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Motivation

Non-linear decision boundary.

Efficient computation of inner products in high 
dimension.

Flexible selection of more complex features.
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This Lecture

Definitions

SVMs with kernels

Closure properties

Sequence Kernels
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Non-Linear Separation

Linear separation impossible in most problems.

Non-linear mapping from input space to high-
dimensional feature space:                .

Generalization ability: independent of           , 
depends only on    and    .
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Φ: X → F

dim(F )
ρ m
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Kernel Methods

Idea:

• Define                    , called kernel, such that:

•    often interpreted as a similarity measure.

Benefits:

• Efficiency:     is often more efficient to compute 
than    and the dot product.

• Flexibility:    can be chosen arbitrarily so long as 
the existence of    is guaranteed (symmetry and 
positive definiteness condition).
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Φ(x) · Φ(y) = K(x, y).

K : X×X→R

K

K

Φ
K

Φ
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PDS Condition

Definition: a kernel                    is positive definite 
symmetric (PDS) if for any                        , the 
matrix                                      is symmetric 
positive semi-definite (SPSD).

    SPSD if symmetric and one of the 2 equiv. cond.’s:

• its eigenvalues are non-negative.

• for any             ,

Terminology: PDS for kernels, SPSD for kernel 
matrices (see (Berg et al., 1984)).
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{x1, . . . , xm}⊆X
K = [K(xi, xj)]ij ∈ Rm×m

c∈Rm×1 c�Kc =
n�

i,j=1

cicjK(xi, xj) ≥ 0.

K

K: X×X→R
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Example - Polynomial Kernels

Definition:

Example: for         and        ,
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N =2 d=2

∀x, y ∈ RN , K(x, y) = (x · y + c)d, c > 0.

K(x, y) = (x1y1 + x2y2 + c)2

=




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Use second-degree polynomial kernel with        :
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c = 1

x1x2 = 0.
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Other Standard PDS Kernels

Gaussian kernels:

Sigmoid Kernels:
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K(x, y) = tanh(a(x · y) + b), a, b ≥ 0.

K(x, y) = exp
�
−||x− y||2

2σ2

�
, σ �= 0.
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This Lecture

Definitions

SVMs with kernels

Closure properties

Sequence Kernels
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Reproducing Kernel Hilbert Space

Theorem: Let                    be a PDS kernel. Then, 
there exists a Hilbert space    and a mapping      
from    to    such that

12

K: X×X→R
H Φ

X H

∀x, y ∈ X, K(x, y) = Φ(x) · Φ(y).

(Aronszajn, 1950)

Furthermore, the following reproducing property 
holds:

∀f ∈ H0, ∀x ∈ X, f(x) = �f, Φ(x)� = �f, K(x, ·)�.
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Notes:

•   is called the reproducing kernel Hilbert space 
(RKHS) associated to   .

• A Hilbert space such that there exists               
with                             for all            is also 
called a feature space associated to   .    is called 
a feature mapping.

• Feature spaces associated to    are in general not 
unique.

13

H

K

Φ: X→H

K(x, y)=Φ(x)·Φ(y) x, y∈X
ΦK

K
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Consequence: SVMs with PDS Kernels

Constrained optimization:

Solution:

14

with for any    with
0<αi <C.

(Boser, Guyon, and Vapnik, 1992)

max
α

m�

i=1

αi −
1
2

m�

i,j=1

αiαjyiyjK(xi, xj)

subject to: 0 ≤ αi ≤ C ∧
m�

i=1

αiyi = 0, i ∈ [1, m].

h(x) = sgn
� m�

i=1

αiyiK(xi, x) + b
�
,

b = yi −
m�

j=1

αjyjK(xj , xi) xi

Φ(xi)·Φ(xj)

Φ(xi)·Φ(x)

Φ(xj)·Φ(xi)
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SVMs with PDS Kernels

Constrained optimization:

Solution:

15

with for any    with
0<αi <C.

xi

max
α

2 1�α− (α ◦ y)�K(α ◦ y)

subject to: 0 ≤ α ≤ C ∧α�y = 0.

b = yi − (α ◦ y)�Kei

h = sgn
� m�

i=1

αiyiK(xi, ·) + b
�
,

Hadamard product
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Generalization: Representer Theorem

Theorem: Let                    be a PDS kernel and    
its corresponding RKHS. Then, for any non-
decreasing function             and any                     
the optimization problem

16

(Kimeldorf and Wahba, 1971)

K: X×X→R H

G: R→R L: Rm→R∪{+∞}

admits a solution of the formh∗ =
m�

i=1

αiK(xi, ·).

