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ABSTRACT

Kernel methods are used to tackle a variety of learning
tasks including classification, regression, ranking, cluster-
ing, and dimensionality reduction. The appropriate choice
of a kernel is often left to the user. But, poor selections may
lead to a sub-optimal performance. Instead, sample points
can be used to learn a kernel function appropriate for the
task by selecting one out of a family of kernels determined
by the user. This paper considers the problem oflearning
sequence kernel functions, an important problem for appli-
cations in computational biology, natural language process-
ing, document classification and other text processing areas.
For most kernel-based learning techniques, the kernels se-
lected must be positive definite symmetric, which, for se-
quence data, are found to be rational kernels. We give a
general formulation of the problem of learning rational ker-
nels and prove that a large family of rational kernels can be
learned efficiently using a simple quadratic program both
in the context of support vector machines and kernel ridge
regression. This improves upon previous work that gener-
ally results in a more costly semi-definite or quadratically
constrained quadratic program. Furthermore, in the specific
case of kernel ridge regression, we give an alternative so-
lution based on a closed-form solution for the optimalker-
nel matrix. We also report results of experiments with our
kernel learning techniques in classification and regression
tasks.

1. INTRODUCTION

Kernel methods are widely used in statistical learning tech-
niques due to the computational efficiency and the flexibility
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they offer [1,2]. Using a positive definite symmetric kernel,
the input data is implicitly embedded in a high-dimensional
feature space where linear methods can be used for learning
and estimation. These methods have been used to tackle a
variety of learning tasks in classification, regression, rank-
ing, clustering, dimensionality reduction, and other areas.
In particular, kernels for sequences have been successfully
used in combination with support vector machines (SVMs)
[3–5] and other discriminative algorithms in a variety of ap-
plications in computational biology, natural language pro-
cessing, and document classification [6–12].

Any positive definite symmetric (PDS) kernel can be
used within these techniques and the choice is typically left
to the user. But this choice is critical to the success of the
learning algorithms. Poor selections may not capture cer-
tain important aspects of the task and lead to a sub-optimal
performance. Instead, sample points can be used tolearn
a kernelappropriate for the task by selecting one out of a
family of kernels determined by the user.

The problem of learning kernels has been investigated
in several previous studies, primarily focusing on learning
a linear combination of kernels. Lanckriet et al. [13] exam-
ined this problem in atransductive learningscenario where
the learner is given the test points [13]. In that case, the
problem reduces to that of learning akernel matrix. They
showed that this problem can be cast as a semi-definite pro-
gramming problem (SDP) when using objective functions
such as the hard- or soft-margin SVMs, and analyzed more
specifically the case of linear combinations of kernel matri-
ces based on pre-specified kernels, in which case the opti-
mization problem can be cast as a quadratically constrained
quadratic programming (QCQP) problem. This optimiza-
tion problem has also been recently studied by [14] and
solved using interior point methods. Ong et al. considered
instead the problem of learning akernel functionfrom a set
of kernels that are in a Hilbert space of functions generated
by a so-called hyper-kernel, which includes convex com-
binations of potentially infinitely many kernels [15]. Mic-
chelli and Pontil [16] also examined the problem of learn-



ing a kernel function, when it is a convex combination of
kernels parameterized by a compact set, for the square loss
regularization. Argyriou et al. [17] extended these results
to other losses and further provided a formulation of the
problem as a difference of convex (DC) program [18]. Sev-
eral other variants of the problem dealing with multi-task or
multi-class problems have also been studied [19–21].

This paper considers the problem of learning sequence
kernel functions, an important problem for sequence learn-
ing applications in computational biology, natural language
processing, document classification and other text process-
ing areas. According to [11], the sequence kernels in all of
these applications arerational kernels. Thus, we will exam-
ine more specifically the problem of learning rational ker-
nels. We give a general formulation of the problem of learn-
ing rational kernels and prove that, remarkably, a large fam-
ily of rational kernels, count-based kernels, can be learned
efficiently using a simple quadratic program (QP) both with
the objective function of SVMs and that of kernel ridge re-
gression (KRR) [22]. Count-based rational kernels include
many kernels used in computational biology and text clas-
sification. We also report the results of experiments with
our sequence learning techniques in both classification and
regression tasks.

