
Introduction to Machine Learning
Lecture 8

Mehryar Mohri
Courant Institute and Google Research

mohri@cims.nyu.edu

mailto:mohri@cims.nyu.edu
mailto:mohri@cims.nyu.edu


Mehryar Mohri - Introduction to Machine Learning

Support Vector Machines



pageMehryar Mohri - Introduction to Machine Learning 3

Support Vector Machines - separable case

Support Vector Machines - non-separable case

Margin guarantees

This Lecture
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Binary Classification Problem

Training data: sample drawn i.i.d. from set    
according to some distribution   ,

Problem: find hypothesis                        in 
(classifier) with small generalization error         .

Linear classification:

• Hypotheses based on hyperplanes.

• Linear separation in high-dimensional space.

4

h :X �→{−1, +1} H

S =((x1, y1), . . . , (xm, ym)) ∈ X×{−1, +1}.

RD(h)

X⊆RN

D
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Linear Separation

Classifiers:                                                       .

5

H ={x �→sgn(w · x + b) :w ∈ RN
, b ∈ R}

w·x+b=0
w·x+b=0
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Optimal Hyperplane: Max. Margin

Canonical hyperplane:     and   chosen such that for 
closest points                  .

Margin:                                  .

6

margin

(Vapnik and Chervonenkis, 1965)

w b

ρ=min
x∈S

|w·x+b|
�w� =

1
�w�

w·x+b=+1
w·x+b=−1

w·x+b=0

|w·x + b|=1
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Optimization Problem

Constrained optimization:

Properties:

• Convex optimization (strictly convex).

• Unique solution for linearly separable sample.

7

min
w,b

1
2
�w�2

subject to yi(w · xi + b) ≥ 1, i ∈ [1, m].
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Optimal Hyperplane Equations

Lagrangian: for all

KKT conditions:

8

w, b, αi≥0,

L(w, b, α) =
1
2
�w�2 −

m�

i=1

αi[yi(w · xi + b)− 1].

∀i ∈ [1, m], αi[yi(w · xi + b)− 1] = 0.

∇wL = w −
m�

i=1

αiyixi = 0 ⇐⇒ w =
m�

i=1

αiyixi.

∇bL = −
m�

i=1

αiyi = 0 ⇐⇒
m�

i=1

αiyi = 0.
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Support Vectors

Complementarity conditions:

Support vectors: vectors     such that

• Note: support vectors are not unique.

9

αi �= 0 ∧ yi(w · xi + b) = 1.

xi

αi[yi(w · xi + b)− 1] = 0 =⇒ αi = 0 ∨ yi(w · xi + b) = 1.
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Moving to The Dual

Plugging in the expression of    in    gives:

Thus,

10

L

L =
1
2
�

m�

i=1

αiyixi�2 −
m�

i,j=1

αiαjyiyj(xi · xj)

� �� �
− 1

2
Pm

i,j=1 αiαjyiyj(xi·xj)

−
m�

i=1

αiyib

� �� �
0

+
m�

i=1

αi.

w

L =
m�

i=1

αi −
1
2

m�

i,j=1

αiαjyiyj(xi · xj).
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Dual Optimization Problem

Constrained optimization:

Solution:

11

for any SV    .

h(x) = sgn
� m�

i=1

αiyi(xi · x) + b
�
,

b = yi −
m�

j=1

αjyj(xj · xi) xiwith

max
α

m�

i=1

αi −
1
2

m�

i,j=1

αiαjyiyj(xi · xj)

subject to: αi ≥ 0 ∧
m�

i=1

αiyi = 0, i ∈ [1, m].



pageMehryar Mohri - Introduction to Machine Learning

Leave-One-Out Analysis

Theorem: let     be the optimal hyperplane for a 
sample   and let            be the number of support 
vectors defining    . Then,

Proof: Let              be a sample linearly separable 
and let        . If           misclassifies   , then   must 
be a SV for    . Thus,

12

hS

S NSV(S)

hS

x x

E
S∼Dm

[R(hS)] ≤ E
S∼Dm+1

�
NSV(S)
m + 1

�
.

S∼Dm+1

x∈S
hS

hS−{x}

�Rloo(opt.-hyp.) ≤ NSV(S)
m + 1

.
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Notes

Bound on expectation of error only, not the 
probability of error.

Argument based on sparsity (number of support 
vectors). We will see later other arguments in 
support of the optimal hyperplanes based on the 
concept of margin.

13
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Support Vector Machines - separable case

Support Vector Machines - non-separable case

Margin guarantees

This Lecture
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Support Vector Machines

Problem: data often not linearly separable in 
practice. For any hyperplane, there exists    such 
that

Idea: relax constraints using slack variables   

15

(Cortes and Vapnik, 1995)

xi

yi [w · xi + b] �≥ 1.

yi [w · xi + b] ≥ 1− ξi.

