An Efficient Reduction of Ranking to Classification

Nir Ailon
Google Research
76 Ninth Ave, 4th Floor
New York, NY 10011
nai | on@oogl e. com

Abstract

This paper describes an efficient reduction of the
learning problem of ranking to binary classifica-
tion. The reduction is randomized and guarantees
a pairwise misranking regret bounded by that of
the binary classifier, improving on a recent result
of Balcan et al. (2007) which ensures only twice
that upper-bound. Moreover, our reduction applies
to a broader class of ranking loss functions, admits
a simple proof, and the expected time complexity
of our algorithm in terms of number of calls to a
classifier or preference function is also improved
from Q(n?) to O(nlogn). In addition, when the
top k ranked elements only are requirdd< n),

as in many applications in information extraction
or search engine design, the time complexity of our
algorithm can be further reduced@k log k+n).

Our reduction and algorithm are thus practical for
realistic applications where the number of points
to rank exceeds several thousands. Much of our
results also extend beyond the bipartite case pre-
viously studied. To further complement them, we
also derive lower bounds for any deterministic re-
duction of ranking to binary classification, proving
that randomization is necessary to achieve our re-
duction guarantees.

1

The learning problem of ranking arises in many modern ap-
plications, including the design of search engines, inferm
tion extraction, and movie recommendation systems. Irethes
applications, the ordering of the documents or movies re-
turned is a critical aspect of the system.

The problem has been formulated within two distinct set-
tings. In thescore-based settinghe learning algorithm re-
ceives a labeled sample of pairwise preferences and requrns
scoring functionf : U — R which induces a linear ordering
of the points in the sdl/. Test points are simply ranked ac-
cording to the values of for those points. Several ranking
algorithms, including RankBoost (Freund et al., 2003; Rudi
et al., 2005), SVM-type ranking (Joachims, 2002), and other
algorithms such as PRank (Crammer & Singer, 2001; Agar-
wal & Niyogi, 2005), were designed for this setting. Gener-
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alization bounds have been given in this setting for the-pair
wise misranking error (Freund et al., 2003; Agarwal et al.,
2005), including margin-based bounds (Rudin et al., 2005).
Stability-based generalization bounds have also beemgive
in this setting for wide classes of ranking algorithms bath i
the case of bipartite ranking (Agarwal & Niyogi, 2005) and
the general case (Cortes et al.2007b; 2007a).

A somewhat different two-stage scenario was considered
in other publications starting with (Cohen et al., 1999) an
later (Balcan et al., 2007), which we will refer to as the
preference-based settingn the first stage of that setting, a
preference functioh : U x U +— [0, 1] is learned, where val-
ues ofh(u, v) closer to one indicate that is ranked above
v and values closer to zero the oppositeis typically as-
sumed to be the output of a classification algorithm trained
on a sample of labeled pairs, and can be for example a con-
vex combination of simpler preference functions as in (Co-
hen et al., 1999). A crucial difference with the score-based
setting is that, in general, the preference functiomay
not induce a linear ordering. The relation it induces may
be non-transitive, thus we may have for examiple, v)
h(v,w) = h(w,u) = 1 for three distinct points, v, andw.

To rank a test subsét C U, in the second stage, the algo-
rithm orders the points ifv by making use of the preference
functionh learned in the first stage. The subset ranking set-
up examined by Cossock and Zhang (2006), though distinct,
also bears some resemblance with this setting.

This paper deals with the preference-based ranking set-
ting just described. The advantage of this setting is that th
learning algorithm is not required to return a linear ordgri
of all points inU, which may be impossible to achieve fault-
lessly in accordance with a general possibly non-traresitiv
pairwise preference labeling. This is more likely to be aghi
able exactly or with a better approximation when the algo-
rithm is requested instead, to supply a linear orderingy onl
for limited subsetd” C U.

When the preference function is obtained as the output
of a binary classification algorithm, the preference-bastd
ting can be viewed as a reduction of ranking to classification
The second stage specifies how the ranking is obtained using
the preference function.

Cohen et al. (1999) showed that in the second stage of
the preference-based setting, the general problem of findin
a linear ordering with as few pairwise misrankings as possi-
ble with respect to the preference functiois NP-complete.
The authors presented a greedy algorithm based on the tour-



nament degree, that is, for a given elementhe difference misranking error, the bound turns out not to be informative
between the number of elements it is preferred to versus thein that case. Instead, with a factor bfthe bound ensures a
number of those preferred to The bound proven by the au-  pairwise misranking of at mo&6%.

thors, formulated in terms of the pairwise disagreemers los Much of our results also extend beyond the bipartite case
[ with respect to the preference functibncan be written as  previously studied by Balcan et al. (2007) to the generad cas
Wogreedy: 1) < 1/2 4+ Uooptimals 1) /2, Wherel(ogreedy, h) of ranking. A by-productof our proofsis a bound on the pair-
is the loss achieved by the permutatiop...q, returned by  wise disagreement loss with respect to the preference func-
their algorithm and(cpiimar, h) the one achieved by the tion & that we will compare to the result given by Cohen et al.
optimal permutatiom ., With respect to the preference (1999).

function ~. This bound was given for the general case of The algorithm used by Balcan et al. (2007) to produce a
ranking, but, in the particular case of bipartite ranking, a ranking based on the preference function is known as sort-
random ordering can achieve a pairwise disagreement losshy-degree and has been recently used in the context of mini-
of 1/2 and thus the bound is not informative. Note that the mizing the feedback arcset in tournaments (Coppersmiih et a
algorithm can be viewed as a derandomization technique.  2006). Here, we use a different algorithm, QuickSort, which