The remainder of this paper is organized as follows.
Section 2 introduces the definition of weighted transducers
and rational kernels and points out some important proper-
ties of positive definite symmetric kernels. Section 3 gives
a general formulation of the problem of learning rational
kernels. In Section 4, we show that the problem of learn-
ing count-based kernels can be reduced to a simple QP both
in the case of the SVMs and KRR objective functions. For
KRR, we further describe in Section 4.4 an an alternative so-
lution based on a closed-form solution for the optimal kernel
matrix. Section 5 reports the results of our experiments with
learning count-based rational kernels in both classification
and regression tasks.

2. PRELIMINARIES

This section introduces the definition of rational kernels and
their main properties, which we will use in our formulation
of the learning problem. We will follow the definitions and
terminology of [11]. The representation and computation of
rational kernels is based onweighted finite-state transduc-
ers.

2.1. Weighted transducers

Weighted finite-state transducers are finite automata such
that each transition is augmented with an output label in
addition to the familiar input label and some real-valued
weight that may represent a cost or a probability [23]. In-

put (output) labels are concatenated along a path to form
an input (output) sequence. The weights of the transducers
considered here are non-negative real values.

Figure 1(a) shows an example of a weighted finite-state
transducer with the same input and output alphabet. A path
from an initial state to a final state is an accepting path
and its weight is obtained by multiplying the weights of
its constituent transitions and the weight of the final state,
which is displayed after the slash in the figure. We will
assume a common alphabetΣ for the input and output sym-
bols and will denote byǫ the empty string or null symbol.
The weight associated by a weighted transducerT to a pair
of strings(x, y) ∈ Σ∗ × Σ∗ is denoted byT (x, y) and is
obtained by summing the weights of all accepting paths
with input labelx and output labely. The transducerT
of Figure 1(a) associates to the pair(abb, bab) the weight
T (abb, bab) = .1 × .3 × .5 × 1 + .2 × .4 × .5 × 1, since it
admits two paths with input labelabb and output labelbab.

For any transducerT , T−1 denotes itsinverse, that is
the transducer obtained fromT by swapping the input and
output labels of each transition. Thus, for allx, y ∈ Σ∗,
we haveT−1(x, y) = T (y, x). The compositionof two
weighted transducersT1 andT2 with matching input and
output alphabetsΣ is a weighted transducer denoted byT1◦
T2 and for allx, y ∈ Σ∗ defined by:

(T1 ◦ T2)(x, y) =
∑

z∈Σ∗

T1(x, z) T2(z, y), (1)

when the sum is well-defined and inR+∪{+∞} [23]. Note
that T (x, y) is the sum of the weights of all the accepting
paths ofX ◦ T ◦ Y , whereX andY are acceptors of the
stringsx andy with weight one. There is an efficient algo-
rithm for computing the composition of two weighted trans-
ducersT1 andT2 in timeO(|T1||T2|), where|T1| is the size
of T1 and|T2| that ofT2 [11].

2.2. Rational Kernels

A sequence kernelK : Σ∗ × Σ∗ 7→ R is rational if it co-
incides with the function defined by a weighted transducer
U , that is if K(x, y) = U(x, y) for all x, y ∈ Σ∗. Not all
rational kernels arepositive definite and symmetric(PDS),
or equivalently verify the Mercer condition, which is crucial
for the convergence of training for discriminant algorithms
such as SVMs. The following is a key theorem of [11] that
will guide our formulation of the problem of learning PDS
rational kernels.

Theorem 1 ( [11]). Let T be an arbitrary weighted trans-
ducer. Then, the function defined by the transducerU =
T ◦ T−1 is a PDS rational kernel.

Furthermore, the rational kernels used in computational
biology and natural language processing problems such as
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Fig. 1. (a) Example of a weighted transducer. The initial state is indicated by a bold circle, a final state by a double circle.
Input and output labels are separated by a colon and the weight indicated after the slash separator. (b) TransducerT defining
the mismatch kernelT ◦ T−1 [7,11].

[6, 8, 10, 12, 24] are all of this form and it has been con-
jectured that in fact this represents all PDS rational ker-
nels [11]. Thus, in what follows, we will refer byPDS ratio-
nal kernelsto the rational kernelsK defined by a transducer
U = T ◦ T−1. To ensure that the finiteness of the kernel
values, we will also assume thatT does not admit any cycle
with input ǫ. This implies that for anyx ∈ Σ∗, there are
finitely many sequencesz ∈ Σ∗ for whichT (x, z) 6= 0.

