LEARNING SEQUENCE KERNELS

Corinna Cortes Mehryar Mohri Afshin Rostamizadéh
Google Research Courant Institute and Courant Institute and
76 Ninth Avenue Google Research Google Research
New York, NY 10011 New York, NY 10012 New York, NY 10012
corinna@google.com mohri@cims.nyu.edu rostami@cs.nyu.edu
ABSTRACT they offer [1, 2]. Using a positive definite symmetric kernel

the input data is implicitly embedded in a high-dimensional
feature space where linear methods can be used for learning

) . ; . . . . and estimation. These methods have been used to tackle a
ing, and dimensionality reduction. The appropriate choice =~ . . e .
variety of learning tasks in classification, regressionkra

of a kernel is often left to the user. But, poor selections may . ! : ; ! .
ing, clustering, dimensionality reduction, and other area

lead to a sub-optimal performance. Instead, sample p0|nts1n particular, kernels for sequences have been succeassfull

can be used to learn a kernel function appropriate for the : A . :
. . : used in combination with support vector machines (SVMs)
task by selecting one out of a family of kernels determined L ) : )
[3-5] and other discriminative algorithms in a variety of ap

by the user. This paper considers the problenteafning L : . .
sequence kernel functionsn important problem for appli- pI|caF|ons in computational bplog_y, natural language-pro
cessing, and document classification [6—12].

cations in computational biology, natural language preces
ing, document classification and other text processingsarea Any positive definite symmetric (PDS) kernel can be
For most kernel-based learning techniques, the kernels seused within these techniques and the choice is typicalty lef
lected must be positive definite symmetric, which, for se- to the user. But this choice is critical to the success of the
quence data, are found to be rational kernels. We give alearning algorithms. Poor selections may not capture cer-
general formulation of the problem of learning rationalker tain important aspects of the task and lead to a sub-optimal
nels and prove that a large family of rational kernels can be performance. Instead, sample points can be uséeaim
learned efficiently using a simple quadratic program both a kernelappropriate for the task by selecting one out of a
in the context of support vector machines and kernel ridge family of kernels determined by the user.

regression. This improves upon previous work that gener-
ally results in a more costly semi-definite or quadratically in
constrained quadratic program. Furthermore, in the specifi
case of kernel ridge regression, we give an alternative so-
lution based on a closed-form solution for the optirkeil-

nel matrix We also report results of experiments with our
kernel learning techniques in classification and regressio
tasks.

Kernel methods are used to tackle a variety of learning
tasks including classification, regression, ranking, telus

The problem of learning kernels has been investigated
several previous studies, primarily focusing on leagnin
a linear combination of kernels. Lanckriet et al. [13] exam-
ined this problem in &ransductive learningcenario where
the learner is given the test points [13]. In that case, the
problem reduces to that of learningkarnel matrix They
showed that this problem can be cast as a semi-definite pro-
gramming problem (SDP) when using objective functions
such as the hard- or soft-margin SVMs, and analyzed more
1. INTRODUCTION specifically the case of linear combinations of kernel matri
ces based on pre-specified kernels, in which case the opti-
Kernel methods are widely used in statistical learningtech mization problem can be cast as a quadratically constrained
niques due to the computational efficiency and the flexibilit quadratic programming (QCQP) problem. This optimiza-
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reflect the position or the policy of the Government and neiaffiendorse- binat_ions of poFentiaIIy infinitely.many kernels [15]. Mic-
ment should be inferred. chelli and Pontil [16] also examined the problem of learn-




ing a kernel function, when it is a convex combination of put (output) labels are concatenated along a path to form
kernels parameterized by a compact set, for the square losan input (output) sequence. The weights of the transducers
regularization. Argyriou et al. [17] extended these result considered here are non-negative real values.
to other losses and further provided a formulation of the Figure 1(a) shows an example of a weighted finite-state
problem as a difference of convex (DC) program [18]. Sev- transducer with the same input and output alphabet. A path
eral other variants of the problem dealing with multi-task o from an initial state to a final state is an accepting path
multi-class problems have also been studied [19-21]. and its weight is obtained by multiplying the weights of

