

Introduction to Machine Learning

Lecture 9

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu

Kernel Methods

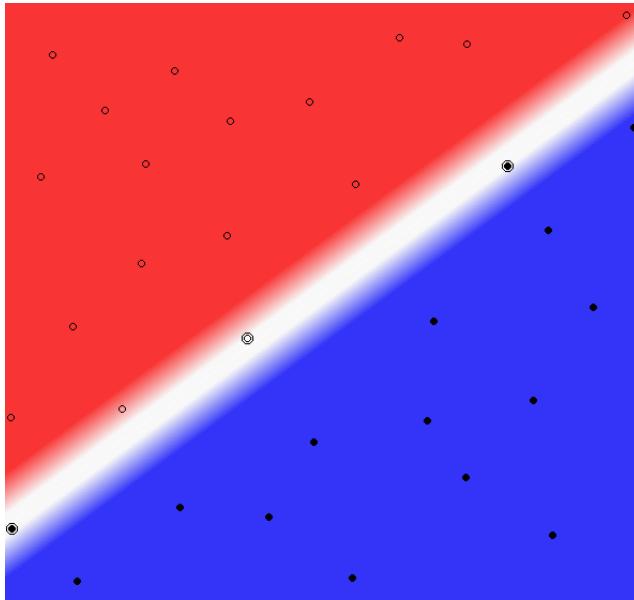
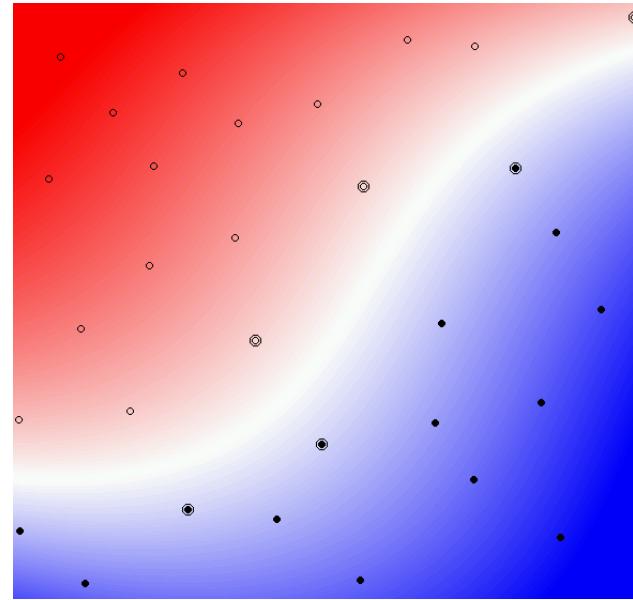
Motivation

- Non-linear decision boundary.
- Efficient computation of inner products in high dimension.
- Flexible selection of more complex features.

This Lecture

- Definitions
- SVMs with kernels
- Closure properties
- Sequence Kernels

Non-Linear Separation



- Linear separation impossible in most problems.
- Non-linear mapping from input space to high-dimensional feature space: $\Phi: X \rightarrow F$.
- Generalization ability: independent of $\dim(F)$, depends only on ρ and m .

Kernel Methods

■ Idea:

- Define $K : X \times X \rightarrow \mathbb{R}$, called **kernel**, such that:

$$\Phi(x) \cdot \Phi(y) = K(x, y).$$

- K often interpreted as a similarity measure.

■ Benefits:

- **Efficiency:** K is often more efficient to compute than Φ and the dot product.
- **Flexibility:** K can be chosen arbitrarily so long as the existence of Φ is guaranteed (symmetry and positive definiteness condition).

PDS Condition

- **Definition:** a kernel $K: X \times X \rightarrow \mathbb{R}$ is **positive definite symmetric** (PDS) if for any $\{x_1, \dots, x_m\} \subseteq X$, the matrix $\mathbf{K} = [K(x_i, x_j)]_{ij} \in \mathbb{R}^{m \times m}$ is **symmetric positive semi-definite** (SPSD).
- \mathbf{K} SPSD if symmetric and one of the 2 equiv. cond.'s:
 - its eigenvalues are non-negative.
 - for any $\mathbf{c} \in \mathbb{R}^{m \times 1}$, $\mathbf{c}^\top \mathbf{K} \mathbf{c} = \sum_{i,j=1}^n c_i c_j K(x_i, x_j) \geq 0$.
- **Terminology:** PDS for kernels, SPSD for kernel matrices (see (Berg et al., 1984)).

Example - Polynomial Kernels

■ Definition:

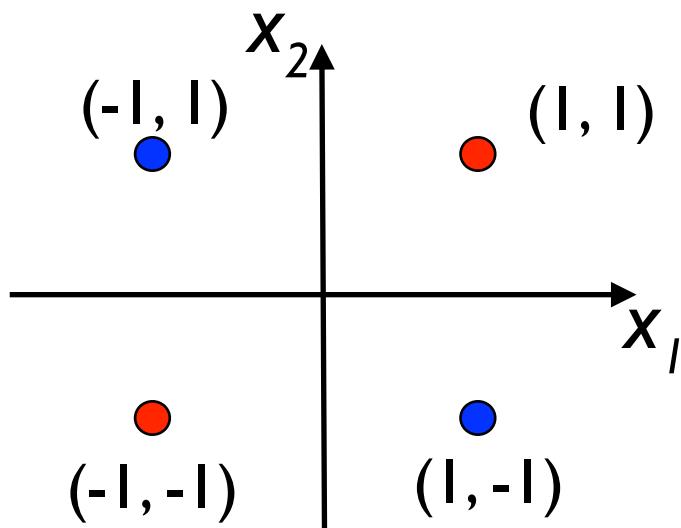
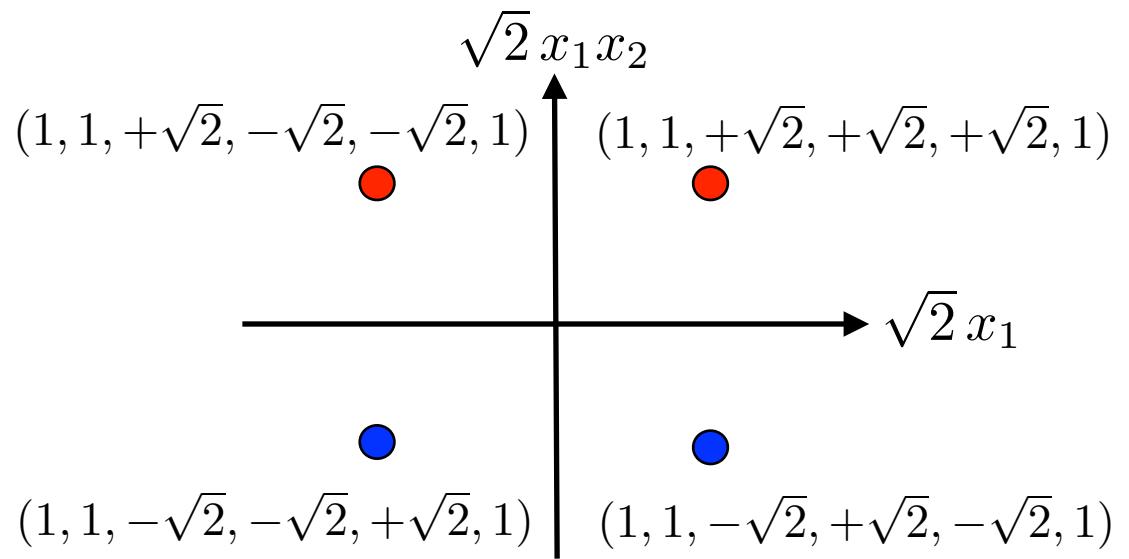
$$\forall x, y \in \mathbb{R}^N, K(x, y) = (x \cdot y + c)^d, \quad c > 0.$$

■ Example: for $N=2$ and $d=2$,

$$K(x, y) = (x_1 y_1 + x_2 y_2 + c)^2$$
$$= \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2} x_1 x_2 \\ \sqrt{2c} x_1 \\ \sqrt{2c} x_2 \\ c \end{bmatrix} \cdot \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2} y_1 y_2 \\ \sqrt{2c} y_1 \\ \sqrt{2c} y_2 \\ c \end{bmatrix}.$$

XOR Problem

- Use second-degree polynomial kernel with $c = 1$:



Linearly non-separable

Linearly separable by
 $x_1x_2 = 0$.

Other Standard PDS Kernels

- Gaussian kernels:

$$K(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right), \sigma \neq 0.$$

- Sigmoid Kernels:

$$K(x, y) = \tanh(a(x \cdot y) + b), a, b \geq 0.$$

This Lecture

- Definitions
- SVMs with kernels
- Closure properties
- Sequence Kernels

Reproducing Kernel Hilbert Space

(Aronszajn, 1950)

- **Theorem:** Let $K: X \times X \rightarrow \mathbb{R}$ be a PDS kernel. Then, there exists a Hilbert space H and a mapping Φ from X to H such that

$$\forall x, y \in X, \quad K(x, y) = \Phi(x) \cdot \Phi(y).$$

Furthermore, the following **reproducing property** holds:

$$\forall f \in H_0, \forall x \in X, \quad f(x) = \langle f, \Phi(x) \rangle = \langle f, K(x, \cdot) \rangle.$$

■ Notes:

- H is called the reproducing kernel Hilbert space (RKHS) associated to K .
- A Hilbert space such that there exists $\Phi: X \rightarrow H$ with $K(x, y) = \Phi(x) \cdot \Phi(y)$ for all $x, y \in X$ is also called a feature space associated to K . Φ is called a feature mapping.
- Feature spaces associated to K are in general not unique.

Consequence: SVMs with PDS Kernels

(Boser, Guyon, and Vapnik, 1992)

■ Constrained optimization:

$$\max_{\alpha} \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

subject to: $0 \leq \alpha_i \leq C \wedge \sum_{i=1}^m \alpha_i y_i = 0, i \in [1, m]$.

■ Solution:

$$h(x) = \text{sgn}\left(\sum_{i=1}^m \alpha_i y_i K(x_i, x) + b\right), \quad \Phi(x_i) \cdot \Phi(x)$$

with $b = y_i - \sum_{j=1}^m \alpha_j y_j K(x_j, x_i)$ for any x_i with $0 < \alpha_i < C$.