More recently, Balcan et al. (2007) studied the bipartite has also been recently used for minimizing the feedback arc-
ranking problem. In this particular case, the loss of anwoutp et in tournaments (Ailon et al. 2005; 2007). The techniques
ranking is measured by counting pairs of ranked elements, presented build upon earlier work by Ailon et al.(2005; 2007
one of which is positive and the other negative (based on On combinatorial optimization problems over rankings and
some ground truth). They showed that sorting the elementsclustering.
of V according to the same tournament degree used by Co-  The remainder of the paper is structured as follows. In
hen et al. (1999) guarantees a regret of at n2estising a Section 2, we introduce the definitions and notation used in
binary classifier with regret. (The regret is defined as a future sections and introduce a general family of loss func-
calibration of the loss function that aligns a theoretigal o tions for ranking. Section 3 describes a simple and effi-
timum with 0.) However, due to the quadratic nature of the cient algorithm for reducing ranking to binary classifioat;
definition of the tournament degree, their algorithm reggiir ~ proves several bounds guaranteeing the quality of the rank-
Q(n?) calls to the preference function wheren = |V| is ing produced by the algorithm, and analyzes the running-
the number of objects to rank. time complexity of our algorithm. In Section 4, we derive

We describe an efficient randomized algorithm for the & lower bound for any deterministic reduction of ranking to

second stage of preference-based setting and thus for-reducinary classification. In Section 5, we discuss the relation
ing the learning problem of ranking to binary classification ShiP of the algorithm and its proof with previous related kor
We improve on the recent result of Balcan et al. (2007), by N combinatorial thlmlzatlon,_and_d|scuss key assumpgtion
guaranteeing a pairwise misranking regret of at magting  'elatéd to the notion of regret n this context.

a binary classifier with regret thereby improving the bound

by a factor of2. Our reduction applies, with differentcon- 2 Preliminaries

stants, to a broader class of ranking loss functions, admits ) o o o

simple proof, and the expected running time complexity of This section introduces several preliminary definitions-ne
our algorithm in terms of number of calls to a classifier or €ssary for the presentation of our results. In what follows,
preference function is improved frofa(n2) to O(n log n). U will dgnote a universe of_elements, e.g., the collection of
Furthermore, when the top ranked elements only are re- all possible query-result pairs returned by a web seardh tas
quired ¢ < n), as in many applications in information ex- andV’ € U will denote a small subset thereof, e.g., a prelim-
traction or search engines, the time complexity of our algo- inary list of relevant results for a given query. For simityic
rithm can be further reduced (% log k + n). Our reduc- of notation we will assume thaf is a set of integers, so that
tion and algorithm are thus practical for realistic apptimas ~ We are always able to choose a minimal canonical element
where the number of points to rank exceeds several thou-in afinite subset, as we do in (9) below. This arbitrary order-
sands. The price paid for this improvement is in resorting ing should not be confused with the ranking problem we are
to nondeterminism. Indeed, our algorithms are randomized, considering.

but this turns our to be necessary. We give a simple proof o ,

of a lower bound of2r for any deterministic reduction of 2.1 General Definitions and Notation

ranking to binary classification with classification regret e first briefly discuss the learning setting and assumptions
thereby generalizing to all deterministic reductions adow  made here and compare them with those of Balcan et al.
bound result of Balcan et al. (2007). (2007) and Cohen et al.(1999).

To appreciate our improvement of the reduction bound In what follows, V' C U represents a finite subset ex-
from a factor of2 to 1, consider the case of a binary classi- tracted from some arbitrary univergg which is the set we
fier with an error rate of jus25%, which is quite reasonable  wish to rank at each round. The notati§fl") denotes the
in many applications. Assume that the Bayes error is close toset ofrankingson V, that is the set of injections froi to
zero for the classification problem and similarly that foeth  [n] = {1,...,n}, wheren = |V|. If 0 € S(V) is such a
ranking problem that the regret and loss approximately-coin ranking, thens(u) is the rank of an element € V', where
cide. Then, the bound of Balcan et al. (2007) guarantees forlower ranks are interpreted as preferable ones. More pre-
the ranking algorithm a pairwise misranking error of at most cisely, we say that is preferred over with respect tas if
50%. But, since a random ranking can achié®é&; pairwise o(u) < o(v). For convenience, and abusing notation, we



also writeo (u,v) = 1if o(u) < o(v) ando(u,v) = 0 oth- The sum is over all pairs, v in the domainV” of the rank-
erwise. We le(},) denote the collection of all subsets of size ingso,0”. It counts the number of inverted paitsv €
exactlyk of V. To distinguish between functions taking or- V' weighed byw, which assigns importance coefficients to
dered vs. unordered arguments in what follows, we will use pairs, based on their positions in the ground trath The
the notationF,,, ..., to denotek unordered arguments for functionw must satisfy the following three natural axioms,
afunctionF defined on(}) andF (u1,us, . . ., uy) to denote which will be necessary in our analysis:
k ordered arguments for a functiéndefined o/ x --- x V.
—_—

k

(PL)Symmetry:w(i, j) = w(y, ) for all 4, j;
P2)Monotonicity: w(i, j) < w(i, k) if eitheri < j < k or
2.2 Ground truth ( )Z_ e’y y:w(i,j) < w(i, k) i<j

As in standard learning scenarios, at each round, there is an
underlying unknown ground truth which we wish the output

of the learning algorithm to agree with as much as possible. 1 gefinition is very general and encompasses many useful,

(P3)Triangle inequalityw (7, j) < w(i, k) + w(k, ).