This paper considers the problem of learning sequenceits constituent transitions and the weight of the final state
kernel functions, an important problem for sequence learn-which is displayed after the slash in the figure. We will
ing applications in computational biology, natural langea assume a common alphabéfor the input and output sym-
processing, document classification and other text precessbols and will denote by the empty string or null symbol.
ing areas. According to [11], the sequence kernels in all of The weight associated by a weighted transddces a pair
these applications arational kernels Thus, we will exam-  of strings(z,y) € ¥* x ¥* is denoted byl'(z, y) and is
ine more specifically the problem of learning rational ker- obtained by summing the weights of all accepting paths
nels. We give a general formulation of the problem of learn- with input labelz and output label,. The transducef”
ing rational kernels and prove that, remarkably, a large fam of Figure 1(a) associates to the pé&iibb, bab) the weight
ily of rational kernels, count-based kernels, can be lghrne T'(abb,bab) = .1 x .3 x .5 x 1+ .2 x .4 x .5 x 1, since it
efficiently using a simple quadratic program (QP) both with admits two paths with input labebb and output labebab.
the objective function of SVMs and that of kernel ridge re- For any transducef, T-! denotes itdnverse that is
gression (KRR) [22]. Count-based rational kernels include the transducer obtained froi by swapping the input and
many kernels used in computational biology and text clas- output labels of each transition. Thus, for ally € ¥,
sification. We also report the results of experiments with we haveT~!(z,y) = T(y,z). The compositionof two
our sequence learning technigues in both classification andveighted transducers; and 7> with matching input and
regression tasks. output alphabety is a weighted transducer denotedBy»

The remainder of this paper is organized as follows. 7> and for allz, y € ¥* defined by:
Section 2 introduces the definition of weighted transducers
and rational kernels and points out some important proper- (Ty o To)(x,y) = Y Ti(x,z) Ta(z,y), (1)
ties of positive definite symmetric kernels. Section 3 gives zEX*
a general formulation of the problem of learning rational
kernels. In Section 4, we show that the problem of learn-
ing count-based kernels can be reduced to a simple QP bot
in the case of the SVMs and KRR objective functions. For
KRR, we further describe in Section 4.4 an an alternative so-
lution based on a closed-form solution for the optimal kerne
matrix. Section 5 reports the results of our experiments wit
learning count-based rational kernels in both classificati
and regression tasks.

when the sumis well-defined andlit, U{+oc0} [23]. Note
ﬁhatT(x,y) is the sum of the weights of all the accepting
paths ofX o T o Y, whereX andY are acceptors of the
stringsz andy with weight one. There is an efficient algo-
rithm for computing the composition of two weighted trans-
ducersT; andTy in time O(|T}||Tz|), where|T} | is the size
of Ty and|T»| that of T% [11].

2.2. Rational Kernels

2. PRELIMINARIES A sequence kernék : ¥* x ¥* — R is rational if it co-
incides with the function defined by a weighted transducer

This section introduces the definition of rational kerneid a U, thatis if K(z,y) = U(x,y) for all z,y € ¥*. Notall
their main properties, which we will use in our formulation rational kernels areositive definite and symmet{eDS),
of the learning problem. We will follow the definitions and  Or equivalently verify the Mercer condition, which is craki
terminology of [11]. The representation and computation of for the convergence of training for discriminant algorithm

rational kernels is based ameighted finite-state transduc- Such as SVMs. The following is a key theorem of [11] that
ers will guide our formulation of the problem of learning PDS

rational kernels.

2.1. Weighted transducers Theorem 1( [11]). LetT be an arbitrary weighted trans-

) . . ducer. Then, the function defined by the transduces
Weighted finite-state transducers are finite automata suchy | -1 is 4 PDS rational kernel.

that each transition is augmented with an output label in
addition to the familiar input label and some real-valued Furthermore, the rational kernels used in computational
weight that may represent a cost or a probability [23]. In- biology and natural language processing problems such as



Fig. 1. (a) Example of a weighted transducer. The initial statedscated by a bold circle, a final state by a double circle.
Input and output labels are separated by a colon and the tiaijbated after the slash separator. (b) Transdiicaefining

the mismatch kerndl' o 71 [7,11].