3. PROBLEM FORMULATION

We consider the standard supervised learning setting where
the learning algorithm receives a sample ofm labeled points
S = ((x1, y1), . . . , (xm, ym)) ∈ (X×Y )m, whereX is the
input space andY the set of labels,Y = R in the regression
case,Y = {−1, +1} in the classification case.

We will formulate the problem in the case of SVMs.
The discussion for other objective functions is similar. Let
K represent a family of PDS rational kernels. We wish to
select a kernel functionK ∈ K that minimizes the gener-
alization error of the SVM predictor. Following the struc-
tural risk minimization principle [5], the kernel should be
selected by minimizing an objective function corresponding
to a bound on the generalization error.

Let {K ∈ R
m×m} denote the kernel matrix of the ker-

nel functionK restricted to the sampleS, Kij = K(xi, xj),
for all i, j ∈ [1, m], and letY ∈ R

m×m denote the diagonal
matrix of the labels,Y = diag(y1, . . . , ym). We will de-
note by0 the column matrices inRm×1 with all its compo-
nents equal to zero, and similarly byC the constant column
matrix with all elements equal toC, whereC is the trade-
off parameter of the SVMs optimization problem. Then,
using the dual form of the SVM optimization problem [4],
the general optimization problem for learning kernels can

be written as

min
K∈K

max
α

2α⊤1− α⊤Y⊤KYα

subject to α⊤y = 0 ∧ 0 ≤ α ≤ C

K � 0 ∧ Tr[K] = Λ,

(2)

whereαm ∈ R
m×1 denotes the column matrix of the dual

variablesαi, i ∈ [1, m] andΛ ≥ 0 a parameter controlling
the trace of the kernel matrixK, a widely used constraint
when learning kernels, see [13–17].

In general, this optimization leads to SDP programs, due
to the condition on the positive-definiteness ofK. However,
this condition is not necessary when searching for kernels
of the typeT ◦ T−1 since by Theorem 1, they are PDS,
regardless of the weighted transducerT used. For PDS ra-
tional kernels there exists a family of weighted transducers
T such thatK = {T ◦ T−1 : T ∈ T }. Thus for this fam-
ily of kernel functions, the optimization (2) corresponds to
the problem of learning a weighted transducer. It is known
that the general problem of learning minimal (unweighted)
finite automata, or even a polynomial approximation, is NP-
hard [25]. In our case of learning weighted transducers,
this suggests some limitation on the choice of the family
of transducersT . We will restrict ourselves to learning the
transition weights of a transducer. Therefore we will assume
T to be a family of transducers with the same topology and
same transition labels, but different transition weights.

By our definition of PDS rational kernels, for anyx the
set of sequencesz such thatT (x, z) 6= 0 is finite. Let
z1, . . . , zp ∈ Σ∗ be the finite set of sequencesz such that
T (xi, z) 6= 0 for somei ∈ [1, m] and letT ∈ R

m×p denote
the matrix defined byTij = T (xi, zj). Then, our general
optimization problem for learning rational kernels for the
objective function of SVMs can be written as follows:

min
T∈T

max
α

2α⊤1− (α⊤Y⊤T)(α⊤Y⊤T)⊤

subject to α⊤y = 0 ∧ 0 ≤ α ≤ C ∧ ‖T‖2
F = Λ,

(3)



where‖ · ‖F denotes the Frobenius norm. The matrix co-
efficientsTij = T (xi, zj) are obtained by summing the
weights of all accepting paths ofT with input labelxi and
output labelzj . Thus, in general, they are polynomials over
the transitions weights of the transducerT . The next sec-
tion examines a general family of kernels for which this op-
timization admits an efficient solution.

4. ALGORITHMS FOR LEARNING RATIONAL
KERNELS

This section shows that learning a large family of kernels,
including count-based rational kernels, can be solved effi-
ciently as a simple QP problem.

4.1. Count-Based Rational Kernels

Many kernels used in computational biology and text cate-
gorization problems arecount-based rational kernels. This
family of kernels includes then-gram kernels used success-
fully in document classification [12] or spoken-dialog clas-
sification [11]. Count-based rational kernels map each se-
quence to a finite set of strings that may be substrings or
subsequences of various lengths.

