

Introduction to Machine Learning

Lecture 7

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu

Convex Optimization

Differentiation

- **Definition:** let $f: X \subseteq \mathbb{R}^N \rightarrow \mathbb{R}$ be a differentiable function, then the **gradient** of f at $x \in X$ is defined by

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_N}(x) \end{bmatrix}.$$

- **Definition:** let $f: X \subseteq \mathbb{R}^N \rightarrow \mathbb{R}$ be a twice differentiable function, then the **Hessian** of f at $x \in X$ is defined by

$$\nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right]_{1 \leq i, j \leq N}.$$

Unconstrained Optimization

(Fermat, 1629)

- **Theorem:** let $f: X \subseteq \mathbb{R}^N \rightarrow \mathbb{R}$ be a differentiable function. If f admits a local extremum at $x^* \in X$, then

$$\nabla f(x^*) = 0.$$

- x^* is a **stationary point**.
- a local minimum is a global minimum if the function is **convex**.

Convexity

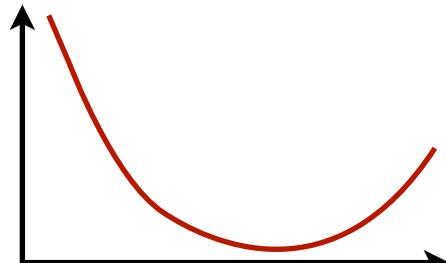
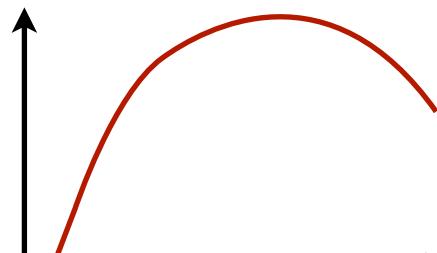
- **Definition:** $X \subseteq \mathbb{R}^N$ is said to be **convex** if for any two points $x, y \in X$ the segment $[x, y]$ lies in X :

$$\{\alpha x + (1 - \alpha)y, 0 \leq \alpha \leq 1\} \subseteq X.$$

- **Definition:** let X be a convex set. A function $f: X \rightarrow \mathbb{R}$ is said to be **convex** if for all $x, y \in X$ and $\alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y).$$

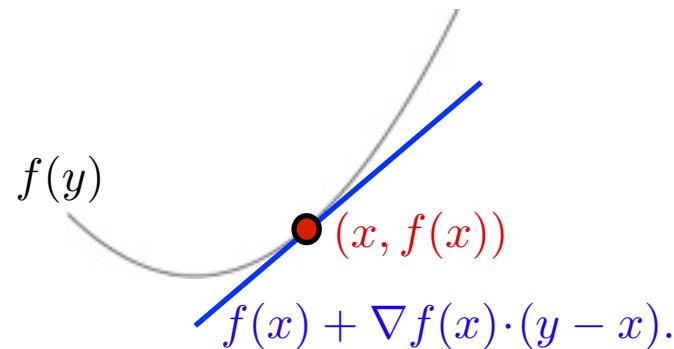
With a strict inequality, f is said to be **strictly convex**. f is said to be **concave** when $-f$ is convex.



Properties of Convex Functions

- **Theorem:** let f be a differentiable function. Then, f is convex iff $\text{dom}(f)$ is convex and

$$\forall x, y \in \text{dom}(f), f(y) - f(x) \geq \nabla f(x) \cdot (y - x).$$



- **Theorem:** let f be a twice differentiable function. Then, f is convex iff its Hessian is positive semi-definite:

$$\forall x \in \text{dom}(f), \nabla^2 f(x) \succeq 0.$$

Constrained Optimization Problem

- **Problem:** Let $X \subseteq \mathbb{R}^N$ and $f, g_i : X \rightarrow \mathbb{R}, i \in [1, m]$. A **constrained optimization problem** has the form:

$$\min_{\mathbf{x} \in X} f(\mathbf{x})$$

subject to: $g_i(\mathbf{x}) \leq 0, i \in [1, m]$.