ξi≥0
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Support vectors: points along the margin or outliers.
Soft margin: 

Soft-Margin Hyperplanes

16

ξi

ξj
w·x+b=+1

w·x+b=−1

w·x+b=0

ρ = 1/�w�.
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Optimization Problem

Constrained optimization:

Properties:

•         trade-off parameter.

• Convex optimization (strictly convex).

• Unique solution.

17

min
w,b,ξ

1
2
�w�2 + C

m�

i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi ∧ ξi ≥ 0, i ∈ [1, m].

C≥0

(Cortes and Vapnik, 1995)
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Notes

Parameter    : trade-off between maximizing margin 
and minimizing training error. How do we 
determine    ?

The general problem of determining a hyperplane 
minimizing the error on the training set is NP-
complete (as a function of dimension).

Other convex functions of the slack variables 
could be used: this choice and a similar one with 
squared slack variables lead to a convenient 
formulation and solution.

18

C

C
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Hinge Loss

19

0/1 loss function

Hinge loss

‘Quadratic’ hinge loss

ξ1

ξ2
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SVMs Equations

Lagrangian: for all

KKT conditions:

20

w, b, αi≥0, βi≥0,

L(w, b, ξ, α) =
1
2
�w�2 + C

m�

i=1

ξi −
m�

i=1

αi[yi(w · xi + b)− 1 + ξi]−
m�

i=1

βiξi.

∇wL = w −
m�

i=1

αiyixi = 0 ⇐⇒ w =
m�

i=1

αiyixi.

∇bL = −
m�

i=1

αiyi = 0 ⇐⇒
m�

i=1

αiyi = 0.

∇ξiL = C − αi − βi = 0 ⇐⇒ αi + βi = C.

∀i ∈ [1, m], αi[yi(w · xi + b)− 1 + ξi] = 0

βiξi = 0.
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Support Vectors

Complementarity conditions:

Support vectors: vectors     such that

• Note: support vectors are not unique.

21

xi

αi[yi(w · xi + b)− 1 + ξi] = 0 =⇒ αi = 0 ∨ yi(w · xi + b) = 1− ξi.

αi �= 0 ∧ yi(w · xi + b) = 1− ξi.
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Moving to The Dual

Plugging in the expression of    in    gives:

Thus,

The condition         is equivalent to 

22

w L

L =
1
2
�

m�

i=1

αiyixi�2 −
m�

i,j=1

αiαjyiyj(xi · xj)

� �� �
− 1

2
Pm

i,j=1 αiαjyiyj(xi·xj)

−
m�

i=1

αiyib

� �� �
0

+
m�

i=1

αi.

L =
m�

i=1

αi −
1
2

m�

i,j=1

αiαjyiyj(xi · xj).

βi≥0 αi≤C.
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Dual Optimization Problem

Constrained optimization:

Solution:

23

h(x) = sgn
� m�

i=1

αiyi(xi · x) + b
�
,

b = yi −
m�

j=1

αjyj(xj · xi)with for any    withxi

0<αi <C.

max
α

m�

i=1

αi −
1
2

m�

i,j=1

αiαjyiyj(xi · xj)

subject to: 0 ≤ αi ≤ C ∧
m�

i=1

αiyi = 0, i ∈ [1, m].
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Support Vector Machines - separable case

Support Vector Machines - non-separable case

Margin guarantees

This Lecture
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Margin Loss

Definition: for any       , the  -margin loss is the 
function                      defined by for all            by

For a sample                       and a hypothesis   , 
the empirical loss is

25

ρ>0 ρ

Lρ :R×R→R+

1

0 ρ 1

Φρ(x) =






0 if ρ ≤ x

1− x/ρ if 0 ≤ x ≤ ρ

1 if x ≤ 0.

Lρ(y, y�)=Φρ(yy�)
y, y�∈R

with

S =(x1, . . . , xm) h

�Rρ(h) =
1
m

m�

i=1

Φρ(yih(xi)) ≤
1
m

m�

i=1

1yih(xi)<ρ.
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Margin Bound - Linear Classifiers

Corollary: Let       and                                   . 
Assume that                        . Then, for any       , 
with probability at least       , for any        ,

26

H ={x �→ w·x : �w�≤Λ}ρ>0
X⊆{x : �x�≤R} δ>0

1−δ h∈H

R(h) ≤ �Rρ(h) + 2

�
R2Λ2/ρ2

m
+ 3

�
log 2

δ

2m
.
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High-Dimensional Feature Space

Observations: 

• generalization bound does not depend on the 
dimension but on the margin.

• this suggests seeking a large-margin separating 
hyperplane in a higher-dimensional feature space.

Computational problems: 

• taking dot products in a high-dimensional feature 
space can be very costly. 

• solution based on kernels (next lecture).

27
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