Figure 2(a) shows a transducerT corresponding to a bi-
gram kernel that gives equal weight (one) to all bigramsaa,
ab, ba, bb. The output label of the accepting paths of this
transducer are precisely the set of possible bigrams. The
transducer maps an input sequenceu to the set of bigrams
appearing inu. It further generates as many paths labeled
with a given bigramz as there are occurrences ofz in u.
Since the weights of the paths are added, the kernelT ◦T−1

associates to each pair(x, y) the sum of the products of
the counts of their common bigrams. Figure 2(b) gives the
general form of a count-based transducer.A is an arbitrary
acyclic deterministic automaton. The transition labeled with
A :A/1 is a short-hand for the acyclic transducer mapping
each sequence ofA to itself with weight one. In the case of
the bigram kernel,A is a deterministic automaton accept-
ing the set of bigrams. This transducer similarly counts the
number of occurrences of any sequencez accepted byA
andT ◦ T−1(x, y) is the sum of the product of these counts
in x andy.

We are interested in learning kernels of this type but
with possibly different weights assigned to the sequences
z accepted byA. These weights can serve to emphasize
the importance of each sequencez in the similarity measure
T ◦ T−1. Let wk be the weight assigned to the sequencezk

accepted byA. Then, by definition, for any input stringx,
T (x, zk) is the product ofwk and the number of occurrences

of zk in x. Thus, fori, j ∈ [1, m],

(T ◦ T−1)(xi, xj) =

p
∑

k=1

T (xi, zk)T (xj , zk)

=

p
∑

k=1

w2
k |xi|k |xj |k,

(4)

where|xi|k denotes the number of occurrences ofzk in xi,
for i ∈ [1, m] andk ∈ [1, p]. Let X ∈ R

m×p denote the
matrix defined byXik = |xi|k for i ∈ [1, m] andk ∈ [1, p],
and letXk, k ∈ [1, p], denote thekth column ofX. Then,
Equation 4 can be rewritten as

T ◦ T−1 =

p
∑

k=1

µkXkX
⊤
k , (5)

whereµk = w2
k, for all k ∈ [1, p]. We will use this iden-

tity to present efficient solutions to the problem of learning
count-based rational kernels with both the SVM and KRR
objective functions.

4.2. Support Vector Machines

In the case of SVM, the optimization problem can be written
as

min
µ

max
α

F (µ, α) = 2α⊤1 −

p
∑

k=1

µkα⊤Y⊤XkX
⊤
k Yα

subject to 0 ≤ α ≤ C ∧ α⊤y = 0

µ ≥ 0 ∧

p
∑

k=1

µk‖Xk‖
2 = Λ,

(6)

whereα ∈ R
m×1, and µ ∈ R

p×1 denotes the column
vector with componentsµk, k ∈ [1, p]. Note, that this is
a convex optimization problem inµ sinceF is affine and
thus convex inµ, the pointwise maximum overα of a con-
vex function also defines a convex function [26], and the
constraints are all convex. While we seek to learn a kernel
function and not a kernel matrix, the optimization problem
we have derived at this stage is similar to those obtained
by [13]. However, due to the specific property (5), the prob-
lem reduces to a simple standard QP problem.

Let M denote the convex and compact setM = {µ :
µ ≥ 0 ∧

∑p

k=1 µk‖Xk‖
2 = Λ} andA the convex and

compact setA = {0 ≤ α ≤ C ∧ α⊤y = 0}. The
function µ 7→ F (µ, α) is convex with respect toµ for
anyα. For anyµ, the functionα 7→ F (µ, α) is concave
since

∑p
k=1 µkY

⊤XkX
⊤
k Y is a positive definite symmet-

ric matrix andF is a continuous function. Thus, by the von
Neumann’s generalized minimax theorem [27], themin and
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Fig. 2. Count-based kernels for the alphabetΣ = {a, b}. (a) Bigram kernel transducer. (b) General count-based kernel
transducer.

max can be transposed and the optimization (6) is equiva-
lent to:

min
µ∈M

max
α∈A

F (µ, α) = max
α∈A

min
µ∈M

F (µ, α). (7)