The ground truth is a ranking that we denotedye S(V), well studied distance functions. Settingi, j) = 1 for all
equipped with a functiow assigning differenimportance ;. ; yields the unweighted pairwise misranking measure or
weight to pairs of positions. The combinati@ri, w) is ex- the so-called Kemeny distance function.

tremely expressive, as we shall see below in Section 2.5. It Eq; 5 fixed integet:, the following function

can encode in particular the standard average pairwise mis- '

ranking or AUC loss assumed by Balcan et al. (2007) in a o 1T if(G<k)V(<k)A(#7)
bipartite setting, but also more sophisticated ones caggtur w(i, j) = {0 otherwise

misrankings among the tdp and other losses that are close

but distinct from those considered by Clemencgon and ayat can be used to emphasize ranking at thektefements. Mis-

1)

(2007). ranking of pairs with one element ranked among thektdp

. penalized by this function. This can be of interest in agplic
2.3 Preference function tions such as information extraction or search enginesevher
As with both (Cohen et al., 1999) and (Balcan et al., 2007), the ranking of the top documents matters more. For this em-
we assume that a preference functionU x U — [0, 1] phasis function, all elements ranked belbwre in a tie. In
is learned in a first learning stage. The convention is that fact, it is possible to encode any tie relation using
the higherh(u, v) is, the more our belief that should be Bipartite Ranking. In a bipartite ranking scenarid;
preferred taw. The functionh satisfiegairwise consistency is partitioned into a positive and negative et andV ~ of
h(u,v) + h(v,u) = 1, but need not even be transitive 8n sizesn™ andm ™ respectively, wherer™ +m~ = |V| = n.

tuples (cycles may be induced). The second stage/uses  For this scenario (Balcan et al., 2007; Hanley & McNeil,

output a proper ranking, as we shall further discuss below. 1982; Lehmann, 1975), we are often interested in the AUC

The running time complexity of the second stage is measuredscore ofc € S(V') defined as follows:

with respect to the number of calls ko . 1
1-AUC(V", V7 ,0) = —— i . —o(v,u).

2.4 Output of Learning Algorithm ( T u;v (wapevxy=n)

The final output of the second stage of the algorithimis & This expression measures the probability given a random
proper ranking o¥". lts costis measured differently in (Bal- ¢ cjal pair of elements, one of which is positive and the
can etal., 2007) and (Cohen et al., 1999). In the former, itis gher negative, that the pair is misorderedirit is immedi-
measured against the unknown ground truth and compared to,;¢ ¢ verify that this is equal tb,,(o, o* ), whereo™ is any

the cost of: against the ground truth. The rationale is that the ranking placing/’* ahead of/ ~ and

information encoded ih contains all pairwise preference in-

formation using the state-of-the-art binary classificatitn n 1 (i <m™)A(G>m")
(Cohen et al., 1999); is measured against the given prefer- w(i,j) = (2) 1 G<mHAGE>mT) (2
ence functiom, and compared to the theoretically best one ’ m-mt 0 oth;zrwise

can obtain. Thus, therk plays the role of a known ground

truth. Simplified notation. To avoid carryinge* andw, we

. will define for convenience
2.5 Loss Functions

We are now ready to define the loss functions used to mea- 7 (u,v) = 0" (u, v)w(o™ (u), 0" (v))
sure the quality of an output ranking either with respect ;4
to o*, as in (Balcan et al., 2007), or with respectitoas in .
(Cohen et al., 1999). o AN .
The following general loss functioh,, measures the qual- Lo, %) = Lu(0,07) = 9 > olu,v)r(v,u) .

ity of a rankingo with respect to a desired or€ using a uFv
weight functionw (described below): We will formally call 7* a generalized rankingand it will
o\l take the role of the ground truth.df is obtained as in (2) for
Ly(o,0%) = ( ) Zg(u,v)g*(v,u)w(g*(u),g*(v)), some integersn™, m~ satisfying_m+_ +m” =n then we
2 u will say that the corresponding is bipartite.



Itis immediate to verify from the properties of the weight
functionw that for allu, v, w € V,

™ (u,v) < 7w, w) + 7 (w,v) 3)
If 7* is bipartite, then additionally,
T (u,v) + 7" (v, w) + 7 (w,u) =
(v, u) + 7 (w,v) + 7 (u,w) . (4)

2.6 Preference Loss Function

where the minimum is ovekh, a preference function over
U, and-|y, is a restriction operator on preference functions
defined in the natural way.

The weak ranking and classification regret functi@s,, .

We need to extend the definition to measure the loss of @ Rl (h, D) = Ev 7« [L(hy, 77)]

preference functior with respect tos*. In contrast with
the loss function just defined, we need to defimpeeference

lossmeasuring a generalized ranking’s disagreements with

respect to a preference functidnwhen measured against

7*. We can readily extend the loss definitions defined above

as follows:

L(h,7) = Lo (h,0*) = <Z>1Z h(u, v)7* (v, u) .

uFv

As explained abovel(h, 7*) is the ideal loss the learning
algorithm will aim to achieve with the output ranking hy-
pothesiss.

2.7 Input Distribution

The setl” we wish to rank together with the ground truth
are drawn as pair from a distribution we denote Dy In
other words,~* may be a random function df. For our
analysis of the loss though, it is convenient to thinklof

and7* as fixed, because our bounds will be conditioned on
fixed V, 7* and will easily generalize to the stochastic set-

ting. Finally, we say thab is bipartite if7* is bipartite with
probability 1.

2.8 Regret Functions

The notion of regret is commonly used to measure the dif-
ference between the loss incurred by a learning algorithm

and that of somdvestalternative. This section introduces

the definitions of regret that we will be using to quantify the

quality of a ranking algorithm in this context. We will de-
fine a notion ofweakandstrongregret for both ranking and
classification losses as follows.

