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Convex Optimization



Differentiation

m Definition:let f: X C RY — R be a differentiable
function, then the gradient of f at x € X is defined

by 0L ()"
Vf(z) =

1 (7).

- OJx N

m Definition:let f: X C RY — Rbe a twice
differentiable function, then the Hessian of fatx € X
is defined by

Vif(z) =

0 f

@
0x;0; 1<i,j<N
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Unconstrained Optimization
(Fermat, 1629)

m Theorem:let f: X C RY — R be a differentiable
function. If f admits a local extremum at z* € X,

then
V™) =0.

® z” is a stationary point.

® a local minimum is a global minimum if the
function is convex.
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Convexity

m Definition: X CR" is said to be convex if for any
two points =,y € X the segment |z, y| lies in X:

{fax+ (1 —-—a)y,0<a <1} CX.

B Definition: let X be a convex set.A functionf: X —R
is said to be convex if for all z,y€ X anda €0, 1],

flaz + (1 —a)y) < af(z)+ (1 -a)f(y).
With a strict inequality, f is said to be strictly convex.

fis saic

N\

to be concave when —fis convex.

/R
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Properties of Convex Functions

® Theorem:let f be a differentiable function.Then, f
is convex iff dom(f) is convex and

vz,y € dom(f), f(y) — f(z) = Vf(z) (y— ).

A @)
flz) +Vi(z)(y — ).

® Theorem:let f be a twice differentiable function.
Then, f is convex iff its Hessian is positive semi-

definite:
Vz € dom(f), V2f(z) = 0.
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Constrained Optimization Problem

®m Problem:Let X CRYandf,g;: X —R,i€[1,m]. A
constrained optimization problem has the form:

min  f(x)

subject to: g;(x) < 0,7 € [1,m].
no convexity assumption.
can be augmented with equality constraints.

primal problem.

optimal value p*.
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Lagrangian/Lagrange Function

B Definition: the Lagrange function or Lagrangian

associated to a constraint problem is the function
defined by:

Vx € X,Va > 0, L(x, o) = +Zazgz

e «;s are called Lagrange or dual varlables.
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Lagrange Dual Function

® Definition: the (Lagrange) dual function associated
to the constraint optimization problem is defined by

> —
Va > 0, F(a) 12£(L(X Q)

= inf f _|_ Z azgz

xc X

® ['is always concave: Lagrangian is linear with
respect to « and inf preserves concavity.

® Va >0, F(a) < p*:for a feasible x,

X)+ " aigilx) < ()
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Dual Optimization Problem

B Definition: the dual (optimization) problem
associated to the constraint optimization is
max F(a)
(814

subject to: a > 0.

® always a convex optimization problem.

® optimal value d*.
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Weak and Strong Duality

® Weak duality: d* < p*.

® always holds (clear from previous observations).
| Strong duality: d* = p~.

® does not hold in general.

® holds for convex problems with constraint
qualifications.
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Constraint Qualification

® Definition: Assume that int X #(0.Then, the following
is the strong constraint qualification or Slater’s
condition:
1X € int X: g(X) < 0.

® Definition: Assume that int X # (). Then, the following
is the weak constraint qualification or Slater’s
condition:

3% € intX: Vi € [1,m], (¢;(X) < 0) V (g:(X) = 0 A g; affine).
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Saddle Point - Sufficient Condition

(Lagrange, 1797)

B Theorem: Let P be a constrained optimization
problem over X =R If (x*, a*)is a saddle point,
that is vx € RV, Va > 0, L(x*,a) < L(x*, a*) < L(x, o),
then it is a solution of P.

B Proof: By the first inequality,

Va > 0, L(x",a) < L(x",a") =Va>0,a-g(x") <a™ - g(x")
(use @« — +o00 then @ — 0) = g(x™) < 0N a™ - g(x™) = 0.
® |n view of that, the second inequality gives

Vx, L(x*, ") < L(x,a™) = Vx, f(x*) < f(x) + o™ - g(x).

Thus, for all x such thatg(z) <0,| f(x*) < f(x).
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Saddle Point - Necessary Conditions

B Theorem:Assume that fand g, ,: ¢

11, m], are

convex functions and that Slater’s condition holds.
If xis a solution of the constrained optimization
problem, then there exists a>0 such that (x,a)is a

saddle point of the Lagrangian.

B Theorem:Assume that fand g; ,i €
convex differentiable functions anc
Slater’s condition holds. If x is a so
constrained optimization problem,

1, m],are
that the weak

ution of the
then there

exists a>0 such that (x, ) is a saddle point of the

Lagrangian.
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Kuhn-Tucker’s Theorem
(Karush 1939; Kuhn-Tucker, 1951)

B Theorem:Assume that f,g;: X =R, i€[1,m] are
convex and differentiable and that the constraints
are qualified. ThenXx s a solution of the constrained
program iff there exists @>0 such that:

VLR, @) = Vo f(R) + 8- Vyeg(X) = 0
g(x) <0 KKT

o —~_ conditions
a-g(x) =) a@g(x)=0.
1=1
B Note: Last two conditions equivalent to
(9(X) <0) A (Vie[l,m],ag,(X)=0).

-~

complementary conditions
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® Since the constraints are qualified, if X is solution,
then there exists & such that (X, @) is a saddle
point. In that case, the three conditions are
verified (for the 3rd condition see proof of
sufficient condition slide).

® Conversely,assume that the conditions are
verified. Then, for any xsuch that g(x) <0,

f(x) = f(X) 2 Vxf(X) (x—X) (convexity of f)
> — Z a;Vxgi(X) - (x —X) (first condition)
> — Za (gi(x) — gi(X)] (convexity of g;s)

> — Zai gi(x) > 0. (third and second condition)
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