
Moment Kernels for Regular Distributions

Corinna Cortes
Google Labs
1440 Broadway, New York, NY 10018
corinna@google.com

Mehryar Mohri
AT&T Labs – Research
180 Park Avenue, Florham Park, NJ 07932
mohri@research.att.com

May 14, 2004

Abstract. Many machine learning problems in natural language processing, transa-
ction-log analysis, or computational biology, require the analysis of variable-length
sequences, or, more generally, distributions of variable-length sequences.

Kernel methods introduced for fixed-size vectors have proven very successful in a
variety of machine learning tasks. We recently introduced a new and general kernel
framework, rational kernels, to extend these methods to the analysis of variable-
length sequences or more generally distributions given by weighted automata. These
kernels are efficient to compute and have been successfully used in applications such
as spoken-dialog classification with Support Vector Machines.

However, the rational kernels previously introduced in these applications do not
fully encompass distributions over alternate sequences. They are based only on the
counts of co-occurring subsequences averaged over the alternate paths without tak-
ing into accounts information about the higher-order moments of the distributions
of these counts.

In this paper, we introduce a new family of rational kernels, moment kernels, that
precisely exploit this additional information. These kernels are distribution kernels
based on moments of counts of strings. We describe efficient algorithms to com-
pute moment kernels and apply them to several difficult spoken-dialog classification
tasks. Our experiments show that using the second moment of the counts of n-gram
sequences consistently improves the classification accuracy in these tasks.

Keywords: statistical learning, kernel methods, rational kernels, string kernels,
weighted automata, weighted finite-state transducers, spoken-dialog classification.

1. Introduction

Many machine learning problems in natural language processing re-
quire the analysis of variable-length sequences. These may be sequences
of words, or phonemes, or other linguistic units possibly augmented
with some tags or parentheses as in part-of-speech tagging or parsing.
Similarly, in bioinformatics, the analysis of protein sequences or other
biological sequences is required. Transaction-logs such as those record-
ing visits to a web site also form variable-length sessions that can be

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

mlj.tex; 24/08/2004; 11:54; p.1

2 C. Cortes and M. Mohri

analyzed to cluster customers or otherwise derive information about
the behavior of the visitors or the functionality of the site.

More generally, in many applications, the analysis of distributions
over variable-length sequences is needed. Indeed, the output of complex
systems combining multiple knowledge sources, e.g., a large-vocabulary
speech recognition or an information extraction system is typically a
weighted automaton compactly representing a large set of alternative
sequences or paths, where the weights rank different hypotheses ac-
cording to the underlying models of these systems and represent the
probability of correctness of the sequences.

A common approach in statistical learning techniques such as Sup-
port Vector Machines (SVMs) (Boser et al., 1992; Cortes and Vap-
nik, 1995; Vapnik, 1998) is that of kernel methods (Schölkopf and
Smola, 2002) which allow an implicit and efficient computation of dot
products in a high-dimensional feature space. However, these kernels
have been primarily developed for fixed-sized vectors. We recently in-
troduced a general kernel framework based on weighted transducers,
rational kernels, to extend kernel methods to the analysis of variable-
length sequences or more generally weighted automata (Cortes et al.,
2003b; Cortes et al., 2003a).

This framework includes many of the string kernels introduced for
computational biology or text classification applications (Cortes et al.,
2003a), e.g., David Haussler’s convolution kernels for strings (1999),
kernels discussed by Watkins (1999), the paths kernels of Takimoto
and Warmuth (2003), other string kernels applied to bioinformatics
problems (Leslie et al., 2003), or the gappy kernels applied to text
classification problems by Lodhi et al. (2001).1 There exists a general
and efficient algorithm for computing rational kernels, which can be
used to compute all of the kernels just mentioned (Cortes et al., 2003b).

We also previously introduced a family of rational kernels measur-
ing the similarity between the weighted automata output by speech
recognition systems and showed that they can be successfully used for
spoken-dialog classification with SVMs (Cortes et al., 2003b). How-
ever, these kernels do not fully encompass distributions over alternate
sequences, they are based only on the expected counts of co-occurring

1 Some kernels are also discussed by (Gaertner et al., 2003) between “labeled
directed graphs”, i.e., finite automata. The kernels that these authors are striving
to study are thus kernels between automata. Rational kernels provide a general
solution for the definition of kernels between (weighted) automata and a general
algorithm for their computation.

mlj.tex; 24/08/2004; 11:54; p.2

Moment Kernels 3

subsequences aggregated over the alternate paths and ignore informa-
tion about higher order moments of the distributions of these counts.2

This paper introduces a new family of rational kernels, moment ker-

nels, that precisely exploit this additional information and generalize
the kernels we had previously defined. Moment kernels are distribution
kernels based on higher moments of counts of strings. We describe effi-
cient algorithms to compute moment kernels and apply them to several
difficult spoken-dialog classification tasks. Our experiments show that
using the second moment of the counts of n-gram sequences consistently
improves the classification accuracy in these tasks.

The paper is organized as follows. It first briefly presents the es-
sential concepts and algorithms related to rational kernels. It then
introduces the family of moment kernels, which are kernels based on
the moments of the counts of n-gram sequences appearing in weighted
automata. It describes in detail new algorithms for computing the mo-
ments of the count of an arbitrary string in a weighted automaton and
gives the proof of their correctness. This shows that moment kernels
are rational kernels and that they generalize those based on just the
expected counts. The last section details the application of moment
kernels to spoken-dialog classification and reports the results of our
experiments in several difficult tasks.

2. Rational Kernels

This section gives an overview of rational kernels, their definition, and
their properties.

2.1. Weighted Automata and Transducers

We start with a brief presentation of some of the basic notions and
algorithms related to weighted automata and finite-state transducers
that are needed for the introduction of rational kernels.