To define a strong ranking regret, we subtract from the
loss function the minimal loss that could have been obtained

from a global rankingr of U. More precisely, we define:

R'r‘ank (A, D) - EV,T*,S[L(AS (V)v T*)]
- i E T* L Y ) * 9
52151(1}1) v, [ (0|v T )]
whereagy, € S(V) is defined by restricting the rankirig e
S(U) to V in a natural way, andl is a possibly randomized
algorithm using a stream of random hitéand a pre-learned
preference function) to output a rankingd (V') in S(V).

andR.,,,.. are defined as follows:
Rrani (4, D) = By o+ o[L(As(V), 77)]
— By &énsi(I‘l/) ET*IV[L(&?T*)] (5)
— By mlnET*\V[L(iLaT*)] s (6)
h

where7*|V is the random variable* conditioned on fixed
V. The difference betweeR andR’ for both ranking and
classification is that in their definition thein operator and
the £y, operator are permuted.
The following inequalities follow from the concavity of
min and Jensen’s inequality:
, (AaD) Z Rrank(AaD)

rank

and

7
Iclass (A’ D) 2 RClGSS (A7 D) ( )

For a fixedV” and anyu,v € V, let
6(’[1,71}) = ET*\V[T* (U, U)] . (8)

The reason we work witlR.,, . is because the preference

function  over U obtaining themin in the definition of
! can be determined locally for anyv € U by

class

1 e(u,v) > e(v,u)
h(u,v) = { 0 e(v,u) > e(u,v) (9)
1,-, otherwise.

Also, equation (3) holds true with replacingr*, and sim-
ilarly for (4) if D is bipartite (by linearity of expectation).
We cannot do a similar thing when working with the strong
regret functiorR .4 5.

The reason we work with weak ranking regret is for com-
patibility with our choice of weak classification regret; al
though our upper bounds @®..,,,,. trivially apply t0 R.onx
in virtue of (7).

In Section 5.4, we will discuss certain assumptions under
which our results work for the notion of strong regret as well
Note that Balcan et al.(2007) also implicitly use such an as-
sumption in deriving their regret bounds. Our regret bounds
(second part of Theorem 2) hold under the same assumption.
Our result is thus exactly comparable with theirs.

3 Algorithm for Ranking Using a Preference
Function

This section describes and analyzes an algorithm for obtain
ing a global ranking of a subset using a prelearned prefer-

As for the strong preference loss, it is natural to subtract ence functionk, which corresponds to the second stage of

the minimal loss over all, possibly cyclic, preference func
tions onU.
More precisely, we define:

Rclass (ha D) = EV,T* [L(h\Va T* )] - m}%n EV,T* [L(;”Va T*)] )

the preference-based setting. Our bound on the loss will be
derived using conditional expectation on the preferenss lo
assuming a fixed subs®t C U, and fixed ground truth*.

To further simplify the analysis, we assume thas bi-
nary, that ish(u,v) € {0,1} forall u,v € U.



3.1 Description
One simple idea to obtain a global ranking of the pointg’in

3.3 Analysis of QuickSort
AssumeV is fixed, and let); = Q"(V) be the (random)

consists of using a standard comparison-based sorting algoranking output by QuickSort oW using the preference func-

rithm where the comparison operation is based on the pref-

tion h. During the execution of QuickSort, the order between

erence function. However, since in general the preferencetwo elements:, v € V' is determined in one of two ways:

function is not transitive, the property of the resulting-pe
mutation obtained is unclear.

This section shows however that the permutation gener-
ated by the standard QuickSort algorithm provides excellen
guarantee$.Thus, the algorithm we suggest is the following.
Pick a randonpivot element: uniformly at random froni’.

For eachv # u, placev on the left of u if h(v,u) = 1, and

to its right otherwise. Proceed recursively with the ari@y t
the left ofu and the one to its right and return the concatena-
tion of the permutation returned by the left recursiopand

the permutation returned by the right recursion.

We will denote byQ" (V') the permutation resulting in
running QuickSort oV using preference functioh, where
s is the random stream of bits used by QuickSort for the se-
lection of the pivots. As we shall see in the next two sec-
tions, this algorithm produces high-quality global rargsn
in a time-efficient manner.

3.2 Ranking Quality Guarantees

The following theorems bound the ranking quality of the al-
gorithm described, for both loss and regret, in the general
and bipartite cases.

Theorem 1 (Loss bounds in general caseffor any fixed sub-
setV C U, preference functioh on V, and generalized
ranking7* on 'V, the following bound holds:

E[L(Q"(V),7*)] < 2L(h,7*) .

Taking the expectation of both sides, this implies immedi-
ately that

E [L(QQ(V), T*)] S 2EV,T* [L(ha T*)]a

V,m*,s

whereh could depend oiv.

(10)

(11)

Theorem 2 (Loss and regret bounds in bipartite case)or
any fixedV C U, preference functioh over V', and bipar-

tite generalized ranking*, the following bound holds:
E[L(QL(V), 7] = L(h,7") (12)
/rank(QZ(')? D) < R/class (h’ D) . (13)

Taking the expectation of both sides of Equation 12, this im-
plies immediately that if V,7*) is drawn from a bipartite
distribution D, then

E [L@

V,t*,s
whereh can depend oy

h
s

(V)vT*)] = EV,T*[L(th*)]v (14)

To present the proof of these theorems, we need some

tools helpful in the analysis of QuickSort, similar to those
originally developed by Ailon et al.(2005). The next segtio
introduces these tools.

IWe are not assuming here transitivity as in standard tektboo
presentations of QuickSort.

2We will use the convention that ranked items are written from
left to right, starting with the most preferred ones.

e Directly: u (orv) was selected as the pivot with(resp.
u) present in the same sub-array in a recursive call to
QuickSort. We denote by,, = p.. the probability of
that event. In that case, the algorithm orderandv
according to the preference functibn

Indirectly: a third elementy € V is selected as pivot
with w, u, v all present in the same sub-array in a recur-
sive call to QuickSorty is assigned to the left sub-array
andw to the right (or vice-versa).