Since the term2α⊤1 does not depend onµ, this can be
further written as

max
α∈A

min
µ∈M

F (µ, α)

= max
α∈A

2α⊤1 − max
µ∈M

p
∑

k=1

µk(α⊤Y⊤Xk)2.
(8)

Note that the terms within this last sum are all non-negative,
thus the optimal solution is obtained by placing all theµ

weight on the largest(α⊤Y⊤Xk)2. Using this observation,
and the constraint

∑p

k=1 µk‖Xk‖
2 = Λ, the optimization

problem can be rewritten as

max
α∈A

2α⊤1− Λ max
k∈[1,p]

(
α⊤Y⊤Xk

‖Xk‖

)2

= max
α∈A

2α⊤1 − Λ max
k∈[1,p]

(α⊤u′
k)2,

(9)

whereu′
k is the normalized column matrixu′

k = Y
⊤
Xk

‖Xk‖
=

Y⊤Xk

‖Y⊤Xk‖
. This leaves us with the following minimization

problem:

min
α,t

− 2α⊤1 + Λt2

subject to 0 ≤ α ≤ C ∧ α⊤y = 0

−t ≤ α⊤u′
k ≤ t, ∀k ∈ [1, p].

(10)

Let U′ ∈ R
m×p be the matrix whosekth column isu′

k and
introduce the Lagrange variablesβ, β′ ∈ R

p×1, η, η′ ∈
R

m×1 andδ ∈ R to write the Lagrangian:

L(α, t, β, β
′
, η, η

′
, δ) = −2α

⊤
1+Λt

2
−η

⊤
α+η

′⊤(α−C)

+ δα
⊤
y − β

⊤(U′⊤
α + t1) + β

′⊤(U′⊤
α − t1). (11)

Differentiating with respect to the primal variables we ob-
serve that the following equalities hold at the optimum:

{
∇tL = 2tΛ − (β + β′)⊤1 = 0
∇αL = −21 + δy − η + η′

⇔

{
t = 1

2Λ(β + β′)⊤1 + U′(β′ − β) = 0

U′(β′ − β) − 21 + δy − η + η′ = 0.
(12)

Plugging in the first equality in the Lagrangian and taking
into account the second equality, we obtain the following
equivalent dual optimization:

max
β,β′,η,η′,δ

−
1

4Λ
(β′ + β)⊤(11⊤)(β′ + β) − η′⊤C

subject to U′(β′ − β) + (η′ − η) + δy − 21 = 0

β, β′, η, η′ ≥ 0 ∧ δ ≥ 0.

(13)

We have reduced the problem of learning count-based ker-
nels to a simple quadratic programming (QP) problem that
can be solved by standard solvers.

4.3. Kernel Ridge Regression

Learning count-based rational kernels can also be reduced
to a QP problem in the case of KRR.

Using the dual form of kernel ridge regression, the gen-
eral problem can be written as

min
µ

max
α

G(µ, α) = −λα⊤α −

p
∑

k=1

µk(α⊤Xk)2 + 2α⊤y

subject toµ ≥ 0 ∧

p
∑

k=1

µk‖Xk‖
2 = Λ.

(14)

Proceeding as in the case of the objective function of SVMs,
in particular by using the convexity of functionG with re-
spect toµ and its concavity with respect toα, and its con-
tinuity with respect to both arguments and other arguments
similar to the case of SVMs, the optimization problem for
learning count-based kernels can be written as

min
α,t

λα⊤α + Λt2 − 2α⊤y

subject to − t ≤ α⊤uk ≤ t, ∀k ∈ [1, p],
(15)

whereuk = Xk

‖Xk‖
, k ∈ [1, p]. Let U ∈ R

m×p be the
matrix whosekth column isuk and introduce the Lagrange
variablesβ, β′ ∈ R

p×1, then again as in the SVM case, dif-
ferentiating the Lagrangian and substituting for the primal



variables produces the following dual optimization problem

L(α, t, β, β′) = λα⊤α + Λt2 − 2α⊤y

− β⊤(U⊤α + t1) + β′⊤(U⊤α − t1). (16)

At the optimum the following equalities hold:

{
∇tL = 2tΛ − (β′ + β)⊤1 = 0
∇aL = 2λα − 2y + U(β′ − β) = 0

⇔

{
t = 1

2Λ(β′ + β)⊤1

α = 1
2λ

(2y − U(β′ − β)).
(17)

Plugging the expression forα andt back into (16) yields
the equivalent dual optimization problem

max
β,β′≥0

−
1

4λ
‖2y − U(β′ − β)‖2 −

1

4Λ
‖β′ + β‖2

1. (18)

We have thus shown that the problem of learning count-
based rational kernels can be reduced to a simple QP prob-
lem in the variables(β′ + β) and(β′ − β).