A weighted finite-state transducer T is an automaton in which each
transition, in addition to its usual input label, is augmented with
an output label from a possibly different alphabet, and carries some
weight. It is thus an 8-tuple T = (Σ,∆, Q, I, F,E, λ, ρ) where Σ is the
finite input alphabet of the transducer, ∆ is the finite output alphabet,
Q is a finite set of states, I ⊆ Q the set of initial states, F ⊆ Q the set
of final states, E ⊆ Q × (Σ ∪ {ε}) × (∆ ∪ {ε}) × R × Q a finite set of

2 For a weighted automaton, weights are associated to paths and the expected
count of a string is the weighted average of the number of occurrences of the string
in a path.

mlj.tex; 24/08/2004; 11:54; p.3

4 C. Cortes and M. Mohri

transitions where ε represents the empty string, λ : I → R the initial
weight function, and ρ : F → R the final weight function mapping F

to R. In what follows, the weights can be interpreted as probabilities,
thus they are multiplied along a path.

Let R(I, x, y, F) denote the set of paths from an initial state p ∈ I

to a final state q ∈ F with input label x and output label y, w[π]
the weight of path π, λ[p[π]] the initial weight of the origin state of
π, and ρ[n[π]] the final weight of its destination. A transducer T is
regulated if the output weight associated by T to any pair of strings
(x, y) ∈ Σ∗ × ∆∗:

[[T]](x, y) =
∑

π∈R(I,x,y,F)

λ[p[π]] · w[π] · ρ[n[π]] (1)

is well-defined and in R. A weighted automaton A = (Σ, Q, I, F,E, λ, ρ)
is defined in a similar way by simply omitting the output (or input)
labels. A is regulated if the weight associated by A to any string x ∈ Σ∗:

[[A]](x) =
∑

π∈R(I,x,F)

λ[p[π]] · w[π] · ρ[n[π]] (2)

is well-defined and in R, where R(I, x, F) denotes the set of paths
labeled with x from an initial state to a final state. We denote by
Π2(T) (Π1) the weighted automaton obtained from T by removing its
input labels (resp. output labels).

A general composition operation similar to the composition of rela-
tions can be defined for weighted finite-state transducers when the out-
put alphabet of one transducer matches the input alphabet of another
transducer. The composition of two weighted finite-state transducers
T1 = (Σ,Ω, Q1, I1, F1, E1, λ1, ρ1) and T2 = (Ω,∆, Q2, I2, F2, E2, λ2, ρ2)
is a weighted transducer denoted by T1 ◦ T2 and defined by:

[[T1 ◦ T2]](x, y) =
∑

z∈Ω∗

[[T1]](x, z) · [[T2]](z, y) (3)

There exists an algorithm for computing and constructing T = T1 ◦
T2 from T1 and T2 (Pereira and Riley, 1997; Mohri et al., 1996). Its
complexity is quadratic, O(|T1||T2|), where |Ti|, i = 1, 2, is the size of
Ti, that is the sum of the number of states and transitions of Ti. The
states of T are identified as pairs of a state of T1 and a state of T2.
A state (q1, q2) in T1 ◦ T2 is an initial (final) state if and only if q1

is an initial (resp. final) state of T1 and q2 is an initial (resp. final)
state of T2. The transitions of T are the result of matching a transition
of T1 from state q1 to state q′1 and a transition of T2 from state q2

to state q′2 as follows: (q1, a, b, w1, q
′
1) and (q2, b, c, w2, q

′
2) produce the

mlj.tex; 24/08/2004; 11:54; p.4

Moment Kernels 5

0 1a:b/.1
a:b/.2

2b:b/.3
3/.7b:b/.4

a:b/.5
a:a/.6

0 1b:b/.1
b:a/.2 2a:b/.3

3/.6a:b/.4

b:a/.5

(a) (b)

(0, 0) (1, 1)a:b/.01

(0, 1)a:a/.04

(2, 1)b:a/.06 (3, 1)

b:a/.08

a:a/.02

a:a/.1

(3, 2)a:b/.18

(3, 3)/.42

a:b/.24

(c)

Figure 1. (a) Weighted transducer T1. (b) Weighted transducer T2. (c) Composition
of T1 and T2. Initial states are represented by bold circles, final states by double
circles. Inside each circle, the number indicates the state number. For final states,
the value of the final weight function ρ is indicated after the slash symbol. Arrows
represent transitions. Each transition is labeled with an input label and an output
label separated by a colon, and a transition carries some weight indicated after the
slash symbol, e.g., the transition from state 1 to state 2 in the first transducer has
input label a, output label b, and weight .1.

transition ((q1, q2), a, c, w1 · w2, (q
′
1, q

′
2)) in T .3 Figure 1(c) shows the

result of the application of the algorithm to the weighted transducers
of Figure 1(a)-(b).

The definition of composition extends naturally to weighted au-
tomata since a weighted automaton can be viewed as a weighted trans-
ducer with identical input and output labels for each transition. The
corresponding transducer associates [[A]](x) to all pairs (x, x), and 0 to
all other pairs. Thus, the composition of a weighted automaton A1 and
a weighted transducer T2 is simply defined by:

[[A1 ◦ T2]](x, y) =
∑

x∈Ω∗

[[A1]](x) · [[T2]](x, y) (4)

and can be computed as previously described.