If    is further assumed to be increasing, 
then any solution has this form.

G

argmin
h∈H

F (h) = argmin
h∈H

G(�h�2
H

) + L
�
h(x1), . . . , h(xm)

�
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• Proof: let                                          . Any        
admits the decomposition                 according   
to                   .

• Since    is non-decreasing,

• By the reproducing property, for all            ,

• Thus,                                                               
and 

• If    is increasing, then                   and any 
solution of the optimization problem must be  
in    .
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H1 =span({K(xi, ·): i∈ [1, m]}) h∈H

h=h1 + h⊥

H =H1 ⊕H
⊥
1

G

G(�h1�2) ≤ G(�h1�2 + �h⊥�2) = G(�h�2).
i∈ [1, m]

h(xi) = �h, K(xi, ·)� = �h1, K(xi, ·)� = h1(xi).

L
�
h(x1), . . . , h(xm)

�
=L

�
h1(x1), . . . , h1(xm)

�

F (h1) ≤ F (h).

G F (h1)<F (h)

H1
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Kernel-Based Algorithms

PDS kernels used to extend a variety of algorithms 
in classification and other areas:

• regression.

• ranking.

• dimensionality reduction.

• clustering.

But, how do we define PDS kernels?

18
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This Lecture
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SVMs with kernels

Closure properties

Sequence Kernels
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Closure Properties of PDS Kernels

Theorem: Positive definite symmetric (PDS) 
kernels are closed under:

• sum,

• product,

• tensor product,

• pointwise limit,

• composition with a power series.

20
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Closure Properties - Proof

Proof: closure under sum:

• closure under product:                 ,

21

K = MM�

with zk =




c1M1k

· · ·
cmMmk



 .

c�Kc ≥ 0 ∧ c�K�c ≥ 0⇒ c�(K + K�)c ≥ 0.

m�

i,j=1

cicj(KijK�
ij) =

m�

i,j=1

cicj

�� m�

k=1

MikMjk

�
K�

ij

�

=
m�

k=1

� m�

i,j=1

cicjMikMjkK�
ij

�
=

m�

k=1

z�k K�zk ≥ 0,
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• Closure under tensor product:

• definition: for all                       ,

• thus, PDS kernel as product of the kernels

• Closure under pointwise limit: if for all           ,

22

(x1, y1, x2, y2)→ K1(x1, x2) (x1, y1, x2, y2)→ K2(y1, y2).

(K1 ⊗K2)(x1, y1, x2, y2) = K1(x1, x2)K2(y1, y2).

x1, x2, y1, y2∈X

Then,

x, y∈X

lim
n→∞

Kn(x, y) = K(x, y),

(∀n, c�Knc≥0)⇒ lim
n→∞

c�Knc = c�Kc≥0.
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• Closure under composition with power series:

• assumptions:    PDS kernel with                  for 
all           and                                   power 
series with radius of convergence  .

•        is a PDS kernel since      is PDS by closure 
under product,                  is PDS by closure 
under sum, and closure under pointwise limit.

Example: for any PDS kernel   ,           is PDS.

23

K |K(x, y)|<ρ
f(x)=

�∞
n=0 anxn, an≥0

ρ

Knf ◦K

x, y∈X

�N
n=0 anKn

K exp(K)
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Definitions

SVMs with kernels

Closure properties

Sequence Kernels
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Sequence Kernels

Definition: Kernels defined over pairs of strings.

• Motivation: computational biology, text and 
speech classification.

• Idea: two sequences are related when they share 
some common substrings or subsequences.

• Example: sum of the product of the counts of 
common substrings.

25
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Weighted Transducers

Sum of the weights of all accepting 
paths with input    and output   .

0

1a:b/0.1
2

a:b/0.5

b:a/0.2

a:a/0.4
3/0.1

b:a/0.3

b:a/0.6

26

T (x, y) =
x y

T (abb, baa) = .1× .2× .3× .1 + .5× .3× .6× .1
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Rational Kernels over Strings

Definition: a kernel                      is rational if    
for some weighted transducer   .

Definition: let                       and                       be 
two weighted transducers. Then, the composition 
of    and    is defined for all                   by

Definition: the inverse of a transducer                        
is the transducer                          obtained from    
by swapping input and output labels. 

