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Kernel Methods



Motivation

® Non-linear decision boundary.

| Efficient computation of inner products in high
dimension.

| Flexible selection of more complex features.
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This Lecture

B Definitions
m SVMs with kernels
® Closure properties

®m Sequence Kernels
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Non-Linear Separation

B Linear separation impossible in most problems.

® Non-linear mapping from input space to high-
dimensional feature space: ®: X — F.

® Generalization ability: independent of dim(F'),
depends only on p and m.
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Kernel Methods

A |dea:
® DefineK: X x X —R, called kernel, such that:
D(x) - B(y) = K(2,y).
® K often interpreted as a similarity measure.

B Benefits:

e Efficiency: K is often more efficient to compute
than & and the dot product.

® Flexibility: K can be chosen arbitrarily so long as
the existence of ® is guaranteed (symmetry and
positive definiteness condition).
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PDS Condition

®m Definition:a kernel K: X x X —R is positive definite
symmetric (PDS) if for any{z1,...,z,} CX, the
matrix K = K (z;,x;)];; € R™*™ is symmetric
positive semi-definite (SPSD).

m K SPSD if symmetric and one of the 2 equiv. cond’s:
® its eigenvalues are non-negative.
n

e for any ce R™*1 ¢ Kc = Z cich(a:i,a:j) > 0.
i,j=1
® Terminology: PDS for kernels, SPSD for kernel

matrices (see (Berg et al., 1984)).
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Example - Polynomial Kernels

B Definition:
Ve, y € RY, K(x,y) = (x-y+c)% ¢>0.
® Example:for N=2and d=2,

K(z,y) = (x1y1 + T2y2 + 0)2
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XOR Problem

B Use second-degree polynomial kernel with ¢ = 1:
\/533133‘2
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Other Standard PDS Kernels

®m Gaussian kernels:

T — 2
R

202

| Sigmoid Kernels:

K(x,y) =tanh(a(z -y) +b), a,b > 0.
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Reproducing Kernel Hilbert Space
(Aronszajn, 1950)

B Theorem:LetK: X xX —R be a PDS kernel.Then,

there exists a Hilbert space H and a mapping
from X to H such that

Ve,y e X, K(z,y) = ®(x) - P(y).

Furthermore, the following reproducing property
holds:

vf e Ho,Vz € X, f(x) = (f, () = {f, K(z,")).
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A Notes:

® His called the reproducing kernel Hilbert space
(RKHS) associated to K.

® A Hilbert space such that there exists ®: X — H
with K (z,y)=®(z) - ®(y) for allz,y€ X is also

called a feature space associated toK. ® is called
a feature mapping.

® Feature spaces associated to K are in general not
unique.
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Consequence: SYMs with PDS Kernels

(Boser, Guyon, and Vapnik, 1992)

B Constrained optimization:
O(zi) O(z;)

max Zaz — — Z aza]yzy]

1,7=1

subject to: 0 < a; < C'A Zoziyi = 0,7 € [1,m)].
i=1
m Solution: ®(x;) P(x)

= sgn( Z O"t% +b), O(x)) ()
withb =y, — Z oy yjor any x; with

j=1 O<a;<C.
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SVMs with PDS Kernels

B Constrained optimization: Hadamard product

max 21 'a— (aoy) K(ady)

subject to: 0 < a < CAa'y = 0.

m Solution:
h = sgn chzyZ (i, - —I—b)

with b = y; — (a oy)'Ke; for any z;with
O<a; <Ol
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Generalization: Representer Theorem

(Kimeldorf and Wahba, 1971)
B Theorem:LetK: X x X —R be a PDS kernel andH
its corresponding RKHS. Then, for any non-
decreasing functionG: R—Rand any L: R™ - RU{+o00}
the optimization problem

argmin F'(h) = argmin G(||h||%;) + L(h( 1),y h(@m))
heH heH

admits a solution of the formh* = Z i K ()

If G is further assumed to be increasmg,
then any solution has this form.
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® Proof:let H; =span({K(x;,-):i€[1,m]}).Anyhe H
admits the decompositionh=h; + h™ according
toH=H, ® Hi.

® Since G is non-decreasing,
G([[Pa]*) < G([Iha]” + |2 1%) = G([|R]]*)-
® By the reproducing property, for all i c[1, m|,
h(zi) = (h, K(x4,-)) = (h1, K(zi,-)) = ha(:).
O Thus,L(h(xl), o h(:cm)) :L(hl(:cl), o hl(azm))
andF'(hy) < F(h).