2.2. Definition of Rational Kernels

A kernel K is a function mapping pairs of strings in Σ∗ × Σ∗ to the
real numbers, R. K is said to be rational if there exists a weighted

3 See (Pereira and Riley, 1997; Mohri et al., 1996) for a detailed presentation of
the algorithm including the use of a transducer filter for dealing with the multiplicity
of ε-paths.

mlj.tex; 24/08/2004; 11:54; p.5

6 C. Cortes and M. Mohri

transducer T = (Σ,Σ, Q, I, F,E, λ, ρ) such that for all x, y ∈ Σ∗:4

K(x, y) = [[T]](x, y) (5)

We will refer to T as the weighted transducer associated to the rational

kernel K. Rational kernels can be naturally extended to kernels over
weighted automata. Let A and B be two weighted automata, then
K(A,B) is defined by:

K(A,B) =
∑

(x,y)∈Σ∗×Σ∗

[[A]](x) · [[T]](x, y) · [[B]](y) (6)

for all weighted automata A and B such that the sum:
∑

(x,y)∈Σ∗×Σ∗

[[A]](x) · [[T]](x, y) · [[B]](y)

is well-defined and in R. This sum is always defined and in R when
A and B are acyclic weighted automata since the sum then runs over
a finite set. It is also well-defined for all A, B, and T representing
probability distributions. In view of the definition of composition given
earlier, when K(A,B) is defined, Equation 6 can be rewritten as:

K(A,B) =
∑

(x,y)∈Σ∗×Σ∗

[[A ◦ T ◦ B]](x, y) (7)

Thus, K(A,B) is simply the sum of the weights of all the paths of
A ◦ T ◦ B from an initial state to a final state. A ◦ T ◦ B can be
computed using the composition algorithm previously described, and
a shortest-distance algorithm or a forward-backward algorithm can be
used to compute the sum of the weights of all its paths.

2.3. Properties of Rational Kernels

To ensure the convergence of the training algorithm to a unique opti-
mum when using learning techniques such as SVMs, the kernels used
must be positive definite symmetric (PDS), or, equivalently, verify Mer-
cer’s condition. A kernel K is PDS if it is symmetric (K(x, y) = K(y, x)
for all x, y ∈ Σ∗) and the matrix K(xi, xj)i,j≤n for all n ≥ 1 and all
{x1, . . . , xn} ⊆ X has only non-negative eigenvalues. This condition
guarantees the existence of a Hilbert space and a dot product associated
to the kernel considered.

4 Weighted transducers can be defined over arbitrary semirings. The weights are
then multiplied along the paths using the second operation of the semiring and
summed using the first operation. The composition algorithm described and the
definition of rational kernels can also be extended to this more general setting (Cortes
et al., 2003a).

mlj.tex; 24/08/2004; 11:54; p.6

Moment Kernels 7

0

a:ε/1
b:ε/1

1
ε:a/1

ε:b/1
2

b:b/1

ε:a/1

ε:b/1

b:b/1
3

a:a/1

a:ε/1
b:ε/1

4/1

ε:b/1

ε:a/1

ε:a/1

ε:b/1

Figure 2. Rational kernel based on common counts of the sequence ba over the
alphabet Σ = {a, b}. The states 0 and 1 disregard arbitrary prefixes of the sequences
to be matched, the states 2 and 3 perform the actual match, and the states 3 and
4 disregard suffixes. Each successful path contributes a weight of 1, thus the sum of
all the successful paths is indeed the sum of common occurrences of the sequence
ba.

There exists a simple and general method for constructing a PDS
rational kernel from an arbitrary weighted transducer T (Cortes et al.,
2003a). We denote by T−1 the inverse of T , that is the transducer
obtained from T by swapping input and output labels of each transition.
When the transducer T ◦T−1 is regulated, the rational kernel associated
to T ◦ T−1 is PDS. This can be illustrated with a simple example. As
we shall see later, there exists a transducer T that can compute |x|z
the number of occurrences of a given string z ∈ Σ∗ in a sequence
x, [[T]](x, z) = |x|z . Thus, T ◦ T−1 defines a PDS rational kernel K

based on the product of the number of occurrences of z between two
sequences. Figure 2 shows the T ◦ T−1 transducer associated with the
rational kernel based on the common counts of the sequence ba when
the alphabet is Σ = {a, b}.

An important property of PDS rational kernels as defined above is
that they are closed under sum, product, and Kleene-Closure (Cortes
et al., 2003a). Furthermore, the transducer associated to the sum of
two PDS rational kernels can simply be obtained by taking the sum of
the weighted transducers associated to these kernels. This can be used
to construct more complex PDS rational kernels from simpler ones.

3. Kernels Based on Counts

A kernel can be viewed as a similarity measure. Many of the kernels
introduced for strings in computational biology or natural language
processing applications are based of the following idea: two strings

mlj.tex; 24/08/2004; 11:54; p.7

8 C. Cortes and M. Mohri

are similar when they share many common factors.5 Thus, kernels for
strings may be defined for example as the sum of the products of all
common factors between two sequences.

To generalize this idea to kernels defined over weighted automata,
the distribution of the counts of sequences in each automaton must be
taken into account. This section gives the definition of these moments
and defines a family of kernels based on these moments.

3.1. Definition

Let A = (Σ, Q, I, F,E, λ, ρ) be an arbitrary weighted automaton. We
are interested in counting the occurrences of a sequence x in A while
taking into account the weight of the paths where they appear. When A

is stochastic, i.e., when it is deterministic and the sum of the weights of
the transitions leaving any state is 1, it can be viewed as a probability
distribution P over all strings Σ∗. The weight [[A]](u) associated by A

to a string u ∈ Σ∗ is then P (u). This leads to the following definition:
Let m be a positive integer. Let cA

m(x) denote the m-th moment of

the count of the sequence x in A defined by:

cA
m(x) =

∑

u∈Σ∗

|u|mx [[A]](u) (8)

where |u|x denotes the number of occurrences of x in the string u label-
ing one or several successful paths of A. We define the m-th moment of
the count of x as above regardless of whether A is stochastic or not. In
many applications, the weighted automaton A is acyclic, e.g., it is the
output of a speech recognition system, but our algorithms are general
and do not assume A to be acyclic.