It is not hard to see that the weights of other rational
kernels used in computational biology such as the mismatch
kernels Figure 1(b) can be learned using the same QP prob-
lems, provided that we impose the constraint that the weight
of mappingu to zk andu′ to zk be the same for a fixedk.

4.4. Kernel Ridge Regression – Alternative Technique

This section describes an alternative technique for solving
the problem of learning count-based kernels. We will show
that the problem of learning akernel matrixwith the KRR
objective function admits a solution that in fact coincides
with the one prescribed by kernel alignment techniques [28].
An alternative technique for learning the kernel functionK
is thus to ensure that it matches the optimal kernel matrix
K for the given training sample. When this is possible, the
solution obtained coincides with the solutions described in
previous sections. Note that this technique can also be ap-
plied similarly to the problem of learning rational kernels
other than count-based kernels and even to more general
types of kernels other than rational kernels.

Using the dual of the KRR optimization, the problem of
learning the optimal kernel matrixK can be formulated as

min
K

max
α

H(α,K) = −λα⊤α − α⊤Kα + 2α⊤y

subject to K � 0 ∧ Tr[K] = Λ.

(19)

Note that for a fixedα the functionK 7→ H(α,K) is linear
and thus convex inK. Thus,K 7→ maxα H(α,K) is also
convex since the pointwise maximum of a convex function
is convex.

To avoid the semidefinite constraint, we can reformulate
this problem in terms of a matrixM such thatMM⊤ = K.
By the Cholesky decomposition, such as matrixM exists.
SinceMMT is always PDS, the semidefiniteness constraint
is thereby made implicit. This leads to the following opti-
mization problem:

min
M

J(M) = max
α

−λ||α||2 − α⊤MM⊤α + 2α⊤y

subject to Tr[MM⊤] = Λ.

(20)

J is notconvex inM, however, sinceK 7→ maxα H(α,K)
is convex, any solutionM of this problem must lead to
the same valueMM⊤ = K solution of the problem 19.
The optimal value forα in equation (20) has a closed form,
which is the standard KRR solution:

α = (MM⊤ + λI)−1y . (21)

Using this solution results in the following problem equiva-
lent to (20):

min
M

y⊤(MM⊤ + λI)−1y

subject to Tr[MM⊤] = Λ.
(22)

The analysis of this optimization problem helps us prove the
following theorem.

Theorem 2. Assume thaty 6= 0. Then, the unique solution
of the optimization problem (19) isK = Λ

‖y‖2 yy⊤.

Proof. Let β denote the dual variable associated to the trace
constraint of (22) andL(M, β) its Lagrangian. The gradient
of L with respect toM is given by

∇ML(M, β) =

2

[

− (MM⊤ + λI)−1yy⊤(MM⊤ + λI)−1

︸ ︷︷ ︸

N

+βI

]

M.

(23)

Thus,∇ML(M, β) = 0 is equivalent to the vector space
spanned by the columns ofM being included in the null-
space ofN + βI. Let z be an element of the null-space,
then

z ∈ Null(−N + βI) ⇔ Nz = βz ⇔ ηη⊤z = βz, (24)

whereη = V−1y, with V = (MM⊤ + λI). This shows
thatz must be an eigenvector ofηη⊤ and furthermorez ∈
Span(η). Using this, we now observe that

(−N + βI)M = 0 ⇔

Range(M) ⊆ Null(−N+βI) = Span(η) = Span(V−1y).