- no convexity assumption.
- can be augmented with equality constraints.
- **primal problem**.
- **optimal value** p^* .

Lagrangian/Lagrange Function

- **Definition:** the **Lagrange function** or **Lagrangian** associated to a constraint problem is the function defined by:

$$\forall \mathbf{x} \in X, \forall \boldsymbol{\alpha} \geq 0, L(\mathbf{x}, \boldsymbol{\alpha}) = f(\mathbf{x}) + \sum_{i=1}^m \alpha_i g_i(\mathbf{x}).$$

- α_i s are called **Lagrange** or **dual variables**.

Lagrange Dual Function

- **Definition:** the (Lagrange) dual function associated to the constraint optimization problem is defined by

$$\begin{aligned}\forall \alpha \geq 0, F(\alpha) &= \inf_{\mathbf{x} \in X} L(\mathbf{x}, \alpha) \\ &= \inf_{\mathbf{x} \in X} f(\mathbf{x}) + \sum_{i=1}^m \alpha_i g_i(\mathbf{x}).\end{aligned}$$

- F is always concave: Lagrangian is linear with respect to α and \inf preserves concavity.
- $\forall \alpha \geq 0, F(\alpha) \leq p^*$: for a feasible \mathbf{x} ,

$$f(\mathbf{x}) + \sum_{i=1}^m \alpha_i g_i(\mathbf{x}) \leq f(\mathbf{x}).$$

Dual Optimization Problem

- **Definition:** the **dual (optimization) problem** associated to the constraint optimization is

$$\max_{\alpha} F(\alpha)$$

subject to: $\alpha \geq 0$.

- always a convex optimization problem.
- optimal value d^* .

Weak and Strong Duality

- **Weak duality**: $d^* \leq p^*$.
 - always holds (clear from previous observations).
- **Strong duality**: $d^* = p^*$.
 - does not hold in general.
 - holds for convex problems with **constraint qualifications**.

Constraint Qualification

- **Definition:** Assume that $\text{int}X \neq \emptyset$. Then, the following is the **strong constraint qualification** or **Slater's condition**:

$$\exists \bar{\mathbf{x}} \in \text{int}X: g(\bar{\mathbf{x}}) < 0.$$

- **Definition:** Assume that $\text{int}X \neq \emptyset$. Then, the following is the **weak constraint qualification** or **Slater's condition**:

$$\exists \bar{\mathbf{x}} \in \text{int}X: \forall i \in [1, m], (g_i(\bar{\mathbf{x}}) < 0) \vee (g_i(\bar{\mathbf{x}}) = 0 \wedge g_i \text{ affine}).$$

Saddle Point - Sufficient Condition

(Lagrange, 1797)

■ **Theorem:** Let P be a constrained optimization problem over $X = \mathbb{R}^N$. If $(\mathbf{x}^*, \boldsymbol{\alpha}^*)$ is a **saddle point**, that is $\forall \mathbf{x} \in \mathbb{R}^N, \forall \boldsymbol{\alpha} \geq 0, L(\mathbf{x}^*, \boldsymbol{\alpha}) \leq L(\mathbf{x}^*, \boldsymbol{\alpha}^*) \leq L(\mathbf{x}, \boldsymbol{\alpha}^*)$, then it is a solution of P .

■ **Proof:** By the first inequality,

$$\forall \boldsymbol{\alpha} \geq 0, L(\mathbf{x}^*, \boldsymbol{\alpha}) \leq L(\mathbf{x}^*, \boldsymbol{\alpha}^*) \Rightarrow \forall \boldsymbol{\alpha} \geq 0, \boldsymbol{\alpha} \cdot g(\mathbf{x}^*) \leq \boldsymbol{\alpha}^* \cdot g(\mathbf{x}^*)$$

$$(\text{use } \boldsymbol{\alpha} \rightarrow +\infty \text{ then } \boldsymbol{\alpha} \rightarrow 0) \Rightarrow g(\mathbf{x}^*) \leq 0 \wedge \boldsymbol{\alpha}^* \cdot g(\mathbf{x}^*) = 0.$$