In previous work (Cortes et al., 2003b; Cortes et al., 2003c), we
defined a family of kernels Kn

1 based on the expected counts of common
n-gram sequences between two automata A1 and A2:

Kn
1 (A1, A2) =

∑

|x|=n

cA1

1 (x)cA2

1 (x) (9)

where cAi

1 (x), i = 1, 2, denotes the expected count of x in the weighted
automaton Ai. With these kernels, two automata are viewed as similar
when they share common n-gram subsequences with high expected
counts. In many cases, one may wish to consider not just the n-gram
sequences of a particular order to measure the similarity between two
weighted automata but all n-grams up to a given order. The resulting

5 A string f is a factor of x if it a sequence of consecutive symbols appearing in
x, that is if there exist x1 and x2 such that x = x1fx2.

mlj.tex; 24/08/2004; 11:54; p.8

Moment Kernels 9

kernel is also a PDS rational kernel since the sum a finite number of
PDS rational kernels is a PDS rational kernel. Thus, we define an n-

gram rational kernel Kn
1 as the PDS rational kernel obtained by taking

the sum of all K
j
1 , with 1 ≤ j ≤ n:

Kn
1 =

n
∑

j=1

K
j
1 (10)

These kernels can be generalized to take into account other moments
of the distributions of the counts of n-gram sequences. We define a
general family of kernels, denoted by Kn

m, m,n ≥ 1 and defined by:

Kn
m(A1, A2) =

∑

|x|=n

cA1

m (x)cA2

m (x) (11)

In Section 4 we show that there are weighted transducers T n
m that

can compute cA1

m (x) for all n-gram sequence x. Thus, these kernels are
rational kernels and their associated transducers are T n

m ◦ T n
m
−1:

Kn
m(A1, A2) =

∑

x,y

[[A1 ◦ (T n
m ◦ T n

m
−1) ◦ A2]](x, y) (12)

Since their definition is based on weighted transducers of the type T ◦
T−1, they are PDS kernels (Cortes et al., 2003a). This guarantees the
convergence of training for discriminant classification algorithms such
as SVMs when using these kernels. As in the case of expected counts,
one may wish to take into account all n-gram sequences up to a given
order. Since a finite sum of PDS rational kernels is PDS, we define
an n-gram moment kernel Kn

m as the PDS rational kernel obtained by
taking the sum of all Kj

m, with 1 ≤ j ≤ n:

Kn
m =

n
∑

j=1

Kj
m (13)

Moment kernels can be used to measure the similarity of two weighted
automata A1 and A2 based on the higher order moments of the counts
of their common n-gram sequences. Since rational kernels are closed
under rational operations (Cortes et al., 2003a), moment kernels can
be combined using sum, product, or the Kleene-Closure to create more
complex rational kernels taking advantage of higher order moments
of the counts of subsequences. They can also be combined using other
functions to define useful positive definite kernels. We shall later reports
the results of our preliminary experiments in several difficult spoken-
dialog classification tasks using moment kernels in combination with
n-gram kernels.

mlj.tex; 24/08/2004; 11:54; p.9

10 C. Cortes and M. Mohri

0

a:ε/1
b:ε/1

1/S(m, 1)x:x/1

a:ε/1
b:ε/1

2/S(m, 2)x:ε/2

a:ε/1
b:ε/1

 k/S(m, k)x:ε/k

b:ε/1
a:ε/1

m/S(m, m)x:ε/m

a:ε/1
b:ε/1

Figure 3. Weighted transducer Tm for computing the m-th moment of the count of
x ∈ Ω. The final weight at state k, k = 1, . . . , m, is S(m, k), the Stirling number of
the second kind.

4. Algorithms

This section describes efficient algorithms for computing the moments
of the distributions of the counts of an arbitrary sequence x appearing
in a weighted automaton A and gives the proof of the correctness of
the algorithms. It also presents algorithms for computing the moments
of the counts of all sequences x ∈ L(X), where L(X) is the language
described by a regular expression X.

Our algorithms for computing the moments of the count of a se-
quence x are based on the definition of suitable weighted transducers.
We start with the simpler case where the sequence x is aperiodic.

A positive integer p is said to be a period of a string x = a1a2 · · · an if
ai = ai+p for i = 1, . . . , n−p. Note that |x|, the length of x, is always a
period of x. The smallest period of x is called the period of x. x is said to
be aperiodic if its period coincides with its length |x|. The period of the
string ba is 2, since ab is the shortest repeated pattern in that string.
The string abb is aperiodic since it contains no repeated pattern shorter
than itself. When a string x is aperiodic, two consecutive occurrences of
x cannot overlap. This may happen in the case of non-aperiodic strings,
e.g., ababa contains two overlapping occurrences of aba.

We will denote by Ω ⊂ Σ∗ the set of aperiodic strings over the
alphabet Σ.

4.1. Case of Aperiodic Sequences

PROPOSITION 1. Let x ∈ Ω. Then, for any positive integer m, there

exists a weighted transducer Tm such that for any weighted automaton

A:

[[Π2(A ◦ Tm)]](x) = cA
m(x) (14)

mlj.tex; 24/08/2004; 11:54; p.10

Moment Kernels 11

Proof. Let m be a positive integer. Let αm be the weighted regular
expression (or rational power series) defined by:

αm =
m
∑

k=0

k!S(m,k) (Σ∗x)kΣ∗ (15)

where S(m,k), k = 1, . . . ,m, denote the Stirling numbers of the second
kind (van Lint and Wilson, 1992). S(m,k) represents the number of
possible partitions of an m-set into k non-empty subsets. The Stirling
numbers of the second type verify the following identity:

m
∑

k=0

(

N

k

)

k!S(m,k) = Nm (16)

The weight associated by a weighted regular expression X to a string
u is denoted by (X,u). The weight associated by αm to a string u ∈ Σ∗

is thus:

(αm, u) =
m
∑

k=0

k!S(m,k) ((Σ∗x)kΣ∗, u) (17)

The number ((Σ∗x)kΣ∗, u) corresponds to the number of occurrences of
xΣ∗xΣ∗ · · ·Σ∗x in u (with k repetitions of x). Since x is aperiodic, two
consecutive occurrences of x cannot overlap. Thus, this is the number
of ways of choosing k positions of x in u. Let N = |u|x denote the

number of occurrences of x in u. Then, ((Σ∗x)kΣ∗, u) =
(N

k

)

. Thus,

(αm, u) =
m
∑

k=0

(

N

k

)

k!S(m,k) = Nm (18)

Since αm is a weighted regular expression, by the theorem of Kleene-
Schützenberger (1961), there exists a weighted automaton Am realizing
αm. Let Tm be a weighted transducer with input automaton Am and
with output reduced to x. Tm verifies exactly the hypotheses of the
proposition. 2

The next proposition shows that there exists an efficient algorithm
for computing the moments of the counts of an aperiodic sequence x.

PROPOSITION 2. Let x ∈ Ω. There exists an algorithm for com-

puting cA
m(x) for any weighted automaton A in O(m|A||x|) time and

O(m|A||x|) space.

Proof. By Proposition 1, given the complexity of composition, cA
m(x)

can be computed in O(|A||Tm|) time and space where Tm is a weighted
transducer with input an automaton representing αm and with output

mlj.tex; 24/08/2004; 11:54; p.11

12 C. Cortes and M. Mohri

0

a:ε/1
b:ε/1

1/1x:x/1

a:ε/1
b:ε/1

2/1x: ε/2

a:ε/1
b:ε/1

(a)

0

a:ε/1
b:ε/1

1/1x:x/1

a:ε/1
b:ε/1

2/1x:ε/6

a:ε/1
b:ε/1

3/1x:ε/1

b:ε/1
a:ε/1

(b)

Figure 4. (a) Weighted transducer T2 for computing the second moment. (b)
Weighted transducer T3 for computing the third moment.

x. It is clear that there exists a weighted transducer with only m|x|+1
states realizing this mapping. Figure 3 shows that transducer. Clearly,
its input projection realizes αm and its output is x. It admits |Σ| self-
loop transitions at each state. However, with a lazy implementation,
these transitions can be explicitly constructed just when needed. The
size of the lazy implementation of this transducer is in O(m|x|), which
proves the proposition. 2

The transducer Tm of Figure 3 is quite simple and admits a natural
lazy implementation. Figures 4(a)-(b) show the transducers T2 and T3

for computing the second and third moment of the counts of a sequence
x ∈ Ω.

4.2. General Case

When the string x is not aperiodic, two consecutive occurrences of x

may overlap. In that case, the counting transducer must be suitably
modified to allow for such occurrences. Let Uk denote the set of all
strings over the alphabet Σ with at least k occurrences of x, possibly
overlapping. It is not hard to prove that Uk is a regular language.6

6 We can briefly sketch the construction of an automaton representing Uk. This
also shows the regularity of Uk. Let A be the minimal deterministic automaton
accepting Σ∗x, the set of strings over the alphabet Σ ending with x. We can construct
from A a transducer T by augmenting all transitions of A with the output label ε

and by inserting a transition with input ε and output #, a new symbol not in Σ, just
before each transition leaving the unique final state of A, and by making all states
final. When applied to any input string X, T outputs the symbol # and only that

mlj.tex; 24/08/2004; 11:54; p.12

Moment Kernels 13

0

a:ε/1
b:ε/1

1a:a/1 2b:b/1 3/1a:a/1 4

a:a/1

a:ε/1
b:ε/1

a:ε/1 5b:ε/1 6/2a:ε/1

a:ε/1
b:ε/1

Figure 5. Weighted transducer T ′

2 used to compute the second moment of the count
of aba with the alphabet Σ = {a, b}.

We can now generalize Proposition 1 to the case of all strings using
arguments similar to those used in the aperiodic case.

PROPOSITION 3. Let x ∈ Σ∗. Then, for any positive integer m, there

exists a weighted transducer T ′
m such that for any weighted automaton

A:

[[Π2(A ◦ T ′
m)]](x) = cA

m(x) (19)

Proof. Let m be a positive integer. Let βm be the weighted regular
expression (or rational power series) defined by:

βm =
m
∑

k=0

k!S(m,k)Uk (20)

The weight associated by βm to the string u ∈ Σ∗ is:

(βm, u) =
m
∑

k=0

k!S(m,k) (Uk, u) (21)

(Uk, u) represents exactly the number of ways of choosing k positions
of x in u. The rest of the proof is similar to that of Proposition 1. 2

Similarly, Proposition 2 can be generalized in the following way.

PROPOSITION 4. Let x ∈ Σ∗. There exists an algorithm for com-

puting cA
m(x) for any weighted automaton A in O(m|A||x|) time and

O(m|A||x|) space.

Proof. By Proposition 3, cA
m(x) can be computed in O(|A||T ′

m|) time
and space where T ′

m is a weighted transducer with input automaton

symbol exactly once after each occurrence of x. Let B be an automaton accepting
#k#∗. Then Π1(T ◦B) is an automaton accepting exactly the set of all strings with
at least k occurrences of x.

mlj.tex; 24/08/2004; 11:54; p.13

14 C. Cortes and M. Mohri

0

a:ε/1
b:ε/1

1/1
a:a/1

2/1

b:b/1

a:ε/1
b:ε/1

3/2

a:ε/1

a:ε/1
b:ε/1 b:ε/1

a:ε/1
b:ε/1

Figure 6. Weighted transducer T X

2 used to compute the second moment of the
counts of all unigrams over the alphabet Σ = {a, b}.

representing αm and with output x. There exists such a weighted trans-
ducer with only m|x| + 1 states and admitting a lazy implementation
whose size is in O(m|x|). 2

Figure 5 shows the weighted transducer T ′
2 for the particular case of

x = aba. x is not aperiodic. T ′
2 only differs from T2 by the transition

from state 2 to state 4. This transition is used to account for ababa

which contains two occurrences of aba.