[6,8, 10,12, 24] are all of this form and it has been con-
jectured that in fact this represents all PDS rational ker-
nels[11]. Thus, in what follows, we will refer ByDS ratio-

nal kernelgo the rational kernel& defined by a transducer
U = T o T~'. To ensure that the finiteness of the kernel
values, we will also assume thAtdoes not admit any cycle
with inpute. This implies that for any: € X*, there are
finitely many sequencese X* for whichT'(z, z) # 0.

3. PROBLEM FORMULATION

be written as

minmax 2a'l1—a' Y KYa
Kek «

subjectto o'y =0 A 0<a<C
K =0 A Tr[K] = A,

)

wherea,, € R™*! denotes the column matrix of the dual
variablesa;, i € [1,m] andA > 0 a parameter controlling
the trace of the kernel matriK, a widely used constraint
when learning kernels, see [13-17].

In general, this optimization leads to SDP programs, due
to the condition on the positive-definitenesgof However,
this condition is not necessary when searching for kernels
of the typeT o T~! since by Theorem 1, they are PDS,

We consider the standard supervised learning setting Wher?egardless of the weighted transdueused. For PDS ra-

the learning algorithm receives a samplerofabeled points
S=z1,91)s -, (@m,ym)) € (X xY)™, whereX is the
input space andl” the set of labelsy” = R in the regression
caseY = {—1,+1} in the classification case.

We will formulate the problem in the case of SVMs.
The discussion for other objective functions is similart Le
K represent a family of PDS rational kernels. We wish to
select a kernel functio®&” € K that minimizes the gener-
alization error of the SVM predictor. Following the struc-
tural risk minimization principle [5], the kernel should be
selected by minimizing an objective function correspogdin
to a bound on the generalization error.

Let {K € R™*™} denote the kernel matrix of the ker-
nel functionk restricted to the sample, K;; = K(z;, z;),
foralli,j € [1,m], and letY € R™*™ denote the diagonal
matrix of the labelsY = diag(y1,...,ym). We will de-
note by0 the column matrices iR™>! with all its compo-
nents equal to zero, and similarly ythe constant column
matrix with all elements equal t6', whereC' is the trade-
off parameter of the SVMs optimization problem. Then,
using the dual form of the SVM optimization problem [4],
the general optimization problem for learning kernels can

tional kernels there exists a family of weighted transdsicer
7 suchthatC = {T'o T : T € T}. Thus for this fam-
ily of kernel functions, the optimization (2) corresponds t
the problem of learning a weighted transducer. It is known
that the general problem of learning minimal (unweighted)
finite automata, or even a polynomial approximation, is NP-
hard [25]. In our case of learning weighted transducers,
this suggests some limitation on the choice of the family
of transducerd . We will restrict ourselves to learning the
transition weights of a transducer. Therefore we will assum
7T to be a family of transducers with the same topology and
same transition labels, but different transition weights.

By our definition of PDS rational kernels, for amythe
set of sequences such thatT'(z,z) # 0 is finite. Let
z1,...,%p € L* be the finite set of sequencesuch that
T(x;,z) # 0forsomei € [1,m] and letT € R"™*? denote
the matrix defined byl';; = T'(x;, z;). Then, our general
optimization problem for learning rational kernels for the
objective function of SVMs can be written as follows:

minmax 2a'1—(a'Y' T)(a'Y'T)"
TeT «

3)
subjectto a'y =0 A 0<a<C A |T||: =4,



where|| - || » denotes the Frobenius norm. The matrix co- of z in x. Thus, fori, j € [1,m)],
efficientsT,;; = T'(x;,z;) are obtained by summing the
weights of all accepting paths @f with input labelz; and
output labek;. Thus, in general, they are polynomials over
the transitions weights of the transduder The next sec-
tion examines a general family of kernels for which this op-
timization admits an efficient solution.