Let p.w denote the probability of the event thatv,
andw are present in the same array in a recursive call
to QuickSort and that one of them is selected as pivot.
Note that conditioned on that event, each of these three
elements is equally likely to be selected as a pivot since
the pivot selection is based on a uniform distribution.

If (say) w is selected among the three, themwill be
placed on the left of if h(u,w) = h(w,v) = 1, and
to its right if h(v,w) = h(w,u) = 1. In all other
cases, the order betweenwv will be determined only
in a deeper nested call to QuickSort.
Let X,Y: V x V — R be any two functions on ordered
pairsu,v € V, and letZ: (‘2/) — R be a function on un-
ordered pairs. We define three functieri, Y]: (%) — R,
B1X]: () — Randy[Z]: (%) — Ras follows:
a[X, Y]uw = X(u,0)Y (v,u) + X (v,u)Y (u,v),
ﬁ[X]u'uw -
1
g(h(u, v)h(v, w) X (w,u) + h(w,v)h(v,u) X (u, w))+

1

3
%(h(u, w)h(w,v) X (v,u) + h(v, w)h(w,u) X (u,v)),
W[Z]uvw =

1(h(u, v)h(v,w) + h(w, v)h(v,u)) Zyw+

1

3
%(h(u, w)h(w,v) + h(v,w)h(w,u)) Zyy -

(h(v,u)h(u, w) X (w,v) + h(w, u)h(u,v)X (v, w))+

(h(v,u)h(u, w) + h(w, u)h(u, v)) Zyw+

Lemma 3 (QuickSort Decomposition)
1. ForanyZ: (}) — R,

Z Zuv - Zpuvzuv + Z pu'uw'y[Z]uvw .

u<v u<v u<v<w
2. ForanyX: V xV — R,
Es[za[Qsa X]uv] -
u<v
> pwalh, Xluw + D PuvwBX v -
u<v u<v<w



Proof: To see the first part, notice that for every unordered If 7* is bipartite, then by (4) the right hand sides of (17)

pairu < v the expressior,, is accounted for on the RHS and (18) are equal, giving (16). Otherwise we use (3) to
of the equation with total coefficient: derive

1 ™(wv) < 7T (w,w) + 7 (w,v)
Pt D, gPuow (s 0)h(w, v) + h(v, wh(w, u)) ™ (v,w) < T, u) + 7 (u,w)

we{u,v} T* (w,u) < T*(’LU,U) + T*(’U,U)

m(i)r\wl\éé)é?rlesczlr;/e(lg;%beaf‘ibr:ilggr:?,aatlr;tze order ¢, v) is deter Summing up the three equations, this implies (15).
1 2. Withoutloss of generality, assurhéu, v) = h(v, w) =

gpuw(h(u,w)h(w, v) + h(v,w)h(w,u)) h(u,w) = 1. Plugging in the definitions gives

is the probability that their order is determined indirgatia B[T. huvw =yl T ]Juvw = 77 (w0, )

w as pivot. Since each pair’s ordering is accounted for ex- as required. u

actly once, these probabilities are for pairwise disjousrgs We now examine a consequence of Theorem 1 for QuickSort

that cover the pro.bability_ space. Thus, the total coefftai;én_ that can be compared with the bound given by Cohen et al.

Zuy ON the RHS isl, as is on the LHS. The second partis (1999) for a greedy algorithm based on the tournament de-

proved similarly. gree. Leto,,ima be the ranking with the least amount of

pairwise disagreement with
3.4 Loss Bounds

This section proves Theorem 1 and the first part of Theo-
rem 2. For a fixedr*, the loss incurred by QuickSort is Then, the following corollary bounds the expected pairwise

L(Q,, 7) = (%)*1 > uew @[Qs, 7*]uu. By the second part disagreement of QuickSort with respecitg . by twice

Ooptimal = argmin L(h, o) .
o

of Lemma 3, the expected loss is therefore that of the preference function with respectigima -
. Corollary 4 ForanyV C U and preference functioh over
E[L(Qs, 77)] = V, the following bound holds:
- E[L(Q"MV), 0optimat)] < 2 L(h, Goptimal) - (19)
n % % s s Ooptimal )] > s Ooptimal
(2) <Z puva[ha T ]uv + Z puvwﬁ[T ]uvw) . s v v
u<v u<v<w The corollary is immediate since technically any rankimg, i
Also, the following holds by definition of : nglil“amommaz, can be taken as" in the proof of Theo-
—1 '
L(h,7%) = (n) Z alh, ™ e - Corollary 5 LetV C U be an arbitrary subset df and let
2 w<v ooptimal D€ @S above. Then, the following bound holds for
Thus, by the first part of Lemma 3, Egipalrwse disagreement of the ranki§ () with respect
L(h, T*) = E;[L(h, Q,}SI(V))] <3 L(h, UOPtimal)- (20)
n . . Proof: The result follows directly Corollary 4 and the appli-
(2) <Zpuv04[ha7’ Juv + Z Vel T Huvw) cation of the triangle inequality. |
u<v u<v<w

_ _ This result is in fact known from previous work (Ailon
To complete the proof, it suffices to show that foralb, w, et al. 2005; 2007) where it is proven directly without resort
* * ing to the intermediate inequality (19). In fact, a bettetda
< ; . . X
Bl Juvw < 2y[0fhs T v (15) of 2.5 is known to be achievable using a more complicated
and that ifr* is bipartite, then algorithm, which gives hope fora5 bound improving The-

orem 1.
5[7*]uvw = 'Y[O‘[haT*]]uvw . (16)

Up to symmetry, there are two cases to consider. The first
case assumes thatinduces a cycle o, v, w, the second
assumes that it doesn't.