SVMs with PDS Kernels

■ Constrained optimization:

Hadamard product

$$\max_{\alpha} 2 \mathbf{1}^\top \alpha - (\alpha \circ \mathbf{y})^\top \mathbf{K} (\alpha \circ \mathbf{y})$$

subject to: $\mathbf{0} \leq \alpha \leq \mathbf{C} \wedge \alpha^\top \mathbf{y} = 0$.

■ Solution:

$$h = \text{sgn}\left(\sum_{i=1}^m \alpha_i y_i K(x_i, \cdot) + b\right),$$

with $b = y_i - (\alpha \circ \mathbf{y})^\top \mathbf{K} \mathbf{e}_i$ for any x_i with $0 < \alpha_i < C$.

Generalization: Representer Theorem

(Kimeldorf and Wahba, 1971)

- **Theorem:** Let $K: X \times X \rightarrow \mathbb{R}$ be a PDS kernel and H its corresponding RKHS. Then, for any non-decreasing function $G: \mathbb{R} \rightarrow \mathbb{R}$ and any $L: \mathbb{R}^m \rightarrow \mathbb{R} \cup \{+\infty\}$ the optimization problem

$$\operatorname{argmin}_{h \in H} F(h) = \operatorname{argmin}_{h \in H} G(\|h\|_H^2) + \sum_m L(h(x_1), \dots, h(x_m))$$

admits a solution of the form $h^* = \sum_{i=1}^m \alpha_i K(x_i, \cdot)$.

If G is further assumed to be increasing, then any solution has this form.

- **Proof:** let $H_1 = \text{span}(\{K(x_i, \cdot) : i \in [1, m]\})$. Any $h \in H$ admits the decomposition $h = h_1 + h^\perp$ according to $H = H_1 \oplus H_1^\perp$.
 - Since G is non-decreasing,
$$G(\|h_1\|^2) \leq G(\|h_1\|^2 + \|h^\perp\|^2) = G(\|h\|^2).$$
 - By the reproducing property, for all $i \in [1, m]$,
$$h(x_i) = \langle h, K(x_i, \cdot) \rangle = \langle h_1, K(x_i, \cdot) \rangle = h_1(x_i).$$
 - Thus, $L(h(x_1), \dots, h(x_m)) = L(h_1(x_1), \dots, h_1(x_m))$ and $F(h_1) \leq F(h)$.
 - If G is increasing, then $F(h_1) < F(h)$ and any solution of the optimization problem must be in H_1 .

Kernel-Based Algorithms

- PDS kernels used to extend a variety of algorithms in classification and other areas:
 - regression.
 - ranking.
 - dimensionality reduction.
 - clustering.
- But, how do we define PDS kernels?

This Lecture

- Definitions
- SVMs with kernels
- Closure properties
- Sequence Kernels

Closure Properties of PDS Kernels

- **Theorem:** Positive definite symmetric (PDS) kernels are closed under:
 - sum,
 - product,
 - tensor product,
 - pointwise limit,
 - composition with a power series.

Closure Properties - Proof

■ Proof: closure under sum:

$$\mathbf{c}^\top \mathbf{K} \mathbf{c} \geq 0 \wedge \mathbf{c}^\top \mathbf{K}' \mathbf{c} \geq 0 \Rightarrow \mathbf{c}^\top (\mathbf{K} + \mathbf{K}') \mathbf{c} \geq 0.$$

● closure under product: $\mathbf{K} = \mathbf{M}\mathbf{M}^\top$,

$$\begin{aligned} \sum_{i,j=1}^m c_i c_j (\mathbf{K}_{ij} \mathbf{K}'_{ij}) &= \sum_{i,j=1}^m c_i c_j \left(\left[\sum_{k=1}^m \mathbf{M}_{ik} \mathbf{M}_{jk} \right] \mathbf{K}'_{ij} \right) \\ &= \sum_{k=1}^m \left[\sum_{i,j=1}^m c_i c_j \mathbf{M}_{ik} \mathbf{M}_{jk} \mathbf{K}'_{ij} \right] = \sum_{k=1}^m \mathbf{z}_k^\top \mathbf{K}' \mathbf{z}_k \geq 0, \end{aligned}$$

$$\text{with } \mathbf{z}_k = \begin{bmatrix} c_1 \mathbf{M}_{1k} \\ \dots \\ c_m \mathbf{M}_{mk} \end{bmatrix}.$$

- **Closure under tensor product:**
 - **definition:** for all $x_1, x_2, y_1, y_2 \in X$,
$$(K_1 \otimes K_2)(x_1, y_1, x_2, y_2) = K_1(x_1, x_2)K_2(y_1, y_2).$$
 - thus, PDS kernel as product of the kernels
$$(x_1, y_1, x_2, y_2) \rightarrow K_1(x_1, x_2) \quad (x_1, y_1, x_2, y_2) \rightarrow K_2(y_1, y_2).$$
- **Closure under pointwise limit:** if for all $x, y \in X$,

$$\lim_{n \rightarrow \infty} K_n(x, y) = K(x, y),$$

Then, $(\forall n, \mathbf{c}^\top \mathbf{K}_n \mathbf{c} \geq 0) \Rightarrow \lim_{n \rightarrow \infty} \mathbf{c}^\top \mathbf{K}_n \mathbf{c} = \mathbf{c}^\top \mathbf{K} \mathbf{c} \geq 0$.