• In view of that, the second inequality gives

$$\forall \mathbf{x}, L(\mathbf{x}^*, \boldsymbol{\alpha}^*) \leq L(\mathbf{x}, \boldsymbol{\alpha}^*) \Rightarrow \forall \mathbf{x}, f(\mathbf{x}^*) \leq f(\mathbf{x}) + \boldsymbol{\alpha}^* \cdot g(\mathbf{x}).$$

Thus, for all x such that $g(x) \leq 0$, $f(\mathbf{x}^*) \leq f(\mathbf{x})$.

Saddle Point - Necessary Conditions

- **Theorem:** Assume that f and $g_i, i \in [1, m]$, are **convex functions** and that Slater's condition holds. If x is a solution of the constrained optimization problem, then there exists $\alpha \geq 0$ such that (x, α) is a saddle point of the Lagrangian.
- **Theorem:** Assume that f and $g_i, i \in [1, m]$, are **convex differentiable functions** and that the weak Slater's condition holds. If x is a solution of the constrained optimization problem, then there exists $\alpha \geq 0$ such that (x, α) is a saddle point of the Lagrangian.

Kuhn-Tucker's Theorem

(Karush 1939; Kuhn-Tucker, 1951)

- **Theorem:** Assume that $f, g_i : X \rightarrow \mathbb{R}, i \in [1, m]$ are convex and differentiable and that the constraints are qualified. Then $\bar{\mathbf{x}}$ is a solution of the constrained program iff there exists $\bar{\alpha} \geq 0$ such that:

$$\nabla_{\mathbf{x}} L(\bar{\mathbf{x}}, \bar{\alpha}) = \nabla_{\mathbf{x}} f(\bar{\mathbf{x}}) + \bar{\alpha} \cdot \nabla_{\mathbf{x}} g(\bar{\mathbf{x}}) = 0$$

$$\nabla_{\alpha} L(\bar{\mathbf{x}}, \bar{\alpha}) = g(\bar{\mathbf{x}}) \leq 0$$

$$\bar{\alpha} \cdot g(\bar{\mathbf{x}}) = \sum_{i=1}^m \bar{\alpha}_i g_i(\bar{\mathbf{x}}_i) = 0.$$

KKT
conditions

- **Note:** Last two conditions equivalent to

$$(g(\bar{\mathbf{x}}) \leq 0) \wedge \underbrace{(\forall i \in [1, m], \bar{\alpha}_i g_i(\bar{\mathbf{x}}) = 0)}_{\text{complementary conditions}}.$$

- Since the constraints are qualified, if $\bar{\mathbf{x}}$ is solution, then there exists $\bar{\alpha}$ such that $(\bar{\mathbf{x}}, \bar{\alpha})$ is a saddle point. In that case, the three conditions are verified (for the 3rd condition see proof of sufficient condition slide).
- Conversely, assume that the conditions are verified. Then, for any \mathbf{x} such that $g(\mathbf{x}) < 0$,

$$\begin{aligned}
 f(\mathbf{x}) - f(\bar{\mathbf{x}}) &\geq \nabla_{\mathbf{x}} f(\bar{\mathbf{x}}) \cdot (\mathbf{x} - \bar{\mathbf{x}}) && \text{(convexity of } f\text{)} \\
 &\geq - \sum_{i=1}^m \bar{\alpha}_i \nabla_{\mathbf{x}} g_i(\bar{\mathbf{x}}) \cdot (\mathbf{x} - \bar{\mathbf{x}}) && \text{(first condition)} \\
 &\geq - \sum_{i=1}^m \bar{\alpha}_i [g_i(\mathbf{x}) - g_i(\bar{\mathbf{x}})] && \text{(convexity of } g_i\text{'s)} \\
 &\geq - \sum_{i=1}^m \bar{\alpha}_i g_i(\mathbf{x}) \geq 0. && \text{(third and second condition)}
 \end{aligned}$$

References

- Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*, Cambridge University Press, 2004.