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This Lecture

B Support Vector Machines - separable case
B SupportVector Machines - non-separable case

® Margin guarantees
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Binary Classification Problem

® Training data: sample drawn i.i.d. from set X CR"
according to some distribution D,

S:((le’l,yl), Cee (lem,ym)) c X X {—1, —|—1}.

® Problem:find hypothesis h: X —{—1,+1} in H
(classifier) with small generalization error Rp (h).

B Linear classification:
® Hypotheses based on hyperplanes.

® linear separation in high-dimensional space.
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Linear Separation

\ V;7X—|-b:O

| Classifiers: H={xrsgn(w -x+b):w € R", b € R}.
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Optimal Hyperplane: Max. Margin

(Vapnik and Chervonenkis, 1965)
w-Xx+b=0_ ' @

® Canonical hyperplane:w and b chosen such that for
closest points|w-x + b|=1.
lw-x+b 1

® Margin: p=min =—.
xes lw|  [[w]
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Optimization Problem

B Constrained optimization:
1

min —HWH2
w,b

subject to y;(w - x; +b) > 1,7 € [1,m].

B Properties:
® Convex optimization (strictly convex).

® Unique solution for linearly separable sample.
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Optimal Hyperplane Equations
® lagrangian: for allw, b, a; >0,

1 m
L(w,b,a) = §HWHZ - ZO@[?J@(W -x; +0) —1].
i=1
@ KKT conditions:
Vwl =w — Z ;X =0 <= |w = Z oYX
i=1

va:—Zaiyi:O @Zazyz—O

1=1

Vi e [1,m], a;ly;i(w-x; +b) —1] =0.
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Support Vectors

B Complementarity conditions:
a;lys(w-x;,+b)—1]=0 = a; =0V y(w-x;+b) =1.
®m Support vectors: vectors x; such that

a; #0ANy(w-x; +b) =1.

® Note: support vectors are not unique.
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Moving to The Dual

® Plugging in the expression of win L gives:

1 m m m m™m
L = §H Z%%XHP — Z oYY (X - X5) — Z%yibJrZOéi-
—1 1=1 1=1

1,7=1

\ . >4

N

0

"V a

_% Z,ng L Qi YiY;(Xitx;)

B Thus,

L = Zaz — — Z ;oYY (X - X5).

1,7=1
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Dual Optimization Problem

B Constrained optimization:

1,7=1

subject to: a; > 0 A Zaiyi = 0,7 € [1,m)].
i=1
® Solution:

— sgn Z o, (X - X) + b)

m =1

with b= y; — Z a;yi(x; - x;) for any SV x;.
71=1
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Leave-One-Out Analysis

B Theorem:let hgbe the optimal hyperplane for a
sample Sand let Nsv(S5) be the number of support
vectors defining hs. Then,

Nsv(S)
Sw%m[R(hS)] = S~gm+1 { fniJr 1 ] |

® Proof:Let S~ D" be a sample linearly separable

and let € 5. Ifhs_g,1 misclassifies z, thenx must
be a SV forhg.Thus,

Nsv ()
m-+1

f{loo (opt.-hyp.) <
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Notes

® Bound on expectation of error only, not the
probability of error.

B Argument based on sparsity (number of support
vectors).We will see later other arguments in
support of the optimal hyperplanes based on the
concept of margin.

Mehryar Mohri - Introduction to Machine Learning page |3



This Lecture

®m SupportVector Machines - separable case
B SupportVector Machines - non-separable case

® Margin guarantees
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Support Vector Machines
(Cortes and Vapnik, 1995)
B Problem: data often not linearly separable in
practice. For any hyperplane, there exists x; such

that
Y |[W-x; +b] 2 1.

B |dea: relax constraints using slack variables & >0
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Soft- Margln Hyperplanes

w-x+b=—1°

B Support vectors: points along the margin or outliers.

®m Soft margin: p = 1/||w||.
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Optimization Problem
(Cortes and Vapnik, 1995)
B Constrained optimization:

1, —
1 C i
min o fwi* + ;5
subject to y;(w-x; +b)>1—-& A & >0,i¢€ [1,m].
& Properties:
® ('>0trade-off parameter.

® Convex optimization (strictly convex).

® Unique solution.
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Notes

B Parameter C': trade-off between maximizing margin
and minimizing training error. How do we
determine C'!?

B The general problem of determining a hyperplane
minimizing the error on the training set is NP-
complete (as a function of dimension).

® Other convex functions of the slack variables
could be used: this choice and a similar one with
squared slack variables lead to a convenient
formulation and solution.
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Hinge Loss

¢ . s L 2
Quadratic’ hinge loss &
4 -

Hinge loss gl 3 -

cost
M
1

0/l loss function 1 -
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SVMs Equations
® [agrangian: for allw, b, a; >0, 3; >0,

L(w,b,&,a) = —HWH2+CZ€@ Zazyzw Xi +b) — 1+ &] — Z%

1=1 1=1

a KKT condigons:
Vol =w — Z O YiX; = 0 <—|w= Zozzy,,,xz

1=1
VbL:—ZOéiinO < Zazyz—o
1=1
v§iL:C—()&i—ﬁi:O <:>Oéi‘|‘57;:

Vie[l,m], a;ly;(w-x; +b) —14+&] =0

Bi& = 0.
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Support Vectors

B Complementarity conditions:

ailyi(w-x;,+b) —1+&]=0 = a; =0Vy(w-x;,+b) =1-¢.

®m Support vectors: vectors X; such that
Q; 7£O/\yz(wxz—|—b) =1-¢,.

® Note: support vectors are not unique.
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Moving to The Dual

® Plugging in the expression of w in L gives:

1 m m m m
L = 5” Z i yixi||? — Z oYY (X - X5) — Zaiyib+ Z Q.
— i—1 i—1

1,9=1
N ~ J/

Zz j=1 X XjYilY; (xix;5)

~~

0

® Thus,

L = Zaz - 3 Z @z@jyzyj )

1,7=1

® The condition 3; >0 is equivalent to o;; <C.
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Dual Optimization Problem

B Constrained optimization:

1,7=1

subject to: 0 < ;| < C|A Z&iyi = 0,7 € [1,m)].

1=1

A Solution:

— Sgh Z azyz Xq - ‘|‘ b)

m =1
with b= y; — Z a;Y;(x; - x;) for any x; with
j=1 0< oyl C.
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This Lecture

®m SupportVector Machines - separable case
B SupportVector Machines - non-separable case

® Margin guarantees
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Margin Loss

B Definition: for any p>0, the p-margin loss is the
functionL,: RxR—R, defined by for all y, 3y’ €R by

Ly(y,y")=®,(yy") with

0 itp<cx 1
b(x)=q1—x/p if0<z<p
1 if:ljg(). 0 p'l
® For a sample S=(z1,...,xm»)and a hypothesis £,

the empirical loss is

~ 1 « 1 «
Rp(h) — E (I)p(yzh(a%)) S — E :1yf,;h(a3¢)<p°
m 1=1 m 1=1
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Margin Bound - Linear Classifiers

® Corollary: Letp>0and H={x — w-x: |w|| <A}.
Assume that X C {x:||x||< R}.Then, for anyd >0,
with probability at least1—4, for any h€ H,

R(h) < R,(h) + 2\/R2A2/p2 -3

m om

log %
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High-Dimensional Feature Space

A Observations:

® generalization bound does not depend on the
dimension but on the margin.

® this suggests seeking a large-margin separating
hyperplane in a higher-dimensional feature space.

B Computational problems:

® taking dot products in a high-dimensional feature
space can be very costly.

® solution based on kernels (next lecture).
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