® [fG is increasing, thenF'(hy) < F(h) and any
solution of the optimization problem must be
inHl.
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Kernel-Based Algorithms

® PDS kernels used to extend a variety of algorithms
in classification and other areas:

® regression.

® ranking.

® dimensionality reduction.
o

clustering.

®m But, how do we define PDS kernels!?
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Closure Properties of PDS Kernels

B Theorem: Positive definite symmetric (PDS)
kernels are closed under:

® sum,

® product,

® tensor product,
® pointwise limit,
®

composition with a power series.
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Closure Properties - Proof

B Proof: closure under sum:
c' Kc>0Ac'Ke>0=c'(K+K')c>0.

® closure under product:K = MM ',

Z (K K’ Z cicj<[ZMiijk}K;j>
) i,j=1 k=1
=> [ > CiCjMiijkK;j] B ZZ’IK/Z’“ =0,
k=1 “1i,j=1 o=

ClMlk
with z;. = .

_Cm Mmk_
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® Closure under tensor product:

® definition: for all z1, 22, vy1,y2€ X,
(K1 @ K2)(z1,y1, 22, y2) = Ki(21, 22) Ka(y1, y2).
® thus, PDS kernel as product of the kernels
(1,91, 2, ¥2) = Ki(z1,22) (21,91, 22, y2) — Ka(y1,92).
® Closure under pointwise limit:if for allz, y € X,
lim Ky (z,y) = K(z,9),

Then, (vn,c'K,,c>0) = lim ¢'K,c=c'Kc>0.

n—oo
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® Closure under composition with power series:

® assumptions: K PDS kernel with| K (x,y)|<p for
allz,ye Xand f(z)=>_"", anx™, a, >0 power
series with radius of convergencep.

® foKisaPDS kernel since K™ is PDS by closure
under product,>,_ a, K" is PDS by closure
under sum, and closure under pointwise limit.

® Example: for any PDS kernel K,exp(K')is PDS.
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Sequence Kernels

B Definition: Kernels defined over pairs of strings.

® Motivation: computational biology, text and
speech classification.

® |dea: two sequences are related when they share
some common substrings or subsequences.

® Example: sum of the product of the counts of
common substrings.
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Weighted Transducers

b:a/0.6

b:a/0.2 A

a:b/0.1 ‘ ) b:a/0.3
° a:b/0.5

T(x,y) = Sum of the weights of all accepting
paths with input x and output .

T(abb,baa) =.1x .2x.3x.14+.5x.3x.6x.1
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Rational Kernels over Strings
(Cortes et al., 2004)

B Definition:a kernel K : Y* xX* —Ris rational if K =T
for some weighted transducer 7.

B Definition:letT;: X*x A* =R andT,: A* xQ*—R be
two weighted transducers. Then, the composition
of T1and T;is defined for all xt € X%, y € QO by

(Ty o To)(z,y) = »  Ti(x,z) Ta(z,y).
ZEA*

B Definition: the inverse of a transducer7:Y* x A* —R
is the transducer 7 ': A* xY* — R obtained fromT
by swapping input and output labels.
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Composition

B Theorem:the composition of two weighted
transducer is also a weighted transducer.

® Proof: constructive proof based on composition
algorithm.
® states identified with pairs.
® c-free case: transitions defined by

b= L"j {((Q17Q1)7a707 w1 X wa, (%»%)) }

(ql ,a,b,UJ1 7q2)€E1
/
(CI1 7b7caw27qé)EE2

® general case: use of intermediate e-filter.
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Composition Algorithm
€-Free Case

a:a/0.6

‘

a:a/.02
@ a:b/.0 Q b:a/.Og a:a/0 !l Q o
a
b:a/.08

Complexity: O(|T1| |T»|) in general, linear in some cases.
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Redundant €-Paths Problem

(MM et al. 1996)

Tz
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PDS Rational Kernels
General Construction

B Theorem:for any weighted transducer7: X" x¥* —R,
the function K =ToT ' is a PDS rational kernel.

B Proof: by definition, for allz,y € ¥*,
T,1y) = Z T(x,2)T(y,z).