(Cortes et al., 2004)
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K : Σ∗×Σ∗→R
T

K =T

T1 : Σ∗×∆∗→R T2 : ∆∗×Ω∗→R

T1 T2 x∈Σ∗, y∈Ω∗

(T1 ◦ T2)(x, y) =
�

z∈∆∗

T1(x, z) T2(z, y).

T : Σ∗×∆∗→R
T−1 : ∆∗×Σ∗→R T
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Composition

Theorem: the composition of two weighted 
transducer is also a weighted transducer.

Proof: constructive proof based on composition 
algorithm.

• states identified with pairs.

•  -free case: transitions defined by

• general case: use of intermediate  -filter.

28

�

�

E =
�

(q1,a,b,w1,q2)∈E1
(q�

1,b,c,w2,q�
2)∈E2

��
(q1, q

�
1), a, c, w1 × w2, (q2, q

�
2)

��
.
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Composition Algorithm
ε-Free Case

29

0 1a:b/0.1
a:b/0.2

2b:b/0.3

3/0.7b:b/0.4

a:b/0.5

a:a/0.6

0 1b:b/0.1

b:a/0.2
2a:b/0.3

3/0.6a:b/0.4

b:a/0.5

(0, 0) (1, 1)a:b/.01

(0, 1)a:a/.04

(2, 1)b:a/.06 (3, 1)

b:a/.08

a:a/.02

a:a/0.1

(3, 2)
a:b/.18

(3, 3)/.42

a:b/.24

Complexity:                 in general, linear in some cases.O(|T1| |T2|)
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Redundant ε-Paths Problem

30
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3
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4
d:d

!:!1!:!1

0

!2:!

1
a:d

!2:!

2
!1:       e

!2:!

3
d:a

!2:!

T̃1 T̃2

0 1a:a 2b:! 3c:! 4d:d
0 1

a:d
2

!:e
3

d:aT1 T2

0

x:x

!2:!1
1

!1:!1

2

!2:!2

x:x

!1:!1

x:x

!2:!2
F

T = T̃1 ◦ F ◦ T̃2.

(MM et al. 1996)
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PDS Rational Kernels
General Construction

Theorem: for any weighted transducer                     ,                                 
the function                 is a PDS rational kernel.

Proof: by definition, for all             ,

•    is pointwise limit of             defined by 

•     is PDS since for any sample                 ,

31

K =T ◦T−1

x, y ∈ Σ∗

T : Σ∗×Σ∗→R

K(x, y) =
�

z∈∆∗

T (x, z)T (y, z).

K (Kn)n≥0

∀x, y ∈ Σ∗, Kn(x, y) =
�

|z|≤n

T (x, z)T (y, z).

Kn (x1, . . . , xm)
Kn = AA� with A = (Kn(xi, zj))i∈[1,m]

j∈[1,N ]

.
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Counting Transducers

X may be a string or an automaton 
representing a regular expression.

Counts of   in   : sum of the weights of 
accepting paths of          .

0

a:ε/1
b:ε/1

1/1X:X/1

a:ε/1
b:ε/1

bbabaabba

εεabεεεεε εεεεεabεε

32

X = ab

TX

Z =

Z X
Z ◦ TX
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Transducer Counting Bigrams

0

a:ε/1
b:ε/1

1a:a/1
b:b/1

2/1a:a/1
b:b/1

a:ε/1
b:ε/1

33

Tbigram

Counts of   given by                    .Z Z ◦ Tbigram ◦ ab
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Transducer Counting Gappy Bigrams

0

a:ε/1
b:ε/1

1a:a/1
b:b/1

a:ε/λ
b:ε/λ

2/1a:a/1
b:b/1

a:ε/1
b:ε/1

34

Tgappy bigram

Counts of   given by                          ,
gap penalty            .

Z Z ◦ Tgappy bigram ◦ ab
λ∈(0, 1)



pageMehryar Mohri - Introduction to Machine Learning

Kernels for Other Discrete Structures

Similarly, PDS kernels can be defined on other 
discrete structures:

• Images,

• graphs,

• parse trees,

• automata,

• weighted automata.

35
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Shortest-Distance Problem

Definition: for any regulated weighted transducer   , 
define the shortest distance from state   to    as

Problem: compute            for all states          .

Algorithms:

• Generalization of Floyd-Warshall.

• Single-source shortest-distance algorithm.