4.2.1. Counts of a Set of Sequences

The computation of the kernels used in practice requires collecting not
just the moments of the counts of a single sequence but those of a set
of sequences X ⊆ Σ∗, e.g., the set of all n-gram sequences for a fixed n.
When the set X is finite, a weighted transducer TX

m for computing the
counts of all sequences x ∈ X can be constructed by simply taking the
sum (union) of the counting transducers Tm defined for each x ∈ X.
By definition of TX

m , for all x ∈ X,

[[Π2(A ◦ TX
m)]](x) = cA

m(x) (22)

Figure 6 shows the transducer TX
2 used to compute the second moment

of the counts of all unigrams. This transducer has |Σ| + 2 states. But
it admits a natural lazy implementation which avoids the explicit con-
struction of the states and transitions corresponding to all elements of
the alphabet when |Σ| is large. More generally, the transducer TX

m for
computing the m-th moment of the counts of all unigram sequences has
(m − 1)|Σ| + 2 states but TX

m admits a natural lazy implementation.
In the particular case of the expected counts, a simple transducer

TX
1 can be constructed to compute the counts of all strings x ∈ X for

an arbitrary regular language X. Figure 7 shows the transducer TX
1

mlj.tex; 24/08/2004; 11:54; p.14

Moment Kernels 15

0

a:ε/1
b:ε/1

1/1X:X/1

a:ε/1
b:ε/1

Figure 7. Weighted transducer T1 used to compute the expected counts of all
sequences x ∈ L(X) with the alphabet Σ = {a, b}.

where the transition labeled with X serves as a shorthand for a finite
automaton accepting X. It is clear that:

[[Π2(A ◦ TX
1)]](x) = c1(x) (23)

since for any x ∈ L(X), Π2(T
X
1 ◦ x) coincides with the transducer

T1 defined for a single string x in Proposition 1. The size of a lazy
implementation of the transducer TX

1 is in O(AX), where AX is a finite
automaton accepting X.

5. Application to Spoken-Dialog Classification

We have fully implemented the core algorithms for computing the mo-
ment kernels described in the previous section using the AT&T FSM
Library (Mohri et al., 2000) and the GRM Library (Allauzen et al.,
2004). In particular, we implemented and used the expectation kernels

Kn
1 for various n-gram orders and the variance kernel K1

2 based on the
second moment of the unigram sequences and applied them to several
difficult spoken-dialog classification tasks.

5.1. Spoken-Dialog Classification Problem

A key problem for the design of large-scale spoken-dialog systems is
classification. This consists of assigning a specific category to each
speech utterance. The categories help guide the dialog. There may be
hundreds of categories depending on the task. They may correspond to
the type of flight or billing mode in the case of a dialog with an airline
reservation system, or to type of request, e.g., refund, or calling-card in
the case of a dialog with an operator service system. Classification of
a speech utterance is based on its transcription by a speech recognizer
and is typically based on features such as some relevant word sequences.

Unfortunately, the word error rate of conversational speech recog-
nition systems is still relatively high in many tasks. In the case of

mlj.tex; 24/08/2004; 11:54; p.15

16 C. Cortes and M. Mohri

the deployed services we examined, it is about 30% when using the
recognizer’s most likely word transcription.7 But, the full output of
a speech recognizer contains more information. It is a word lattice,
a weighted automaton compactly representing the recognizer’s set of
“best guesses”, which contains the correct transcription in most cases.
Each path of a word lattice is labeled with a sequence of words and
has a weight that can be interpreted as a probability. The path with
the highest probability is the recognizer’s best guess. Thus, the ob-
jects to analyze for spoken-dialog classification are word lattices, i.e.
distributions of word sequences given as weighted automata.

The design of classification algorithms for word lattices raises several
issues. Word lattices, even relatively small ones, may contain more than
a billion paths, thus classical algorithms devised for strings cannot
be generalized by simply applying them to each path of the lattice.
Furthermore, the paths are weighted and these weights must be used to
guide appropriately the classification task. In previous work, we showed
that the use of rational kernels solves both of these problems since
they define kernels between weighted automata and since they can be
computed efficiently.

The rational kernels previously introduced were based on the ex-
pected counts of sequences appearing in both automata. It is natural
to assume indeed, as in the string case, that two lattices are similar
when they share many common sequences. However, such kernels ignore
higher order moments of the counts, which may be important to take
into consideration when comparing two word lattices. The moments
kernels we defined in the previous sections generalize these kernels by
taking into account higher order moments of the count distributions.

5.2. Experiments and Results

We did a series of experiments with data collected from two deployed
large-scale spoken-dialog systems using moments kernels. The next
two sections describe our experiments and the corresponding results
in detail.

5.2.1. HMIHY 0300

The first task we considered is that of a deployed customer-care appli-
cation (HMIHY 0300). In this task, users interact with a spoken-dialog

7 The word error rate for one or several speech utterances is measured by the edit-
distance between the word transcription given by the recognizer and the reference
transcription for those utterances, divided by the total number of words in the
reference transcription. Thus, roughly speaking, it measures the percentage of the
words incorrectly transcribed by the recognizer.

mlj.tex; 24/08/2004; 11:54; p.16

Moment Kernels 17

0 5 10 15 20

10
15

20
25

Rejection Rate

E
rr

or
 R

at
e

Expectation kernel
Expectation +
Variance kernel

Figure 8. Experiments in 70-category HMIHY 0300 task. Comparison of the best
result obtained using expectation kernels alone (n = 4, d = 2) applied to the one-best
output of the recognizer and the best result achieved by combining expectation
kernels with variance kernels (n = 3, d = 2).

system via the telephone, speaking naturally, to ask about their bills,
their calling plans, or other similar topics. Their responses to the open-
ended prompts of the system are not constrained by the system, they
may be any natural language sequence. The objective of the spoken-
dialog classification is to assign one or several categories or call-types,
e.g., Billing Credit, or Calling Plans, to the users’ speech utterances.