M~

(ToTﬁl)(xi,xj) = T(xi, z1)T (x5, 2k)
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where|xz; |, denotes the number of occurrencespin z;,
fori € [1,m] andk € [1,p]. LetX € R™*? denote the
matrix defined byX;;, = |z;| fori € [1,m] andk € [1, p],
and letXy, & € [1, p], denote thesth column ofX. Then,

. ) ) ) Equation 4 can be rewritten as
This section shows that learning a large family of kernels,

including count-based rational kernels, can be solved effi- . P .
ciently as a simple QP problem. ToT™ =Y XXy, (5)
k=1

4. ALGORITHMS FOR LEARNING RATIONAL
KERNELS

wherep, = wi, forall k& € [1,p]. We will use this iden-
4.1. Count-Based Rational Kernels tity to present efficient solutions to the problem of leagnin
count-based rational kernels with both the SVM and KRR
Many kernels used in computational biology and text cate- objective functions.
gorization problems areount-based rational kernel§ his
family of kernels includes the-gram kernels used success-
fully in document classification [12] or spoken-dialog elas
sification [11]. Count-based rational kernels map each se-In the case of SVM, the optimization problem can be written
guence to a finite set of strings that may be substrings oras
subsequences of various lengths.

p
Figure 2(a) shows a transducgicorresponding to a bi- minmax F(p, ) = 2a'1 — Z e Y X X Yo
gram kernel that gives equal weight (one) to all bigramas B P
ab, ba, bb. The output label of the accepting paths of this subjectto 0 <a<CAaTy =0
transducer are precisely the set of possible bigrams. The -

4.2. Support Vector Machines

. . P
transdu_cer_maps an input sequencd® the set of bigrams ©>0A ZMkHXkHQ — A,
appearing inu. It further generates as many paths labeled Pt
with a given bigramz as there are occurrences 0fn . (6)

Since the weights of the paths are added, the kéfndl —!

associates to each pdit,y) the sum of the products of wherea € R™*!, andp € RP*! denotes the column
the counts of their common bigrams. Figure 2(b) gives the vector with componentgy, k € [1,p]. Note, that this is
general form of a count-based transducéis an arbitrary 3 convex optimization problem ip since F is affine and
acyCIiC deterministic automaton. The transition labelét w thus convex |m, the pointwise maximum ove¥ of a con-
A:A/1is a short-hand for the acyclic transducer mapping vex function also defines a convex function [26], and the
each sequence of to itself with weight one. In the case of  constraints are all convex. While we seek to learn a kernel
the bigram kernelA is a deterministic automaton accept-  function and not a kernel matrix, the optimization problem
ing the set of bigrams. This transducer similarly counts the e have derived at this stage is similar to those obtained

number of occurrences of any sequencaccepted byA by [13]. However, due to the specific property (5), the prob-
andT o T~ (z, y) is the sum of the product of these counts  |em reduces to a simple standard QP problem.
in z andy. Let M denote the convex and compact et = {u :

We are interested in learning kernels of this type but g > 0 A 3% _, ux||Xk]|> = A} and A the convex and
with possibly different weights assigned to the sequencescompact setd = {0 < a« < CAa'y = 0}. The
z accepted byA. These weights can serve to emphasize function u — F(u, ) is convex with respect tqu for
the importance of each sequende the similarity measure  any . For anyp, the functionae — F(u, ) is concave
T o T~ Letwy be the weight assigned to the sequence  sinced F_, uxY ' X, X/ Y is a positive definite symmet-
accepted byd. Then, by definition, for any input string, ric matrix andF" is a continuous function. Thus, by the von
T (z, z1) is the product ofv,, and the number of occurrences Neumann’s generalized minimax theorem [27], thi& and



(b)

Fig. 2. Count-based kernels for the alphabet= {a,b}. (a) Bigram kernel transducer. (b) General count-basedeker

transducer.

max can be transposed and the optimization (6) is equiva-

lent to:

(7)

i F = in F' .
S R T ) = e i ko)

Since the term2a "1 does not depend op, this can be
further written as

max min F(u, )

acA peM
T - T~NT 2 (8)
= 20’1 — Y Xj)©.
may2ello ) mlalY X

Note that the terms within this last sum are all non-negative
thus the optimal solution is obtained by placing all {he
weight on the largesie 'Y T X, )2. Using this observation,
and the constraint 7 _, ux|Xx|> = A, the optimization
problem can be rewritten as