39

T

d(q, F ) =
⊕

π∈P (q,F )

w[π].

q F

d(q, F ) q ∈ Q



pageMehryar Mohri - Introduction to Machine Learning

All-Pairs Shortest-Distance Algorithm

Assumption: closed semiring (not necessarily 
idempotent).

Idea: generalization of Floyd-Warshall algorithm.

Properties:

• Time complexity:                                     .

• Space complexity:             with an in-place 
implementation.

40

Ω(|Q|3(T⊕ + T⊗ + T!))

Ω(|Q|2)

(MM, 2002)
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Closed Semirings

Definition: a semiring is closed if the closure is well 
defined for all elements and if associativity, 
commutativity, and distributivity apply to countable 
sums.

Examples:

• Tropical semiring.

• Probability semiring when including infinity or 
when restricted to well-defined closures.

41

(Lehmann, 1977)
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Pseudocode

42
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Single-Source Shortest-Distance Algorithm

Assumption:   -closed semiring. 

Idea: generalization of relaxation, but must keep 
track of weight added to       since the last time    
was enqueued.

Properties: 

• works with any queue discipline and any  -closed 
semiring.

• Classical algorithms are special instances.
43

d[q] q

k

k

(MM, 2002)

∀x ∈ K,

k+1⊕

i=0

x
i
=

k⊕

i=0

x
i
.
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Pseudocode

44

Semiring Frameworks and Algorithms for Shortest-Distance Problems 9

0 1
a

b

Figure 1 Single-source shortest distances for non-idempotent semirings.

The successive values of a tentative shortest distance from the source 0 to the
vertex 1 will be: a, then a⊕ (a⊗ b) = a⊗ (1⊕ b), then a⊗ (1⊕ b)⊕ a⊗ (1⊕ b)⊗ b =
a⊗ (1⊕ b)2, . . . , a⊗ (1⊕ b)n, . . . Thus, assuming that the algorithm converges within
a finite number of iterations N , then the result will be: a⊗ (1⊕ b)N which in general
could be different from the expected and correct result a⊗ b∗, even if bN = b∗ for the
semiring considered.

3.1. Proofs and algorithm

We present a generic algorithm for solving single-source shortest-distance problems.
Our algorithm is based on a generalization of the classical relaxation technique. As
seen earlier, a straightforward extension of the relaxation technique would lead to
an algorithm that would not work with non-idempotent semirings. To deal properly
with multiplicities in the case of non-idempotent semirings, we keep track of the
changes to the tentative shortest distance from s to q after the last extraction of q
from the queue. The following is the pseudocode of the algorithm.

Generic-Single-Source-Shortest-Distance (G, s)
1 for i ← 1 to |Q|
2 do d[i] ← r[i] ← 0
3 d[s] ← r[s] ← 1
4 S ← {s}
5 while S $= ∅
6 do q ← head(S)
7 Dequeue(S)
8 r′ ← r[q]
9 r[q] ← 0
10 for each e ∈ E[q]
11 do if d[n[e]] $= d[n[e]] ⊕ (r′ ⊗ w[e])
12 then d[n[e]] ← d[n[e]] ⊕ (r′ ⊗ w[e])
13 r[n[e]] ← r[n[e]] ⊕ (r′ ⊗ w[e])
14 if n[e] $∈ S

15 then Enqueue(S, n[e])
16 d[s] ← 1
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Notes

Complexity: 

• depends on queue discipline used.

• coincides with that of Dijkstra and Bellman-Ford 
for shortest-first and FIFO orders.

• linear for acyclic graphs using topological order.

Approximation:   -  -closed semiring, e.g., for graphs 
in probability semiring.

45

Semiring Frameworks and Algorithms for Shortest-Distance Problems 15

O(|Q| + (T⊕ + T⊗ + C(A))|E|max
q∈Q

N(q) + (C(I) + C(E))
∑

q∈Q

N(q))

As mentioned before, the Generic-Single-Source-Shortest-Distance algo-
rithm works with any queue discipline. Some queue disciplines are better than oth-
ers. The appropriate choice depends on the semiring K and the specific restrictions
imposed on G. With a good choice, the maximum number of times a vertex is in-
serted in S (maxq∈Q N(q)) can be limited.9 The algorithm is then very efficient. In
the next sections, we will present some classical algorithms using the following queue
disciplines: topological order, shortest-first order, first-in first-out order. In the worst
case, since the number of simple paths from s to q may be exponential in the size of
the graph (|Q| + |E|), the complexity of the algorithm is exponential.