We applied moment kernels to a difficult subset of a partition of the
HMIHY 0300 task with 70 categories and a vocabulary size of 5,405
words for which the speech recognizer’s word error rate is 28.7%. In
our experiments, we used 10,794 word lattices as our training data
and 2,784 lattices as our test data. Each utterance may be assigned to
several classes and it is considered to be an error if the highest scoring
class is not one of these labels.

We experimented with two types of moment kernels: expectation
kernels, and kernels obtained by combining expectation kernels and
variance kernels by summing their contributions, enhanced with poly-
nomials of varying degrees d in the form (1 + K)d. We applied SVMs
with these kernels to the word lattices output by the speech recognition
system and compared their results by varying the n-gram order and
polynomial degree using the large-margin classification software library
(LLAMA) written by P. Haffner, which includes an optimized multi-
class logistic regression for recombination of the binary one-versus-rest
SVMs. No attempt was made to optimize with respect to other SVM
training parameters. Training and testing were done on a single pro-

mlj.tex; 24/08/2004; 11:54; p.17

18 C. Cortes and M. Mohri

0% 5% 10% 15% 20% 25% 30% 35% 40%

−0.5

0.0

0.5

1.0

Rejection Level

A
bs

ol
ut

e
Im

pr
ov

em
en

t i
n

%

Figure 9. Classification improvement due to the use of the expectation kernel com-
bined with the variance kernel over the use of the expectation kernel alone, in the
70-category HMIHY 0300 task. Performance improvement at various rejection levels
for seven different parameter sets (n, d) are shown. For each set of parameters,
training was done with the expectation kernel combined with the variance kernel
and with the expectation kernel alone. The box-plot shows the average performance
improvement (and its variance) when comparing the results with the same parameter
settings at various rejection levels.

cessor of a 2.40GHz Intel Pentium processor Linux cluster with 2GB
of memory and 512 KB cache. Training took in the order of 4-5 hours
for both kernels.

The best results when using the expectation kernel alone were ob-
tained with the n-gram order n = 4 and polynomial degree d = 2. In the
case of variance kernels combined with expectation kernels, the best re-
sults were achieved with n = 3 and d = 2. The best result using variance
kernels was clearly better than expectation kernels alone, which were
previously shown to substantially improve on kernels based on the one-
best path of the lattices. In particular, at 15% rejection rate, the error
rate was reduced by 1% absolute, that is about 6.2% relative, which
is significant in this task.8 Figure 8 shows that this improvement is

8 Utterances whose score is lower than a given rejection threshold are rejected.
With a rejection rate of x%, the error rate is calculated by omitting the x% of the
test examples with the lowest scores.

mlj.tex; 24/08/2004; 11:54; p.18

Moment Kernels 19

consistent in the range of 0−20% rejection and confirms the usefulness
of higher-order moments of the counts of n-gram sequences.

Comparing the best result obtained with the expectation kernels
alone versus the best one achieved with the combination of the expec-
tation kernels and variance kernels may be subject to over-fitting on the
test data. Thus, we did a second evaluation of the relative performance
of these kernels by comparing their performance for the same settings
of n and d, the set spanning performances from under-fitting (n = 2
and d = 1) to over-fitting (n = 4 and d = 3) on the training data.
Our results show that the combined kernel systematically outperforms
the expectation kernel (Figure 9). For each set of parameters, training
was done separately with each kernel. The results were compared by
plotting the performance improvement at various rejection levels. The
box-plot is obtained by comparing results for seven different settings
of (n, d). The consistent performance improvement up to 35% rejec-
tion level helps demonstrate the superior performance of the combined
kernel.

5.2.2. VoiceTone2

Similarly, we did experiments with a more recently deployed spoken-
dialog system (VoiceTone2) with a larger set of categories (82) and a
higher word error rate (31.2%), both indicative of the greater difficulty
of the classification task. In these experiments, we used about 9,000
word lattices as our training data and about 5,100 lattices as our test
data. The average number of transitions of a word lattice in VoiceTone2
was about 360. These lattices may have more than a billion paths.

Our experiments show that expectation kernels combined with vari-
ance kernels lead to the best classification accuracy in this task with a
performance that is substantially better than that of the best previous
classifier designed for this task. The best previous classifier was the
BoosTexter algorithm (Schapire and Singer, 2000) applied to the one-
best hypothesis. Its results on the data sets we examined served as a
baseline for our experiments. At about 15% rejection rate, the classi-
fication error is 5-6% (absolute value) lower than that of BoosTexter.
Figure 10 presents the results of the experiments comparing these two
classifiers. It also shows the accuracy achieved when applying these
kernels to the one-best output of the speech recognizer. The substantial
difference in accuracy between the plots (2-3% absolute value) demon-
strates the benefit of the use of word lattices and that of kernels defined
over such distributions.

Finally, as with HMIHY 0300, our experiments with VoiceTone2
showed that expectation kernels combined with variance kernels lead

mlj.tex; 24/08/2004; 11:54; p.19

20 C. Cortes and M. Mohri

0 10 20 30 40

5

10

15

20

25

30

Rejection Rate

E
rr

or
 R

at
e

BoosTexter
Moment Kernel/One−Best
Moment Kernel/Lattice

Figure 10. Experiments in a VoiceTone task. Comparison of the best previous clas-
sifier (BoosTexter) used in this task with the expectation kernel combined with
the variance kernel (n = 3, d = 2) applied to the one-best output of the speech
recognizer and to word lattices.

to an improvement of about 1% absolute value at 15% rejection rate
with respect to the use of expectation kernels alone.