Ty T 2
Y'X
max 2a' 1 — A max (7a k)
acA reltpl\ [ Xkl 9)
= max 2a' 1 — A max (aTu;)z,
acA ke[l,p]
Y'X,

whereu’, is the normalized column matrix), = Tk =
k k 13X |

&:72“. This leaves us with the following minimization
problem:

min  —2a 1+ A¢?

ot

subjectto 0 <a<CAa'y=0 (10)

~t<a'u, <t,Vke[l,p]
Let U’ € R™*P be the matrix whoséth column isuj, and
introduce the Lagrange variablgs 3’ € RP*!, n,n' €
R™*! and§ € R to write the Lagrangian:
L(a7 t7 /37 ﬂ/7 n, 17’7 5) = —2aT1+At2 —nTa+n/T(a—C)
+éa'y-B (U Ta+t1)+8 (U Ta—1t1). (11)

Differentiating with respect to the primal variables we ob-
serve that the following equalities hold at the optimum:

{

ViL=2tA—(B+3)'1=0
VoL =-21+6dy —n+1n
é{ t=5x(B+8) 1+U (8 -B)=0

U -B)— 2145y —n+n =0 12

Plugging in the first equality in the Lagrangian and taking
into account the second equality, we obtain the following
equivalent dual optimization:

o i ! T T ! T
subjectto U'(8' —B)+ (n' —n)+dy —21=0

B,8,n,nm >0A6>0.
(13)

We have reduced the problem of learning count-based ker-
nels to a simple quadratic programming (QP) problem that
can be solved by standard solvers.

4.3. Kernel Ridge Regression

Learning count-based rational kernels can also be reduced
to a QP problem in the case of KRR.

Using the dual form of kernel ridge regression, the gen-
eral problem can be written as

P
“da'a— Z pr(a" Xg)? 4+ 2ay
k=1

min max G(u, o)
© a

p
subjecttop > 0 A > k|| X% = A
k=1
(14)

Proceeding as in the case of the objective function of SVMs,
in particular by using the convexity of functigs with re-
spect top and its concavity with respect e, and its con-
tinuity with respect to both arguments and other arguments
similar to the case of SVMs, the optimization problem for
learning count-based kernels can be written as

mi? A a+ A2 —2ay
(e

(15)
subjectto —t < a'uy <t,Vk € [1,p],
Xk

whereu;, = <7 k€ [1,p]. LetU e R™*? be the
matrix whoseith column isuy, and introduce the Lagrange
variables3, 3’ € RP*!, then again as in the SVM case, dif-
ferentiating the Lagrangian and substituting for the ptima



variables produces the following dual optimization praoble

Lla,t,3,8) = a’a+At? —2a'y
BT (UTa+t1)+8T(UTa—1t1). (16)
At the optimum the following equalities hold:
ViL=2tA— (B +B)"1=0
VoL =20 a -2y +U(B' —3)=0
N { t=g5(8'+8)'1
a= 52y -U((B - P)).

Plugging the expression fax and¢ back into (16) yields
the equivalent dual optimization problem

(17)

_i _ o Q_L / 2
Joax 4/\||2y up -9 4A||ﬁ +B[7. (18)

We have thus shown that the problem of learning count-

To avoid the semidefinite constraint, we can reformulate
this problem in terms of a matrivI such thaMiM " = K.
By the Cholesky decomposition, such as malvixexists.
SinceMM is always PDS, the semidefiniteness constraint
is thereby made implicit. This leads to the following opti-
mization problem:

ml\}ln J(M) = max - \||a|*> —a" MM a + 2a'y
(a4

subjectto Tr[MM '] = A.
(20)

J isnotconvex inM, however, sinc& — maxq H(a, K)

is convex, any solutioM of this problem must lead to
the same valudMM '™ = K solution of the problem 19.
The optimal value forx in equation (20) has a closed form,
which is the standard KRR solution:

a= (MM + )" y. (21)

based rational kernels can be reduced to a simple QP probYsing this solution results in the following problem equiva

lem in the variable$s’ + 8) and(8’ — 3).