The results presented in this section can be extended to cover the case of non-
commutative semirings [28]. Our framework can also be generalized by introducing
right and left semirings [28].10 A right semiring is an algebraic structure similar to
a semiring except that it may lack left distributivity. A left semiring is defined in a
similar way. An example of left semiring is the string semiring (Σ∗ ∪ {∞} ,∧, ·,∞, ε)
defined on the set of strings over an alphabet Σ [29]. Our generic shortest-distance
algorithm can be used with the left semiring in the first step of the minimization of
subsequential transducers [29]. Apart from generalizations of this type, it seems that
our general framework covers essentially all semirings for which the algorithm works.
Indeed, the condition in the definition of k-closed semirings on the convergence after
k iterations is necessary for the computation of the weight of the shortest distance in
presence of a loop.

Some semirings such as R = (R, +, ·, 0, 1) do not verify the conditions of the frame-
work for our general single-source shortest-distance algorithm, but are covered by the
general framework of the all-pairs shortest-distance algorithm we described in a pre-
vious section. The generalized algorithms of Floyd-Warshall or Gauss-Jordan can be
used to solve the single-source shortest problem with such semirings but their cubic
time complexity makes them impractical for many large graphs of several hundred
million edges encountered in many applications. One can decompose the graph into its
strongly connected components, use Floyd-Warshall or Gauss-Jordan’s algorithms for
computing the all-pairs shortest-distances within each strongly connected component
and then find all-pairs shortest-distances by considering the acyclic component graph
[30]. But the solution remains impractical in presence of large strongly connected
components.

One can then have recourse to various approximations of Floyd-Warshall and
Gauss-Jordan algorithms, but such algorithms do not fully exploit the sparsity of
the graphs. We have devised an approximate single-source shortest-distance algo-
rithm that can be viewed as an alternative and that is orders of magnitude faster in
practice to compute single-source shortest distances in such cases. The algorithm is

9This number is a constant or is linear in |Q| in many classical algorithms.
10These generalizations tend to lengthen the proofs and the overall presentation, thus we chose

not to present them here. The same generic algorithm can be used in those generalized cases.
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rithm is:
O(|Q| + (T⊕ + T⊗)|E|)

In next sections, we will examine the use of the generic algorithms just presented with
various semirings. This will show how the same algorithm can be used in different
contexts by just modifying the underlying algebra.

5. Classical shortest-distance algorithms

Classical shortest-distance algorithms such as Dijkstra’s algorithm and the Bellman-
Ford algorithm are special cases of the generic single-source shortest-distance algo-
rithm. They correspond to the case where (K,⊕,⊗, 0, 1) is the tropical semiring.

5.1. Tropical semirings

The operations used in many optimization problems are min and +. Traditional
shortest-paths problems used in various applications are specific instances of such
general optimization problems. The semirings associated to these operations are
called tropical semirings due to the extensive work of Imre Simon in Brazil relating to
these semirings [38]. See [1] and [32] for more specific presentations and discussions
of tropical semirings.

It is not hard to verify that the system T = (R+ ∪ {∞}, min, +,∞, 0) defines a
semiring over the set of non-negative numbers R+ completed with the infinity element
∞, when the min and + operations are extended in the following way:

∀a ∈ R+ ∪ {∞}, min{∞, a} = min{a,∞} = a

and:
∀a ∈ R+ ∪ {∞},∞+ a = a + ∞ = ∞

We will use the term tropical semiring to refer to the semiring T . Note that the
natural order over T is just the usual order of real numbers (see lemma 1):

∀a, b ∈ R+ ∪ {∞}, (min{a, b} = a) ⇔ (a ≤ b)

In the same way, we can define other tropical semirings such as:

1. (N ∪ {∞}, min, +,∞, 0): non-negative natural tropical semiring,

2. (Z ∪ {∞}, min, +,∞, 0): natural tropical semiring,

3. (Q ∪ {∞}, min, +,∞, 0): rational tropical semiring,

4. (R ∪ {∞}, min, +,∞, 0): real tropical semiring,

5. (N ∪ {ω,∞}, min, +,∞, 0): ordinal tropical semiring, with the following order
[26]:

0 ≤ 1 ≤ 2 ≤ · · · ≤ ω ≤ ∞,

and the following extension of addition:

∀a ∈ N ∪ {ω,∞}, a + ω = ω + a = max{a, ω}

ε k