Dataset #bigrams Normalized Error
acq 1500 0.9161 ± 0.0633

crude 1200 0.8448 ± 0.0828

earn 900 0.9196 ± 0.0712

grain 1200 0.9707 ± 0.0294

money-fx 1500 0.9682 ± 0.0396

kitchen* 912 0.9852 ± 0.0118

electronics* 1047 0.9801 ± 0.0104

dvd* 1397 0.9906 ± 0.0125

books* 1349 0.9880 ± 0.0137
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Fig. 3. Results on classification and regression tasks. (a) An asterisk indicates a regression dataset, otherwise classification.
All error rates are normalized by the baseline error rate with standard deviation shown over 10 trials with of the order 1,000
parameters. (b) Results on two dataset as a function of the number of bigrams used for modeling.

Thus, the columns ofM fall in the span ofV−1y, or equiv-
alently there exists a vectora such that,

M = V−1ya⊤ ⇔ VM = ya⊤

⇔ (MM⊤ + λI)M = ya⊤

⇔ M(M⊤M + λI) = ya⊤

⇔ M = y
[
(M⊤M + λI)−1a

]⊤
.

Therefore,M is of the formyb⊤ and K = MM⊤ =
‖b‖2yy⊤. Imposing the trace constraint, that isTr(K) =
‖b‖2‖y‖2 = Λ, yieldsK = Λ

‖y‖2 yy⊤.

Notice that this solution takes the same form as the one
suggested by a maximum alignment type solution [28] and
in fact provides a clear justification for the alignment metric.

5. EXPERIMENTS

In this section, we report the results of our experiments to
learn count-based rational kernels for both SVM classifica-
tion problems and KRR tasks.

For the SVM experiments, we considered several one-
versus-many classification problems based on the Reuters-
21578 dataset1. The data was arranged according to the
“ModApte” split, as used in [13], which results in a test set
of 3,299 documents and training set of 9,603 documents.
We randomly chose 1,000 points from the training set to
train with over 10 trails.

For the KRR experiments, we used the sentiment anal-
ysis dataset found in [29].2 The data set consists of re-
view text and rating labels, an integer between 1 and 5,
taken fromamazon.com product reviews within four dif-
ferent categories (domains). These four domains consist
of book , dvd , electronics andkitchen reviews, where

1http://www.daviddlewis.com/resources/testcollection s

/reuters21578/.
2http://www.seas.upenn.edu/˜mdredze/datasets/sentime nt/ .

each domain contains 2,000 data points. We report values
from 10-fold cross validation.

The learning kernel experiments were carried out by
first solving either the QP problem in the case of SVM (13)
or KRR (18) respectively. The solutions to these QP opti-
mization problems were obtained using the MOSEK soft-
ware.3 For the solutionsα we found in our experiments
about 30% of thek features met the constraints of the op-
timization (15) (−t ≤ α⊤uk ≤ t) as an equality. Thus,
at the solution point many features have the same gradient
with respect to the parametert. To avoid favoring one spe-
cific featurek and generating a bias, we chose to distribute
the trace evenly among the features according to this gradi-
ent.

The examination of the features meeting the equality
constraint ont reveals that the learning algorithm provides
interesting feature selection. Among these features we find
many negatively or positively loaded bigrams, such as “rec-
ommend this”, “lack of”, “easy to”, “an excellent”, and
“your money”, to name a few examples from the book re-
views regression task.

For a baseline, we used equal weights on all the bigrams
(i.e. the standard ngram count kernel), with the weights ap-
propriately scaled to meet the same trace constraint as in
the case of the learned kernels. In the SVM experiments,
we searched forC from 2−10 to 210 andΛ = 0.5. In the
KRR experiments, we did a grid search from2−10 to 23

in powers of2 to select the ratio ofλ/Λ. The error rates
reported are RMSE in the case of regression and zero-one
loss in the case of classification. The values are normalized
by the baseline error rate, so a value less than one corre-
sponds to an improvement in performance. The results are
presented in Figure 3 (a). Figure 3 (b) illustrates the perfor-
mance as a function of the number of bigrams in the learn-
ing task. As can be seen from the figure, for larger number
of bigrams, the results become significantly better than the

3http://www.mosek.com/ .



baseline. These results complement those of [13] give in the
transductive setting.

6. CONCLUSION

We presented efficient general algorithms for learning count-
based rational kernels, a family of kernels that includes most
sequence kernels used in computational biology, natural lan-
guage processing, and other text processing applications.
Our algorithms are thus widely applicable and can help en-
hance learning performance in a variety of sequence learn-
ing tasks. The techniques we used could help learn other
families of sequence kernels in a similar way.
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