It is not hard to see that the weights of other rational
kernels used in computational biology such as the mismatch
kernels Figure 1(b) can be learned using the same QP prob-
lems, provided that we impose the constraint that the weight

of mappingu to z;, andu’ to z; be the same for a fixekd

4.4. Kernel Ridge Regression — Alternative Technique

lent to (20):

miny ' (MM 4+ \I)~ 'y
M (22)
subjectto Tr[MM '] = A.

The analysis of this optimization problem helps us prove the
following theorem.

Theorem 2. Assume thay # 0. Then, the unique solution

Lo _ _A T
This section describes an alternative technique for sglvin of the optimization problem (19) K = [FZERAAE

the problem of learning count-based kernels. We will Show p ¢ | et 3 denote the dual variable associated to the trace

tha}t th_e problem of Iearning Ieern(_el matriX\_/vith the KRR constraint of (22) and.(M, ) its Lagrangian. The gradient
objective function admits a solution that in fact coincides of L with respect taVI is given by

with the one prescribed by kernel alignment techniques [28]
An alternative technique for learning the kernel functign

is thus to ensure that it matches the optimal kernel matrix
K for the given training sample. When this is possible, the
solution obtained coincides with the solutions descrilred i
previous sections. Note that this technique can also be ap- 23)
plied similarly to the problem of learning rational kernels

other than count-based kernels and even to more generafp s VmL(M, B) = 0 is equivalent to the vector space

2 {— (MM" + )" lyy (MM + AI)~! +81| M.

N

types of kernels other than rational kernels.

spanned by the columns ®f being included in the null-

Using the dual of the KRR optimization, the problem of space ofN + 1. Letz be an element of the null-space,

learning the optimal kernel matriK can be formulated as
ménmax Ha,K)= - a'a—a'Ka+2a'y
«

subjectto K > 0 A Tr[K] = A.
(19)

Note that for a fixedx the functionK — H(«, K) is linear
and thus convex if. Thus,K — max, H (e, K) is also

convex since the pointwise maximum of a convex function

is convex.

then
z € Null(-N + 1) & Nz = fz & nn 'z = fz, (24)

wheren = V~ly, with V.= (MM " + AI). This shows
thatz must be an eigenvector gfp " and furthermore: ¢
Span(n). Using this, we now observe that

(-N+ )M =0 &
Range(M) C Null(—N+gI) = Span(n) = Span(V ™ 'y).



Dataset #bigrams  Normalized Error acq Kitchen*

acq 1500 0.9161 4 0.0633 110 1.01
crude 1200  0.8448 £ 0.0828 105 100 b= =
eamn 900  0.9196 £ 0.0712 1.00 T E i
grain 1200 0.9707 £ 0.0294 0.5 [t { E i 0.99
money-fx 1500  0.9682 + 0.0396 0.90 098
kitchen* 912 0.9852 & 0.0118 0.85
electronics* 1047 0.9801 & 0.0104 0.80 0.97
dvd* 1397 0.9906 + 0.0125 400 800 1200 300 500 700 900
books* 1349 0.9880 & 0.0137
(@) (b)

Fig. 3. Results on classification and regression tasks. (a) Amislsiadicates a regression dataset, otherwise classificat
All error rates are normalized by the baseline error rath wiindard deviation shown over 10 trials with of the ordéeQ,
parameters. (b) Results on two dataset as a function of tideuof bigrams used for modeling.

Thus, the columns @¥1 fall in the span oV ~'y, or equiv- each domain contains 2,000 data points. We report values
alently there exists a vectarsuch that, from 10-fold cross validation.
T - The learning kernel experiments were carried out by
M=V~ya < VM=ya first solving either the QP problem in the case of SVM (13)
o (1\/[1\/[T + AI)M = ya' or KRR (18) respectively. The solutions to these QP opti-

mization problems were obtained using the MOSEK soft-
ware? For the solutionsx we found in our experiments
about 30% of the: features met the constraints of the op-
timization (15) (<t < a'u, < t) as an equality. Thus,

SMM M+ M) =ya'

eM=y[(MM+A) 'a] .