- Closure under composition with power series:
 - assumptions: K PDS kernel with $|K(x, y)| < \rho$ for all $x, y \in X$ and $f(x) = \sum_{n=0}^{\infty} a_n x^n, a_n \geq 0$ power series with radius of convergence ρ .
 - $f \circ K$ is a PDS kernel since K^n is PDS by closure under product, $\sum_{n=0}^N a_n K^n$ is PDS by closure under sum, and closure under pointwise limit.
- Example: for any PDS kernel K , $\exp(K)$ is PDS.

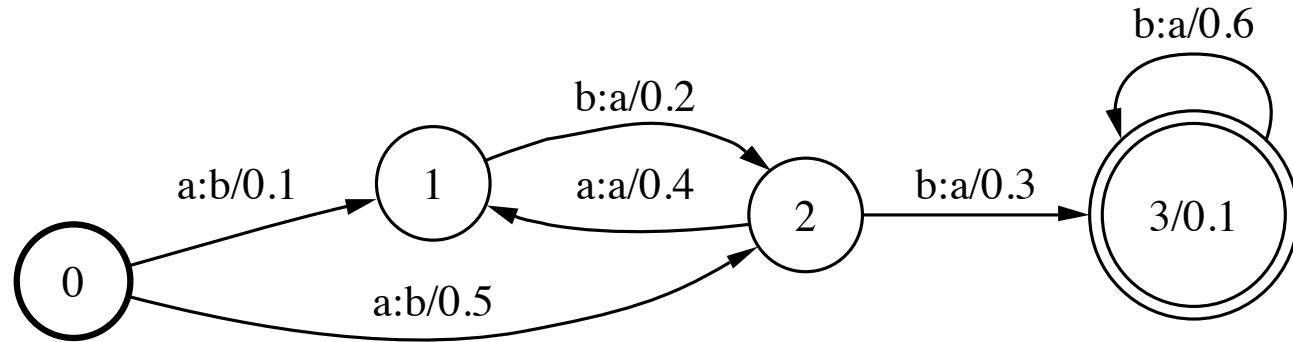
This Lecture

- Definitions
- SVMs with kernels
- Closure properties
- Sequence Kernels

Sequence Kernels

- **Definition:** Kernels defined over pairs of strings.
 - Motivation: computational biology, text and speech classification.
 - Idea: two sequences are related when they share some common substrings or subsequences.
 - Example: sum of the product of the counts of common substrings.

Weighted Transducers



$T(x, y) = \text{Sum of the weights of all accepting paths with input } x \text{ and output } y.$

$$T(abb, baa) = .1 \times .2 \times .3 \times .1 + .5 \times .3 \times .6 \times .1$$

Rational Kernels over Strings

(Cortes et al., 2004)

- **Definition:** a kernel $K: \Sigma^* \times \Sigma^* \rightarrow \mathbb{R}$ is **rational** if $K = T$ for some **weighted transducer** T .
- **Definition:** let $T_1: \Sigma^* \times \Delta^* \rightarrow \mathbb{R}$ and $T_2: \Delta^* \times \Omega^* \rightarrow \mathbb{R}$ be two **weighted transducers**. Then, the **composition** of T_1 and T_2 is defined for all $x \in \Sigma^*, y \in \Omega^*$ by

$$(T_1 \circ T_2)(x, y) = \sum_{z \in \Delta^*} T_1(x, z) T_2(z, y).$$

- **Definition:** the **inverse** of a transducer $T: \Sigma^* \times \Delta^* \rightarrow \mathbb{R}$ is the transducer $T^{-1}: \Delta^* \times \Sigma^* \rightarrow \mathbb{R}$ obtained from T by swapping input and output labels.

