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A. Perceptron algorithm

In class, we saw that when the training sample S is linearly separable with a maxi-
mum margin ρ > 0, then the Perceptron algorithm run cyclically over S is guaran-
teed to converge after at most R2/ρ2 updates, where R is the radius of the sphere
containing the sample points.

This does not guarantee however that the hyperplane solution of the Perceptron
achieves a margin close to ρ. Suppose we modify the Perceptron algorithm to
ensure that the margin of the hyperplane solution is at least ρ/2 by updating the
weight vector not only when the prediction is incorrect but also when the margin
ytwt·xt

‖wt‖ on point xt is less than ρ/2. Figure 1 gives the pseudocode of the resulting
algorithm, MPerceptron.

The objective of this problem is to show that the algorithm MPerceptron con-
verges after at most 16R2/ρ2. Let I denote the set of times t ∈ [1, T ] at which the
algorithm makes an update and let M = |I| be the total number of updates made.

1. Using an analysis similar to the one given in class for the Perceptron algo-
rithm, show that Mρ ≤ ‖wT+1‖. Conclude that if ‖wT+1‖ < 4R2

ρ , then

M < 4R2/ρ2. In what follows, we will assume that ‖wT+1‖ ≥ 4R2

ρ .

Solution: By assumption, there exists v ∈ RN such that for all t ∈ [1, T ],
ρ ≤ yt(v·xt)

‖v‖ , where ρ is the maximum margin achievable on S. Summing
up these inequalities gives

Mρ ≤
v ·

∑
t∈I ytxt

‖v‖
≤

∥∥∥∑
t∈I

ytxt

∥∥∥ (Cauchy-Schwarz inequality)

=
∥∥∥∑

t∈I

(wt+1 −wt)
∥∥∥ (definition of updates)

= ‖wT+1‖ (telescoping sum, w0 = 0).

2. Show that for any t ∈ I (including t = 0), the following holds:

‖wt+1‖2 ≤ (‖wt‖+ ρ/2)2 + R2.
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Solution: For any t ∈ I , by definition of the update, wt+1 = wt +ytxt, thus

‖wt+1‖2 = ‖wt‖2 + ‖xt‖2 + 2ytwt · xt

≤ ‖wt‖2 + ‖xt‖2 + ‖wt‖ρ (def. of update condition)

≤ ‖wt‖2 + R2 + ‖wt‖ρ + ρ2/4

= (‖wt‖+ ρ/2)2 + R2.

3. Infer from that that for any t ∈ I , we have

‖wt+1‖ ≤ ‖wt‖+ ρ/2 +
R2

‖wt‖+ ‖wt+1‖+ ρ/2
.

Solution: In view of the previous result, ‖wt+1‖2 − (‖wt‖ + ρ/2)2 = R2,
that is

(‖wt+1‖ − ‖wt‖+ ρ/2)(‖wt+1‖+ ‖wt‖+ ρ/2) ≤ R2

=⇒ (‖wt+1‖ − ‖wt‖+ ρ/2) ≤ R2

‖wt+1‖+ ‖wt‖+ ρ/2

=⇒ ‖wt+1‖ ≤ ‖wt‖+ ρ/2 +
R2

‖wt+1‖+ ‖wt‖+ ρ/2
.

4. Using the previous question, show that for any t ∈ I such that either ‖wt‖ ≥
4R2

ρ or ‖wt+1‖ ≥ 4R2

ρ , we have

‖wt+1‖ ≤ ‖wt‖+
3
4
ρ.

Solution: If ‖wt‖ ≥ 4R2

ρ or ‖wt+1‖ ≥ 4R2

ρ , then ‖wt+1‖+ ‖wt‖+ ρ/2 ≥
4R2

ρ , thus
R2

‖wt+1‖+ ‖wt‖+ ρ/2
≤ R2

4R2/ρ
=

ρ

4
.

In view of this, the inequality of the previous question implies

‖wt+1‖ ≤ ‖wt‖+ ρ/2 +
R2

‖wt+1‖+ ‖wt‖+ ρ/2

=⇒ ‖wt+1‖ ≤ ‖wt‖+ ρ/2 +
ρ

4
= ‖wt‖+

3
4
ρ.
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5. Show that ‖w1‖ ≤ R ≤ 4R2/ρ. Since by assumption we have ‖wT+1‖ ≥
4R2

ρ , conclude that there must exist a largest time t0 ∈ I such that ‖wt0‖ ≤
4R2

ρ and ‖wt0+1‖ ≥ 4R2

ρ .