Therefore,M is of the formyb™ andK = MM' = at the solution point many features have the same gradient
IIbl|2yy ". Imposing the trace constraint, thatTs(K) = with respect to the parameterTo avoid favoring one spe-
IIb|I?|ly|I* = A, yieldsK = Wny. O cific featurek and generating a bias, we chose to distribute

) . , the trace evenly among the features according to this gradi-
Notice that this solution takes the same form as the oneg

suggested by a maximum alignment type solution [28] and

. . P X 5 The examination of the features meeting the equality
in fact provides a clear justification for the alignment retr

constraint ornt reveals that the learning algorithm provides
interesting feature selection. Among these features we find
5. EXPERIMENTS many negatively or positively loaded bigrams, such as “rec-
ommend this”, “lack of”, “easy to”, “an excellent”, and

In this section, we report the results of our experiments to “your money”, to name a few examples from the book re-

learn count-based rational kernels for both SVM classifica- yjews regression task.

tion problems and KRR tasks. _ For a baseline, we used equal weights on all the bigrams
For the SVM experiments, we considered several one-j e the standard ngram count kernel), with the weights ap-

versus-many classification problems based on the ReUterspropriately scaled to meet the same trace constraint as in

21578 datasét The data was arranged according to the the case of the learned kernels. In the SVM experiments,
“ModApte” split, as used in [13], which results in a test set \ye searched fo€ from 2-1° to 21° andA = 0.5. In the

of 3,299 documents and training set of 9,603 documents.xRR experiments, we did a grid search fram® to 23
We randomly chose 1,000 points from the training set o0 iy powers of2 to select the ratio oh/A. The error rates
train with over 10 trails. _ reported are RMSE in the case of regression and zero-one
_For the KRR experiments, we used the sentiment anal-|oss i the case of classification. The values are normalized
ysis dataset found in [29]. The data set consists of re- py the baseline error rate, so a value less than one corre-
view text and rating labels, an integer between 1 and 5, sponds to an improvement in performance. The results are
taken fromamazon.com product reviews within four dif- presented in Figure 3 (a). Figure 3 (b) illustrates the perfo
ferent categories (domains). These four domains consistynance as a function of the number of bigrams in the learn-
of book , dvd, electronics  andkitchen  reviews, where  juq task. As can be seen from the figure, for larger number
1http://Www.daviddIewis.com/re’sources/testcollection s of bigrams, the results become Signiﬁcantly better than the

Ireuters21578/.
2http://www.seas.upenn.eduFmdredze/datasets/sentime nt/ . 3http://www.mosek.com/




baseline. These results complement those of [13] give in the[11] Corinna Cortes, Patrick Haffner, and Mehryar Mohri,
transductive setting.

6. CONCLUSION

We presented efficient general algorithms for learning toun
based rational kernels, a family of kernels that includestmo
sequence kernels used in computational biology, natural la

guage processing, and other text processing applications.
Our algorithms are thus widely applicable and can help en-[13]
hance learning performance in a variety of sequence learn-
ing tasks. The technigques we used could help learn other

families of sequence kernels in a similar way.

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8] A. Zien,

7. REFERENCES

Bernhard Scholkopf and Alex Smold,earning with
Kernels MIT Press: Cambridge, MA, 2002.

John Shawe-Taylor and Nello Cristianini,Kernel
Methods for Pattern Analysi€ambridge Univ. Press,
2004.

Bernhard E. Boser, Isabelle Guyon, and Vladimir N.
Vapnik, “A training algorithm for optimal margin clas-
sifiers,” inCOLT, 1992, vol. 5, pp. 144-152.

Corinna Cortes and Vladimir N. Vapnik, “Support-
Vector Networks,” Machine Learningvol. 20, no. 3,
pp. 273-297, 1995.

Vladimir N. Vapnik, Statistical Learning Theoryohn
Wiley & Sons, 1998.

David Haussler, “Convolution Kernels on Discrete

Structures,” Tech. Rep. UCSC-CRL-99-10, University [18]

of California at Santa Cruz, 1999.

Christina S. Leslie, Eleazar Eskin, Adiel Cohen, Ja-
son Weston, and William Stafford Noble, “Mis-
match string kernels for discriminative protein classi-
fication,” Bioinformatics vol. 20, no. 4, 2004.

G. Ratsch, S. Mika, B. Scholkopf,
T. Lengauer, and K.-R. Muller, “Engineering support
vector machine kernels that recognize translation ini-
tiation sites.,”Bioinformatics vol. 16, no. 9, pp. 799—
807, 2000.