® Kis pointwise limit of( n)n>0 defined by

Yo,y € 0¥, Z T(xz,2)T(y, 2).
|z| <n
e K, is PDS since for any sample(z1, ..., xy),

K, =AA" with A = (K, (2:,%}))icq.m]-
jel1,N]
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Counting Transducers

blﬁ/l bIS/l X _ CLb
a.e/l
% Z = bbabaabba
0 X:X/l» / \
ccabeeeee  egeegeabes

® X may be a string or an automaton
representing a regular expression.

T'x

B Counts of Zin X: sum of the weights of
accepting paths of Z o T'x.
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Transducer Counting Bigrams

b:g/l b:S/l

Tbigram

Counts of Zgiven by Z o Tiigram © ab.
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Transducer Counting Gappy Bigrams

b:e/l b:e/A b:e/1

Tgappy bigram

Counts of Zgiven by Z o Tyuppy bigram © ab,
gap penaltyA<(0,1).
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Kernels for Other Discrete Structures

| Similarly, PDS kernels can be defined on other
discrete structures:

® [mages,

® graphs,

® parse trees,
® automata,

® weighted automata.
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Appendix



Shortest-Distance Problem

m Definition: for any regulated weighted transducer 7,
define the shortest distance from stateq to ' as

di¢. F)= & wnl.
meP(q,F)
® Problem: compute d(q, F')for all states ¢ € Q.

B Algorithms:
® Generalization of Floyd-Warshall.

® Single-source shortest-distance algorithm.
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All-Pairs Shortest-Distance Algorithm

(MM, 2002)
B Assumption: closed semiring (not necessarily

idempotent).
B |dea: generalization of Floyd-VVarshall algorithm.

B Properties:
® Time complexity: QQP(Tg +Te +To)).

e Space complexity: 2(|@Q|?)with an in-place
implementation.
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Closed Semirings
(Lehmann, 1977)

®m Definition: a semiring is closed if the closure is well

define

d for all elements and if associativity,

commutativity, and distributivity apply to countable

SUms.

B Examples:

® TJro

vical semiring.

® Pro

bability semiring when including infinity or

when restricted to well-defined closures.
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Pseudocode

GEN-ALL-PAIRS(G)

1 for i+ 1to |Q|do
2 for j — 1 to |Q| do
3 dli, j] — @ wle]
ecENP(i,7)
for k — 1 to |Q| do
for i — 1 to |Q|,7 # k do
for j — 1 to |Q|,j # k do
dli, j] « d[i, j] ® (d[i, k] @ d[k, k]" @ d[k, j])
for i — 1 to |Q|,7 # k do
dlk, ] < d[k, k]" @ d[k, i]
dli, k] < d[i, k] @ d[k, k]”
dlk, k] — dlk, k]

_ O © 00 ~J O Ot =

—_ =

Mehryar Mohri - Introduction to Machine Learning page 42



Single-Source Shortest-Distance Algorithm

(MM, 2002)
® Assumption: k-closed semiring.
k41 k
Ve € K, E}:cz = E Tt
i=0 i=0

B |[dea: generalization of relaxation, but must keep
track of weight added to d|q|since the last time ¢
was enqueued.

B Properties:
® works with any queue discipline and any k-closed
semiring.

® Classical algorithms are special instances.
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Pseudocode

GENERIC-SINGLE-SOURCE-SHORTEST-DISTANCE (G, s)

1 for i+ 1to |Q]

2 do d[i] < r[i] <0

3 dls] —r[s]—1

4 S «—{s}

5 while S # ()

6 do q « head(S)

7 DEQUEUE(S)

8 r — fr[g]

9 rlq] < O

10 for each e € Flq]

11 do if d[nle]] # d[nle]] ® (' ® wle])

12 then d[nle]] < dlnle]] @ (' @ wle])
13 rinle]] < rinle]] @ (r' ® wle])
14 if nle] ¢ S

15 then ENQUEUE(S,nle])
16 d[s] «— 1
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Notes

B Complexity:
® depends on queue discipline used.

O(1Q| + (T + T + C(A)| Bl max N(@) + (C(1) + C(E)) Y N(a)

® coincides with that of Dijkstra and Bellman-Ford
for shortest-first and FIFO orders.

® |inear for acyclic graphs using topological order.

O(|Q + (Te + Te)|E])
B Approximation: e-k-closed semiring, e.g., for graphs
in probability semiring.

Mehryar Mohri - Introduction to Machine Learning page 45