Composition

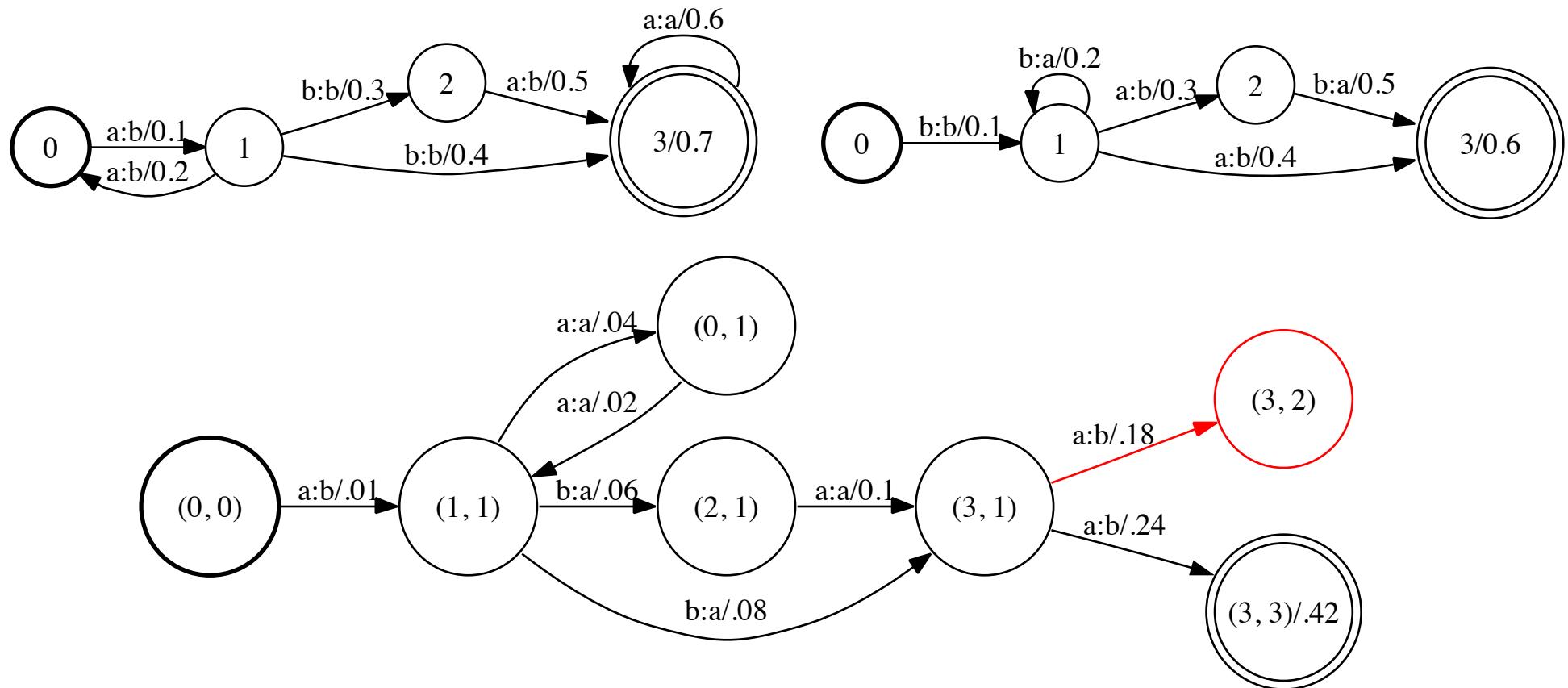
- **Theorem:** the composition of two weighted transducer is also a weighted transducer.
- **Proof:** constructive proof based on **composition algorithm**.
 - states identified with pairs.
 - ϵ -free case: transitions defined by

$$E = \biguplus_{\substack{(q_1, a, b, w_1, q_2) \in E_1 \\ (q'_1, b, c, w_2, q'_2) \in E_2}} \left\{ \left((q_1, q'_1), a, c, w_1 \times w_2, (q_2, q'_2) \right) \right\}.$$

- general case: use of intermediate ϵ -filter.

Composition Algorithm

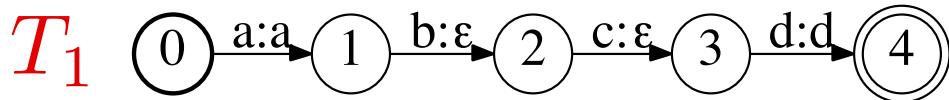
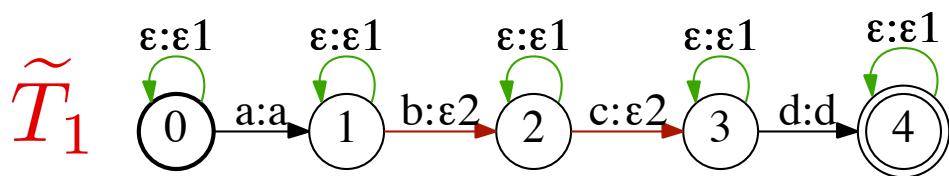
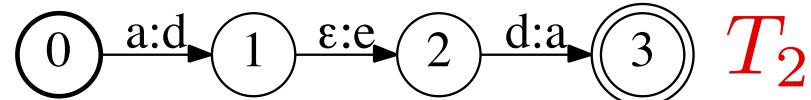
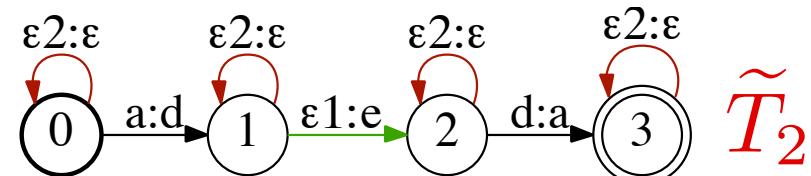
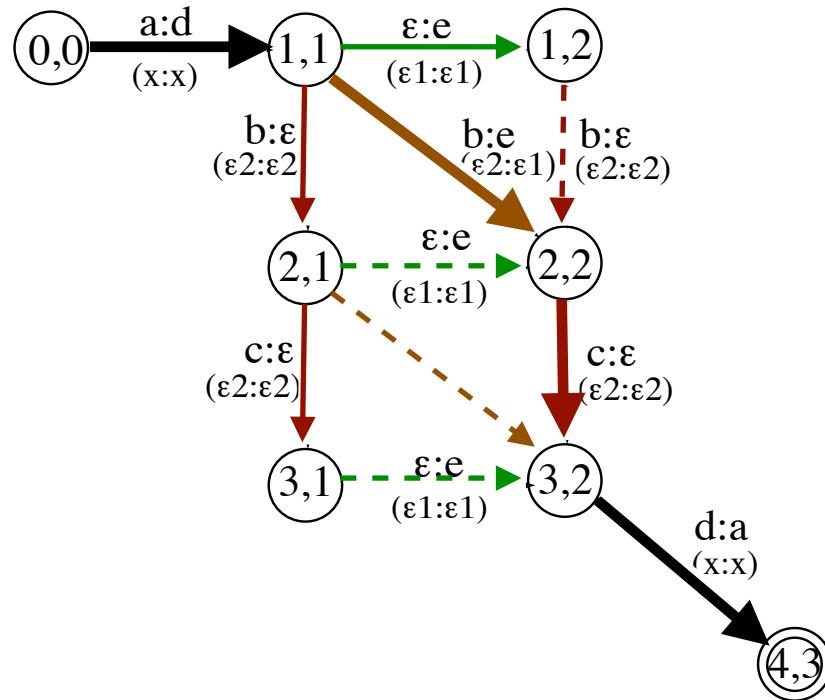
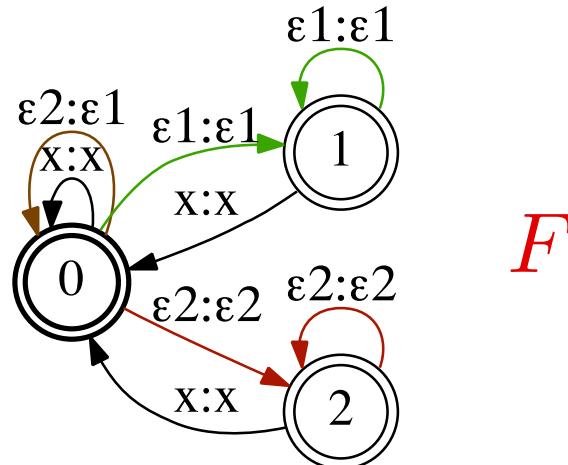
ϵ -Free Case