Solution: Since w1 = y1x1, ‖w1‖ = ‖x1‖ ≤ R. The margin ρ is at most
twice the radius R, thus, ρ ≤ 2R and 2R/ρ ≥ 1. This implies that ‖w1‖ ≤
R ≤ 2R2/ρ. Since ‖w1‖ ≤ 2R2/ρ and ‖wT+1‖ ≥ 4R2

ρ , there must exist at

least one update time t ∈ I at which ‖wt‖ ≤ 4R2

ρ and ‖wt+1‖ ≥ 4R2

ρ . The
set of such times t is non empty and thus admits a largest element t0.

6. Show that ‖wT+1‖ ≤ ‖wt0‖+ 3
4Mρ. Conclude that M ≤ 16R2/ρ2.

Solution: By definition of t0, for any t ≥ t0, ‖wt+1‖ ≥ 4R2

ρ . Thus, by the
inequality of question 4, the following holds for any t ≥ t0,

‖wt+1‖ ≤ ‖wt‖+
3
4
ρ.

This implies that

‖wT+1‖ ≤ ‖wt0‖+
∣∣∣[t0, T + 1[∩I

∣∣∣ 3
4
ρ

≤ ‖wt0‖+ M
3
4
ρ

≤ 4R2

ρ
+ M

3
4
ρ.

By the first question Mρ ≤ ‖wT+1‖, therefore

Mρ ≤ 4R2

ρ
+ M

3
4
ρ ⇐⇒ Mρ/4 ≤ 4R2/ρ ⇐⇒ M ≤ 16R2/ρ2.

B. Nearest-neighbor algorithm

Consider a learning task where the input space X is one-dimensional: X = R.
There are n > 1 classes, Y = {y1, . . . , yn}, all equally probable: Pr[yi] = 1/n for
all i ∈ [1, n]. Let r be a positive real number with r < n−1

n . Let I0 be the interval

I0 = [0, η[ ,

where η = nr
n−1 and, for any i ∈ [1, n], let Ii be the interval of length 1− η defined

by
Ii = [2i− 1− 2(i− 1)η, 2i− (2i− 1)η[ .
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MPERCEPTRON()
1 w1 ← 0
2 for t← 1 to T do
3 RECEIVE(xt)
4 RECEIVE(yt)
5 if

(
(wt = 0) or (ytwt·xt

‖wt‖ < ρ
2)

)
then

6 wt+1 ← wt + ytxt

7 else wt+1 ← wt

8 return wT+1

Figure 1: MPerceptron algorithm.

The conditional probability for each class yi, i ∈ [1, n], is defined by the following:

Pr [x ∈ I0 | yi] = η

Pr [x ∈ Ii | yi] = 1− η

Pr
[
x 6∈ (I0 ∪ Ii)

∣∣yi

]
= 0.

1. Show that the Bayes error R∗ is equal to r.

Solution: A Bayes classifier h∗ can be defined by h∗(x) = yi for x ∈ Ii,
i ≥ 1, which guarantees zero error on these intervals. For I0, since all classes
are equiprobable, we can just choose one class: h∗(x) = y1 for x ∈ I0. Its
error is then (n− 1)/n ·nr/(n− 1) = r over this interval. Thus, the overall
error of h∗ is R∗ = r.

2. Suppose we have a training sample S containing at least one point falling
in each of the intervals Ii, i ∈ [1, n]. What is the error rate of the nearest-
neighbor algorithm trained on S? Justify your answer.

Solution: First observe that for x ∈ Ii, i ∈ [0, n], no point x′ ∈ Ij , j 6= i
is closer to x than a point x′′ in Ii. Thus, the nearest neighbor rule labels
Ii with the label of the points falling in Ii for i > 0. Since at least one
point falls in each of these intervals, the nearest neighbor algorithm labels
them all correctly. For i = 0, regardless of the labeling, since all classes are
equiprobable, its error is r. Thus, the nearest-neighbor algorithm’s overall
error rate is R∗ = r, which is optimal.
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