3.5 Regret Bounds for Bipartite case

This section proves the second part of Theorem 2, that is the
regret bound. Since in the definition &, andR.

class

the expectation ovéelr is outside thenin operator, we may

1. Without loss of generality, assurhéu, v) = h(v,w) = continue to fixV’. Let Dy denote the distribution over the
h(w,u) = 1. Plugging in the definitions leads to bipartite* conditioned on/. By the definitions ofR’. ..,
. andR.,,... it is now sufficient to prove that
) wow — * ) * ) * 5 5 d (17 : ~
B[T ] 3(T (u v)+T (U w)+T (w u)) an ( ) |E‘)/ [L( Q,T*)] — min :E|)V[L(O'7T*)]
* 1 * * * ! " 7 ! ~
alh, 7 uvw = 3 (77 (v, 0) + 77 (w, 0) + 77 (0, w) < E [L(h, 7)) —min E [L(h,7*)]. (21)

(18) v oV



We lete(u,v) denoteE, .y [7*(u,v)], then by the linear-
ity of expectationE, -y [L(5,7*)] = L(d,e) and similarly
E..\y[L(h,7)] = L(h,e). Thus, inequality 21 can be rewrit-
ten as

E[L(Qs,

e)] —min L(5,e) < L(h,e) —min L(h,e). (22)
G h

Now let& andh be the minimizers of thenin operators on
the left and right sides, respectively. Recall that foralh €

V, h(u,v) can be taken greedily as a functionegf:, v) and
e(v,u), asin (9):

1
h(u,v) =<0
1u>v

Using Lemma 3 and linearity, the LHS of (22) can be rewrit-
ten as:

(ZT (Z Puv alh =5, €fuy

u<v

e(u,v) > e(v,u)
e(u,v) < e(v,u)
otherwise (equality).

(23)

+ Z puvw(ﬁ[e]_ﬂo‘[&ae]buvw) )

u<v<w

and the RHS of (22) as:

(ZT (Z Puv b = I, e

u<v

+ Z puvwﬁy[a[h - iL, e]]uuw)

u<v<w

Now, clearly, for all(u,v) by construction of, we must
havea[h — &, €]y, < alh — h,el.,. To conclude the proof
of the theorem, we defing: (g) — R as follows:

F = fle] —lala, €]l — (vlalh,e]] = ylalh,e]]) . (24)

It now suffices to prove thak:,,,, < 0 for all u,v,w € V.
Clearly F' is a function of the values of

e(a,b) : {a,b} C {u,v,w}
h(a,b) : {a,b} C {u,v,w}
a(a,b): {a,b} C {u,v,w}.

(25)

Recall thath depends or. By (3) and (4), thes-variables
can take values satisfying the following constraints fdr al
u,v,w € V.

V{a,b,c} ={u,v,w}, e(a,c) <e(a,b)+e(b,c) (26)

e(u,v) + e(v,w) + e(w,u) = e(v,u)+ (27)
e(w,v) + e(u, w)

Va,b € {u,v,w}, e(a,b) >0 . (28)

Let P C RS denote the polytope defined by (26-28) in the
variables:(a, b) for {a, b} C {u, v, w}. We subdivideP into
smaller subpolytopes on which tthevariables are constant.
Up to symmetries, we can consider only two cases:h (i)
induces a cycle on, v, w and (ii) & is cycle-free onu, v, w.

(i) Without loss of generality, assuméu, v) = h(v, w) =
h(w,u) = 1. But this implies thak(u,v) > e(v,u),
e(v,w) > e(w,v) ande(w,u) > e(u,w). Together
with (27) and (28), this implies thatu, v) = e(v, u),
e(v,w) = e(w,v), ande(w,u) = e(u,w). Conse-
quently,

Bleluww = ¥[[7, €]Juvw

= 'y[a[h, 8]]uuw = FY[OL[?% 6]]uvw
1

= g(e(u,v) +e(v,w) +e(w,u)) ,

andF.,., = 0, as required.

(i) Without loss of generality, assunigu, v) = h(v, w) =

h(u,w) = 1. This implies that
e(u,v) > e(v,u)
e(v,w) > e(w,v)

(29)

e(u,w) > e(w,u) .

Let P C P denote the polytope defined by (29) and
(26)-(28). ClearlyF' is linear in thet e variables when
all the other variables are fixed. Sinééis also ho-
mogenous in the variables, it suffices to prove that
F < 0 for e taking values in®’ C P, which is defined
by adding the constraint, say,

>

a,be{u,v,w}

e(a,b) =2 .

It is now enough to prove that' < 0 for 7* being a
vertex of of P’. This finite set of cases can be easily
checked to be:
(e(u,v), e(v, u), e(u, w),
e(w,u), e(w,v), e(v,w)) € AUB

where

A={(0,0,1,0,0,1),(1,0,1,0,0,0)}

B ={(.5,.5,.5,.5,0,0),(.5,.5,0,0,.5,.5),

(0,0,.5,.5,.5,.5)} .

The points inB were already checked in case (i), which

is, geometrically, a boundary of case (ii). It remains to
check the two points inat.

e case(0,0,1,0,0,1): plugging in the definitions,
one checks that:

Bleluns = 5 (b, 0)h(v, ) + h(w, w)h(us, v))
Ylalh, e]luww =
%((h(u, )h(v, ) + h(w, v)h(v, w))h(w, u)
+ (h(v, w)h(u, w) + h(w, w)h(u,v))h(w,v))
vlalh, e]luww =0 .