Complexity: $O(|T_1| |T_2|)$ in general, linear in some cases.

Redundant ε -Paths Problem

(MM et al. 1996)



$$T = \tilde{T}_1 \circ F \circ \tilde{T}_2.$$

PDS Rational Kernels

General Construction

- **Theorem:** for any weighted transducer $T: \Sigma^* \times \Sigma^* \rightarrow \mathbb{R}$, the function $K = T \circ T^{-1}$ is a PDS rational kernel.
- **Proof:** by definition, for all $x, y \in \Sigma^*$,

$$K(x, y) = \sum_{z \in \Delta^*} T(x, z) T(y, z).$$

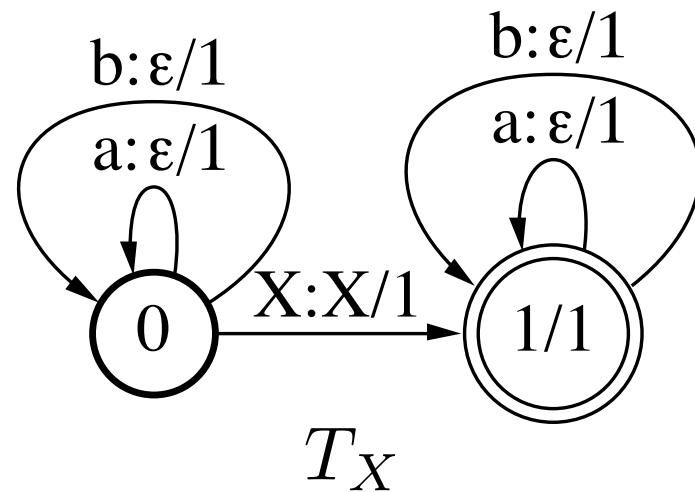
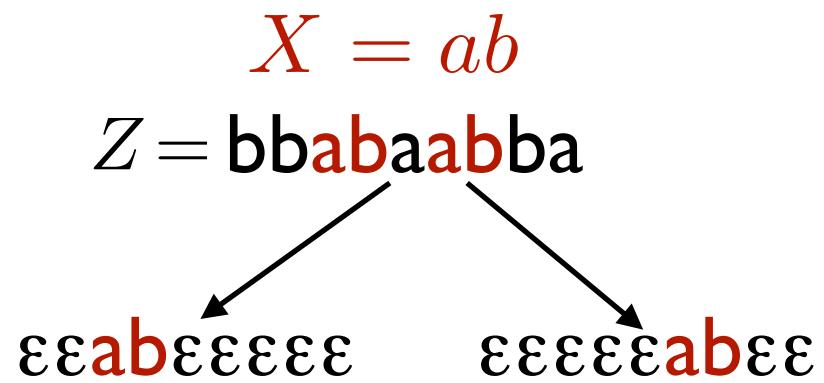
- K is pointwise limit of $(K_n)_{n \geq 0}$ defined by

$$\forall x, y \in \Sigma^*, \quad K_n(x, y) = \sum_{|z| \leq n} T(x, z) T(y, z).$$