[9] Asa Ben-Hur and William Stafford Noble, “Kernel

[10]

methods for predicting protein-protein interactions,” [22]

in ISMB, Supplement of Bioinformatjc&005, pp. 38—
46.

Michael Collins and Nigel Duffy, “Convolution ker-
nels for natural language,” iNIPS 14 2002, MIT
Press.

“Rational Kernels: Theory and Algorithms,Journal
of Machine Learning Researciol. 5, pp. 1035-1062,
2004.

2] Huma Lodhi, Craig Saunders, John Shawe-Taylor,

Nello Cristianini, and Chris Watkins, “Text classifica-
tion using string kernels,Journal of Machine Learn-
ing Researchvol. 2, pp. 419-44, 2002.

Gert R. G. Lanckriet, Nello Cristianini, Peter L.
Bartlett, Laurent ElI Ghaoui, and Michael |. Jordan,
“Learning the kernel matrix with semidefinite pro-
gramming,” Journal of Machine Learning Research
vol. 5, pp. 27-72, 2004.

Seung-Jean Kim, Argyrios Zymnis, Alessandro Mag-
nani, Kwangmoo Koh, and Stephen Boyd, “Learning
the kernel via convex optimization,” iroceedings of
ICASSP '082008.

Cheng Soon Ong, Alexander J. Smola, and Robert C.
Williamson, “Learning the kernel with hyperkernels,”
Journal of Machine Learning Reseaickiol. 6, pp.
1043-1071, 2005.

Charles A. Micchelli and Massimiliano Pontil,
“Learning the kernel function via regularization,”
Journal of Machine Learning Reseaickiol. 6, pp.
1099-1125, 2005.

Andreas Argyriou, Charles A. Micchelli, and Mas-
similiano Pontil, “Learning convex combinations of
continuously parameterized basic kernels,"COLT,
2005, pp. 338-352.

Andreas Argyriou, Raphael Hauser, Charles A. Mic-
chelli, and Massimiliano Pontil, “A DC-programming
algorithm for kernel selection,” itCML, 2006, pp.
41-48.

Tony Jebara, “Multi-task feature and kernel selection
for SVMs,” in ICML, 2004.

[20] Darrin P. Lewis, Tony Jebara, and William Stafford

Noble, “Nonstationary kernel combination,” iEGML,
2006.

Alexander Zien and Cheng Soon Ong, “Multiclass
multiple kernel learning,” inCML, 2007, pp. 1191—
1198.

Craig Saunders, Alexander Gammerman, and Volodya
Vovk, “Ridge Regression Learning Algorithm in Dual
Variables,” inICML, 1998, pp. 515-521.

Arto Salomaa and Matti Soittol&utomata-Theoretic
Aspects of Formal Power SeriesSpringer-Verlag,
1978.



[24]

[25]

[26]

[27]

(28]

[29]

Christina S. Leslie and Rui Kuang, “Fast String Ker-
nels using Inexact Matching for Protein Sequences,”
Journal of Machine Learning Reseaickiol. 5, pp.
1435-1455, 2004.

Leonard Pitt and Manfred Warmuth, “The mini-
mum consistent DFA problem cannot be approximated
within any polynomial,” Journal of the Assocation
for Computing Machineryol. 40, no. 1, pp. 95-142,
1993.

Stephen Boyd and Lieven Vandenberg@envex Op-
timization Cambridge University Press, 2004.

J. von Neumann, “Uber ein ©0konomisches
Gleichungssystem und eine Verallgemeinerung des
Brouwerschen Fixpunktsatzes,”lHrigebn. Math. Kol-
log. Wein 8 1937, pp. 73-83.

Nello Cristianini, John Shawe-Taylor, André Elisfee
and Jaz S. Kandola, “On kernel-target alignment,” in
NIPS 2001, pp. 367-373.

John Blitzer, Mark Dredze, and Fernando Pereira,
“Biographies, Bollywood, Boom-boxes and Blenders:
Domain Adaptation for Sentiment Classification,” in
Association for Computational Linguistic2007.