Clearly F' could be positive only of3,,., = 1,
which happensifand only if eithér(w, v)h(v, u) =



1 or h(w,u)h(u,v) = 1. In the former case, we  Proof: Let T'(n) be the maximum expected running time of
obtain that QuickSort on a possibly cyclic tournament arvertices in
. terms of number of comparisons. L@&t= (V, A) denote a
either h(w,v)h(v, u)h(w, u) (30) tournament. The main observation is that each vertex
or h(v,u)h(u, w)h(w,v) = (31) V is assigned to the left recursion with probability exactly
outdeg(v)/n and to the right with probabilitindeg(v)/n,
FO;[L' |r|nr;1y|ng thaty[afh, e]Juvw 2 1, thusF < 0. over the choice of the pivot. Therefore, the expected size
n the latter case, of both the left and right recursions is exactly — 1)/2.
either h(w, u)h(u,v)h(w,v) =1 (32) The se_par]:';\tion ilt;e(lf ():osts— 1 comp;(ri(sons. )'I;h§ rlesuliting
_ recursion formuldl’(n) < n — 1+ 2T((n — 1)/2) clearly
or h(u, v)h(v,w)h(w,u) =1, (33) solves tdI'(n) = O(nlogn).

both implying again thaty[«[h, €]]uvw > 1 and Assume now that only theé first elements of the output
thusF < 0. are sought, that is, we are interested in outputting only ele
e case(1,0,1,0,0,0): plugging in the definitons, ~ Ments in positions, ..., k. The algorithm which we denote
one checks that: by k-QuickSortis clear: recurse within { £, nr, }-QuickSort
on the left side andnax {0, k — n, — 1}-QuickSort on the
Blelusw = l(h(w, v)h(v,u) + h(v, w)h(w,u)) right side, wheren;, nr are the sizes of the left and right
3 recursions respectively aitdQuickSort take$ steps by as-
ylalh, e]luvw = sumption. To make the analysis simpler, we will assume
1 that whenevek > n/8, k-QuickSort simply returns the out-
3 ((h(w, 0)h(v, w) + h(w, v)h(v, u))h(w, u) put of the standard QuickSort, which runs in expected time

O(nlogn) = O(n + klog k), within the sought bound. Fix

Jf (h(u, w)h(w, v) + kv, w)h(w, u))h(v, w) - a tournameng onn vertices, and let; (G) denote the run-

~ylalh, e]luvw =0 . ning time ofk-QuickSort onG, wherek < n/8. Denote the
(random) left and right sub-tournaments &y andGr re-

Now F” could be positive if and only if spectively, and let.;, = |G|, nr = |G| denote their sizes

either h(w,v)h(v,u) =1 (34) in terms of number of vertices. Then, clearly,
or I’L(U, ’LU)h(U), U) =1. (35) i (G) =n-—1 +tmin{k,nL}(GL) +tmax{0,kfnL—l} (GR) (40)
In the former case, we obtain that Assume by structural induction that for gk’,n': k' <

. " < n} and for all tournament§” onn’ vertices,
either h(w, v)h(o, Wh(w,u) =1 @6) L =M "

or h(v,u)h(u,w)h(w,v) =1, (37) E[te (G')] < en’ + 'k log k!
both implying thaty[alh, e]luew > 1, and thus for some globat, ¢ > 0. Then, by conditioning o6/, G g,
F< 6 |Fr)1 i/rgeglatterv(:[gs[e’ l - ! taking expectations on both sides of (40) and by induction,
either h(v, w)h(w,u)h(v,u) =1 (38) E[tr(G) | GL,Gr] <n—14cnp+
or h(u,v)h(v,w)h(w,u) =1, (39) ¢ min{k,nr}logmin{k,np} + cnrly, <r_1+
both implying again thaty[a[h, €]]uww > 1 and ¢’ max{k —nz — 1,0} logmax{k — ny — 1,0}.
thusF < 0.

By convexity of the function: — x log z,

This concludes the proof of the second part of Theorel 2. min{k, n1} log min{k, ns }+
3.6 Time Complexity max{k —nr, — 1,0} logmax{k — ny — 1,0}
Running QuickSort does not ent&l(|V|?) accesses th,, ,. < klogk. (41)
The following bound on the running time is proven in Sec-

tion 3.6. Thus,

Theorem 6 The expected number of times QuickSort accesses E[ty(G) | Gr,Grl <n—1+cnp+

to the preference functioh is at mostO(nlogn). More- engly, <k—1+cklogk. (42)
over, if only the topk elements are sought then the bound is . )

reduced taD(k log k + n) by pruning the recursion. By conditional expectation,

/
It is well known that QuickSort on cycle-free tournaments Elte(@)] < n=le(n=1)/2+cklog k+cElnpln, <x-1]-
runs in timeO(nlogn), wheren is the size of the set we  To complete the inductive hypothesis, we need to bound the
wish to sort. That this holds for QuickSorton general tourna quantityE[ng1,,, <x—1], which is bounded by: Pr[n; <
ments is a simple extension (communicated by Heikki Man- k—1]. The even{n; < k—1}, equivalenttanrg > n—k},
nila) which we present it here to keep this presentation self occurs when a vertex of out-degree at least k > 7n/8 is
contained. The second part of the theorem requires somechosen as pivot. For a random pivwoE V, whereV is the
more work. vertex set ofG, Eloutdeg(v)?] < n?/3 + n/2 < n?/2.9.



Indeed, each pair of edgés, u1) € A and(v,us) € A for

uy # ug gives rise to a triangle which is counted exactly
twice in the cross-terms, heneé /3 which upper-bounds
2(3)/n; n/2 bounds the diagonal. ThuBr[outdeg(v) >
7n/8] = Prloutdeg(v)? > 49n2/64] < 0.46 (by Markov).
Plugging in this value into our last estimate yields

Eltx(G)] <n—1+c(n—1)/2+ 'klogk + 0.46 x cn,
which is at mostn + ¢’k log k for ¢ > 30, as required. Wl

4 Lower Bounds

Let r denote the classification regret. Balcan et al. (2007)
proved a lower bound dfr for the regret of the algorithm
MFAT defined as the solution to the minimum feedback arc-
set problem on the tournamevitwith an edge(u, v) when
h(u,v) = 1. More precisely, they showed an example of
fixed V, h, and bipartite generalized ranking on V, such
that the classification regret éftends tol /2 of the ranking
regret of MFAT on V, h. Note that in this case, sine€ is
a fixed function ofl/, the regret and loss coincide both for
classification and for ranking.