Altogether, our results show that the use of higher-order moment
kernels consistently improves the classification accuracy in several dif-
ficult spoken-dialog tasks. The complexity of the computation of the
moment kernels we used is no worse than that of the computation of
expectation kernels and their implementation is quite similar. Thus,
they can be of practical use for analyzing distributions of strings such
as those found in natural language processing.

6. Conclusion

We introduced a new set of rational kernels that can be used to ex-
ploit higher-order moments of the counts of sequences appearing in
weighted automata. We described efficient algorithms for computing
these kernels using weighted finite-state transducers. We showed that
they consistently improve the accuracy in several difficult spoken-dialog
classification tasks using SVMs. Moment kernels can be applied sim-
ilarly to many other text and speech processing tasks, and to other
domains such as computational biology or web-log analysis.

mlj.tex; 24/08/2004; 11:54; p.20

Moment Kernels 21

7. Acknowledgments

We thank Patrick Haffner for his help with the use of the LLAMA
software library.

References

Allauzen, C., M. Mohri, and B. Roark: 2004, ‘A General Weighted Grammar
Library’. In: Proceedings of the Ninth International Conference on Implemen-
tation and Application of Automata (CIAA 2004). Kingston, Ontario, Canada.
http://www.research.att.com/sw/tools/grm.

Boser, B. E., I. Guyon, and V. N. Vapnik: 1992, ‘A Training Algorithm for Op-
timal Margin Classifiers’. In: Proceedings of the Fifth Annual Workshop of
Computational Learning Theory, Vol. 5. Pittsburg, pp. 144–152, ACM.

Cortes, C., P. Haffner, and M. Mohri: 2003a, ‘Positive Definite Rational Kernels’. In:
Proceedings of The 16th Annual Conference on Computational Learning Theory
(COLT 2003), Vol. 2777 of Lecture Notes in Computer Science. Washington
D.C., pp. 41–56, Springer, Heidelberg, Germany.

Cortes, C., P. Haffner, and M. Mohri: 2003b, ‘Rational Kernels’. In: Advances
in Neural Information Processing Systems (NIPS 2002), Vol. 15. Vancouver,
Canada, MIT Press.

Cortes, C., P. Haffner, and M. Mohri: 2003c, ‘Weighted Automata Kernels – General
Framework and Algorithms’. In: Proceedings of the 9th European Conference
on Speech Communication and Technology (Eurospeech ’03), Special Session
Advanced Machine Learning Algorithms for Speech and Language Processing.
Geneva, Switzerland.

Cortes, C. and V. N. Vapnik: 1995, ‘Support-Vector Networks’. Machine Learning
20(3), 273–297.

Gaertner, T., P. A. Flach, and S. Wrobel: 2003, ‘On Graph Kernels: Hardness Results
and Efficient Alternatives’. In: Proceedings of The 16th Annual Conference on
Computational Learning Theory (COLT 2003), Vol. 2777 of Lecture Notes in
Computer Science. Washington D.C., Springer, Heidelberg, Germany.

Haussler, D.: 1999, ‘Convolution Kernels on Discrete Structures’. Technical Report
UCSC-CRL-99-10, University of California at Santa Cruz.

Leslie, C., E. Eskin, J. Weston, and W. S. Noble: 2003, ‘Mismatch String Kernels
for SVM Protein Classification’. In: NIPS 2002. Vancouver, Canada, MIT Press.

Lodhi, H., J. Shawe-Taylor, N. Cristianini, and C. Watkins: 2001, ‘Text Classification
using String Kernels’. In: T. K. Leen, T. G. Dietterich, and V. Tresp (eds.): NIPS
2000. pp. 563–569, MIT Press.

Mohri, M., F. C. N. Pereira, and M. Riley: 1996, ‘Weighted Automata in Text and
Speech Processing’. In: ECAI-96 Workshop, Budapest, Hungary. ECAI.

Mohri, M., F. C. N. Pereira, and M. Riley: 2000, ‘The Design Principles of a Weighted
Finite-State Transducer Library’. Theoretical Computer Science 231, 17–32.
http://www.research.att.com/sw/tools/fsm.

Pereira, F. C. N. and M. D. Riley: 1997, ‘Speech Recognition by Composition of
Weighted Finite Automata’. In: E. Roche and Y. Schabes (eds.): Finite-State
Language Processing. Cambridge, Massachusetts: MIT Press, pp. 431–453.

Schapire, R. E. and Y. Singer: 2000, ‘BoosTexter: A Boosting-based System for Text
Categorization’. Machine Learning 39(2/3), 135–168.

mlj.tex; 24/08/2004; 11:54; p.21

22 C. Cortes and M. Mohri

Schölkopf, B. and A. Smola: 2002, Learning with Kernels. MIT Press: Cambridge,
MA.

Schützenberger, M. P.: 1961, ‘On the Definition of a family of Automata’. Informa-
tion and Control 4.

Takimoto, E. and M. K. Warmuth: 2003, ‘Path kernels and multiplicative updates’.
The Journal of Machine Learning Research (JMLR) 4, 773 – 818.

van Lint, J. H. and R. M. Wilson: 1992, A Course in Combinatorics. Cambridge
University Press.

Vapnik, V. N.: 1998, Statistical Learning Theory. John Wiley & Sons.
Watkins, C.: 1999, ‘Dynamic Alignment Kernels’. Technical Report CSD-TR-98-11,

Royal Holloway, University of London.

mlj.tex; 24/08/2004; 11:54; p.22

