L(w) be defined by L(w) = {x €
2 {w,¢(x)) > 0}. Then, there exist (x;), j =1,...,m, and o € R™ such that
L(w) = L(S,a) = {x € ¥* : 370, ; K (z,2;) > 0}.

Proof. Without loss of generality, we can assume that no cover set U,, # X*, U,
is fully contained in a finite union of the other cover sets U/, U, # X*. Other-
wise, the corresponding feature component can be omitted for linear separation.
Now, for any U, # X*, let z, € U, be a string that does not belong to any
finite union of Uy, U, # X*. For U,, = X*, choose an arbitrary string z,, € X*.
Then, by definition of the z,,,

(w.0(@) = 3wy K () (28)

This proves the claim. a

This result shows that any finitely linearly separable language can be inferred
from a finite sample.

6.4 Further Characterization

It is natural to ask what property of finitely supported hyperplanes is responsible
for their inducing regular languages. In fact, Theorem 5 is readily generalized:

Theorem 7. Let f : X* — R be a function such that there exist an integer
N €N and a function g : {0,1} — R such that

Ve e Xt f(z) = g(1(2),th2(2), ..., ¥n(2)), (29)

Thus, the value of f depends on a fixed finite number of components of 1. Then,
for any r € R, the language L = {x € X* : f(x) = r} is regular.



Proof. Since f is a function of finitely many binary variables, its range is finite.
From here, the proof proceeds exactly as in the proof of Theorem 5, with identical
definitions for {r} and L,, . O

This leads to the following corollary.

Corollary 2. Let f : X* — R be a function satisfying the conditions of The-
orem 7. Then, for any r € R, the languages Ly = {x € X* : f(z) > r} and
Ly ={z € X*: f(z) <r} are regular.

7 Conclusion

We introduced a new framework for learning languages that consists of mapping
strings to a high-dimensional feature space and seeking linear separation in that
space. We applied this technique to the non-trivial case of PT languages and
showed that this class of languages is indeed linearly separable and that the
corresponding subsequence kernel can be computed efficiently.

Many other classes of languages could be studied following the same ideas.
This could lead to new results related to the problem of learning families of
languages or classes of automata.
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