Here we give a simple proof of a more general theorem
stating that same bound holds fany deterministic algo-
rithm, including of cours@IFAT.

Theorem 7 For anydeterministic algorithn taking as in-
putV C U and a preference functiolmon V' and outputting
arankingo € S(V), there exists a bipartite distributiof
on (V, 7*) such that

Rrank (A7 D) Z 2Rclass (ha D) (43)

Note that the theorem implies that, in the bipartite case, no
deterministic algorithm converting a preference functito

a linear ranking can do better than a randomized algorithm,
on expectation. Thus, randomization is essentially necgss

in this setting.

The proof is based on an adversarial argument. In our
construction, the support db is reduced to a single pair
(V,7*) (deterministic input), thus the loss and both the weak
and strong regrets coincide and a similar argument applies t
the loss function and the weak regret functions.

Proof: Fix V. = {u,v,w}, and let the support oD be
reduced to(V, 7*), where the bipartite generalized ranking
7* is one that we will select adversarially. Assume a cycle:
h(u,v) = h(v,w) = h(w,u) = 1. Up to symmetry, there
are two options for the outputof A onV, h.

1. o(u) < o(v) < o(w): in this case, the adversary can
chooser* corresponding to the partitol ™ = {w}
andV~ = {u,v}. Clearly, Reass(h, D) now equals
1/2 sinceh is penalized only for misranking the pair
(v,w), bUt Ryeni(A, D) = 1 sinceo is misordering
both (u, w) and(v, w).

o(w) < o(v) < o(u): in this case, the adversary can
chooser* corresponding to the partitio* = {u}
andV— = {v, w}. Similarly, R.jqss(h, D) now equals
1/2 sinceh is penalized only for misranking the pair
(u, w), while R,qni (A, D) = 1 sinceo is misordering
both (u, v) and(u, w).

5 Discussion

5.1 History of QuickSort

The textbook algorithm, by now standard, was originally
discovered by Hoare (1961). Montague and Aslam (Mon-
tague & Aslam, 2002) experimented with QuickSort for in-
formation retrieval (IR) by aggregating rankings from diff

ent sources of retrieval. They claimed @tn logn) time
bound on the number of comparisons, although the proof
seemed to rely on the folklore QuickSort proof without ad-
dressing the non-transitivity problem. They proved certai
combinatorial bounds on the output of QuickSort and pro-
vided an empirical justification of its IR merits. Ailon et al
(2005) also considered the rank aggregation problem and
proved theoretical cost bounds for many ranking problems
on weighted tournaments. They strengthened these bounds
by considering non-deterministic pivoting rules arising
solutions to certain ranking LP’s. This work was later ex-
tended by Ailon (2007) to deal with rankings with ties, in
particular, topk rankings. Hedge et al.(2007) and Williamson
and van Zuylen (2007) derandomized the random pivot se-
lection step in QuickSort for many of the combinatorial op-
timization problems studied by Ailon et al.

5.2 The decomposition technique

The technique developed in Lemma 3 is very general and can
be used for a wide variety of loss functions and variants of
QuickSort involving non-deterministic ordering rules @i

et al. 2005; 2007). Such results would typically amount to
bounding3[ X ..vw/7[Z]uew fOr some carefully chosen func-
tions X, Z depending on the application.

5.3 Combinatorial Optimization vs. Learning of
Ranking

QuickSort, sometimes referred to as FAS-Pivot in that con-
text, was used by Ailon et al. (2005; 2007) to approximate
certain NP-Hard weighted instances of the problem of min-
imum feedback arcset in tournaments (Alon, 2006). There
is much similarity between the techniques used in that work
and those of the analyses of this work, but there is also a
significant difference that should be noted.

In the minimum feedback arc-set problem, we are given
a tournament and wish to find an acyclic tournamefiton
the same vertex set minimizingy(G, H), whereA counts
the number of edges pointing in opposite directions between
G, H (or a weighted version thereof). However, the cost we
are considering i8\(G, H,,) for some fixed acyclic tourna-
mentH, induced by some permutatien(the ground truth).
In this work, we showed in fact that@” is obtained fronG
using QuickSort, thel[A(G, H,)] < 2A(G, H,) for any
o (Theorem 1). IfH is the optimal solution to the (weighted)
minimum feedback arc-set problem correspondingtthen
it is easy to see thak(H, H,) < A(G,H) + A(G, H,) <
2A(G, H,). However, recovering: is NP-Hard in general.
ApproximatingA(G, H) modulo a constant factdr+ e us-
ing an acyclic tournamerff’, as in the combinatorial opti-
mization world, only guarantees a constant facta? efe:

A(H'H,) < A(G,H') + A(G, H,) <
(1+)A(G, H) + A(G, H,) < (2 +e)A(G, H,) .



Thus, this work also adds a significant contribution to (Ailo it practical for large-scale information extraction andrs
etal., 2005; Ailon, 2007; Kenyon-Mathieu & Schudy, 2007). engine applications. A finer analysis of QuickSort is likely
to further improve our reduction bound by providing a con-

5.4 Weak vs. Strong Regret Functions centration inequality for the algorithm’s deviation frots i

For the proof of the regret bound of Theorem 2 we used the expected behavior using the confidence scores output by the
fact that the minimizer, in the definition (5-6) ofR.,,.. qlassifier. Our reduption leads to acompetitive rankin@glg
could be determined independently for each pair € U, rithm that can be viewed as an alternative to the algorithms

using (9). This could also be done for strong regrets if the Previously designed for the score-based setting.
distribution D on V, 7* satisfied the following pairwise [I1A
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