- K_n is PDS since for any sample (x_1, \dots, x_m) ,

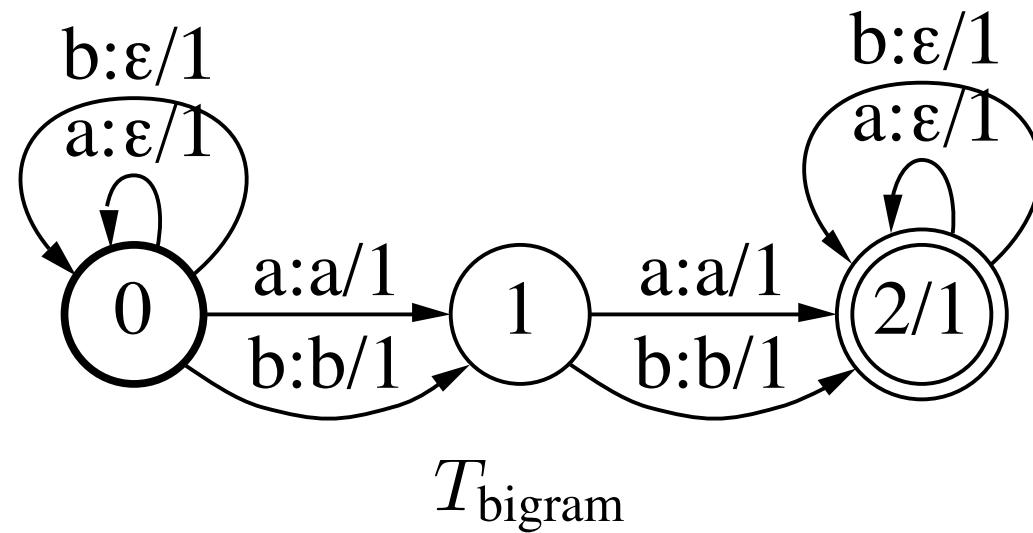
$$\mathbf{K}_n = \mathbf{A} \mathbf{A}^\top \text{ with } \mathbf{A} = (K_n(x_i, z_j))_{\substack{i \in [1, m] \\ j \in [1, N]}}.$$

Counting Transducers



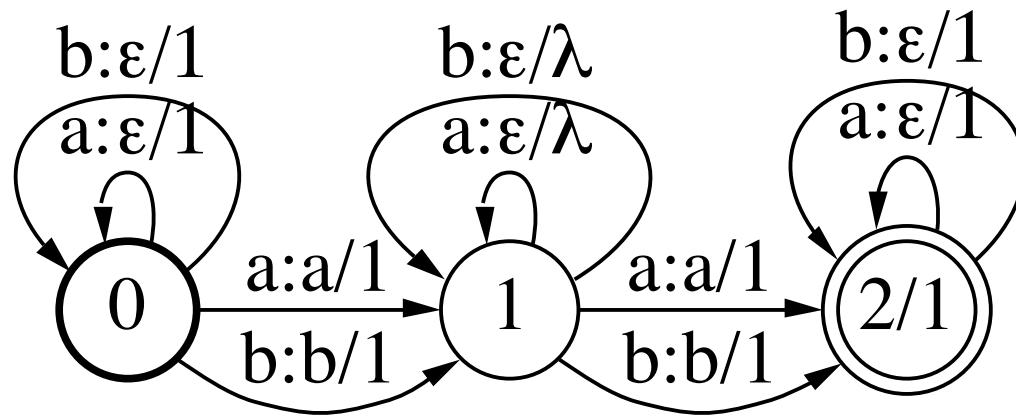
- X may be a string or an automaton representing a regular expression.
- Counts of Z in X : sum of the weights of accepting paths of $Z \circ T_X$.

Transducer Counting Bigrams



Counts of Z given by $Z \circ T_{\text{bigram}} \circ ab$.

Transducer Counting Gappy Bigrams



$T_{\text{gappy bigram}}$

Counts of Z given by $Z \circ T_{\text{gappy bigram}} \circ ab$,
gap penalty $\lambda \in (0, 1)$.

Kernels for Other Discrete Structures

- Similarly, PDS kernels can be defined on other discrete structures:
 - Images,
 - graphs,
 - parse trees,
 - automata,
 - weighted automata.

References

- N. Aronszajn, Theory of Reproducing Kernels, *Trans. Amer. Math. Soc.*, 68, 337-404, 1950.
- Peter Bartlett and John Shawe-Taylor. Generalization performance of support vector machines and other pattern classifiers. In *Advances in kernel methods: support vector learning*, pages 43–54. MIT Press, Cambridge, MA, USA, 1999.
- Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. *Harmonic Analysis on Semigroups*. Springer-Verlag: Berlin-New York, 1984.
- Bernhard Boser, Isabelle M. Guyon, and Vladimir Vapnik. A *training algorithm for optimal margin classifiers*. In *proceedings of COLT 1992*, pages 144-152, Pittsburgh, PA, 1992.
- Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational Kernels: Theory and Algorithms. *Journal of Machine Learning Research (JMLR)*, 5:1035-1062, 2004.
- Corinna Cortes and Vladimir Vapnik, Support-Vector Networks, *Machine Learning*, 20, 1995.
- Kimeldorf, G. and Wahba, G. *Some results on Tchebycheffian Spline Functions*, *J. Mathematical Analysis and Applications*, 33, 1 (1971) 82-95.

References

- James Mercer. Functions of Positive and Negative Type, and Their Connection with the Theory of Integral Equations. In *Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character*, Vol. 83, No. 559, pp. 69-70, 1909.
- Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. *Weighted Automata in Text and Speech Processing*, In *Proceedings of the 12th biennial European Conference on Artificial Intelligence (ECAI-96), Workshop on Extended finite state models of language*. Budapest, Hungary, 1996.
- Fernando C. N. Pereira and Michael D. Riley. Speech Recognition by Composition of Weighted Finite Automata. In *Finite-State Language Processing*, pages 431-453. MIT Press, 1997.
- I. J. Schoenberg, Metric Spaces and Positive Definite Functions. *Transactions of the American Mathematical Society*, Vol. 44, No. 3, pp. 522-536, 1938.
- Vladimir N. Vapnik. *Estimation of Dependences Based on Empirical Data*. Springer, Basederlin, 1982.
- Vladimir N. Vapnik. *The Nature of Statistical Learning Theory*. Springer, 1995.
- Vladimir N. Vapnik. *Statistical Learning Theory*. Wiley-Interscience, New York, 1998.

Appendix

Shortest-Distance Problem

- **Definition:** for any regulated weighted transducer T , define the **shortest distance from state q to F** as

$$d(q, F) = \bigoplus_{\pi \in P(q, F)} w[\pi].$$

- **Problem:** compute $d(q, F)$ for all states $q \in Q$.
- **Algorithms:**
 - Generalization of Floyd-Warshall.
 - Single-source shortest-distance algorithm.

All-Pairs Shortest-Distance Algorithm

(MM, 2002)

- **Assumption:** closed semiring (not necessarily idempotent).
- **Idea:** generalization of Floyd-Warshall algorithm.
- **Properties:**
 - Time complexity: $\Omega(|Q|^3(T_{\oplus} + T_{\otimes} + T_{\star}))$.
 - Space complexity: $\Omega(|Q|^2)$ with an in-place implementation.

Closed Semirings

(Lehmann, 1977)

- **Definition:** a semiring is closed if the closure is well defined for all elements and if associativity, commutativity, and distributivity apply to countable sums.
- **Examples:**
 - Tropical semiring.
 - Probability semiring when including infinity or when restricted to well-defined closures.

Pseudocode

GEN-ALL-PAIRS(G)

```
1  for  $i \leftarrow 1$  to  $|Q|$  do
2      for  $j \leftarrow 1$  to  $|Q|$  do
3           $d[i, j] \leftarrow \bigoplus_{e \in E \cap P(i, j)} w[e]$ 
4  for  $k \leftarrow 1$  to  $|Q|$  do
5      for  $i \leftarrow 1$  to  $|Q|, i \neq k$  do
6          for  $j \leftarrow 1$  to  $|Q|, j \neq k$  do
7               $d[i, j] \leftarrow d[i, j] \oplus (d[i, k] \otimes d[k, k]^* \otimes d[k, j])$ 
8      for  $i \leftarrow 1$  to  $|Q|, i \neq k$  do
9           $d[k, i] \leftarrow d[k, k]^* \otimes d[k, i]$ 
10          $d[i, k] \leftarrow d[i, k] \otimes d[k, k]^*$ 
11          $d[k, k] \leftarrow d[k, k]^*$ 
```

Single-Source Shortest-Distance Algorithm

(MM, 2002)

- **Assumption:** k -closed semiring.

$$\forall x \in \mathbb{K}, \bigoplus_{i=0}^{k+1} x^i = \bigoplus_{i=0}^k x^i.$$

- **Idea:** generalization of relaxation, but must keep track of weight added to $d[q]$ since the last time q was enqueued.

- **Properties:**
 - works with any queue discipline and any k -closed semiring.
 - Classical algorithms are special instances.

Pseudocode

GENERIC-SINGLE-SOURCE-SHORTEST-DISTANCE (G, s)

```
1  for  $i \leftarrow 1$  to  $|Q|$ 
2      do  $d[i] \leftarrow r[i] \leftarrow \bar{0}$ 
3   $d[s] \leftarrow r[s] \leftarrow \bar{1}$ 
4   $S \leftarrow \{s\}$ 
5  while  $S \neq \emptyset$ 
6      do  $q \leftarrow \text{head}(S)$ 
7          DEQUEUE( $S$ )
8           $r' \leftarrow r[q]$ 
9           $r[q] \leftarrow \bar{0}$ 
10         for each  $e \in E[q]$ 
11             do if  $d[n[e]] \neq d[n[e]] \oplus (r' \otimes w[e])$ 
12                 then  $d[n[e]] \leftarrow d[n[e]] \oplus (r' \otimes w[e])$ 
13                  $r[n[e]] \leftarrow r[n[e]] \oplus (r' \otimes w[e])$ 
14                 if  $n[e] \notin S$ 
15                     then ENQUEUE( $S, n[e]$ )
16  $d[s] \leftarrow \bar{1}$ 
```

Notes

■ Complexity:

- depends on queue discipline used.

$$O(|Q| + (T_{\oplus} + T_{\otimes} + C(A))|E| \max_{q \in Q} N(q) + (C(I) + C(E)) \sum_{q \in Q} N(q))$$

- coincides with that of Dijkstra and Bellman-Ford for shortest-first and FIFO orders.
- linear for acyclic graphs using topological order.

$$O(|Q| + (T_{\oplus} + T_{\otimes})|E|)$$

■ Approximation: ϵ - k -closed semiring, e.g., for graphs in probability semiring.