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Differentiation

Definition: let                        be a differentiable 
function, then the gradient of   at          is defined 
by

Definition: let                        be a twice 
differentiable function, then the Hessian of   at          
is defined by
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f : X ⊆ RN → R
f x ∈ X
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Unconstrained Optimization

Theorem: let                        be a differentiable 
function. If   admits a local extremum at           , 
then

•     is a stationary point.

• a local minimum is a global minimum if the 
function is convex.
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(Fermat, 1629)

f : X ⊆ RN → R
f x∗ ∈ X

∇f(x∗) = 0.

x∗
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Convexity

Definition:            is said to be convex if for any 
two points            the segment        lies in   :

Definition: let    be a convex set. A function          
is said to be convex if for all            and            ,
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X⊆RN

x, y∈X [x, y] X

{αx + (1− α)y, 0 ≤ α ≤ 1} ⊆ X.

f : X→RX
x, y∈X α∈ [0, 1]

f(αx + (1 − α)y) ≤ αf(x) + (1− α)f(y).

  is said to be concave when     is convex.f −f

With a strict inequality,   is said to be strictly convex.f
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Theorem: let    be a differentiable function. Then,    
is convex iff            is convex and

Theorem: let   be a twice differentiable function. 
Then,    is convex iff its Hessian is positive semi-
definite:

Properties of Convex Functions

f f

∀x, y ∈ dom(f), f(y) − f(x) ≥ ∇f(x) · (y − x).

f(y)

f(x) + ∇f(x)·(y − x).

(x, f(x))

f
f

∀x ∈ dom(f), ∇2f(x) $ 0.

dom(f)
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Constrained Optimization Problem

Problem: Let           and                 ,            . A 
constrained optimization problem has the form:

• no convexity assumption.

• can be augmented with equality constraints.

• primal problem.

• optimal value    .
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X⊆RN f, gi : X→R i∈ [1, m]

min
x∈X

f(x)

subject to: gi(x) ≤ 0, i ∈ [1, m].

p∗
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Lagrangian/Lagrange Function

Definition: the Lagrange function or Lagrangian 
associated to a constraint problem is the function 
defined by:

•
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   s are called Lagrange or dual variables.αi

∀x ∈ X, ∀α ≥ 0, L(x, α) = f(x) +
m�

i=1

αigi(x).
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Lagrange Dual Function

Definition: the (Lagrange) dual function associated 
to the constraint optimization problem is defined by

•    is always concave: Lagrangian is linear with 
respect to    and      preserves concavity.

•                           : for a feasible   ,
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F
infα

∀α ≥ 0, F (α) ≤ p∗

f(x) +
m�

i=1

αigi(x) ≤ f(x).

x

∀α ≥ 0, F (α) = inf
x∈X

L(x, α)

= inf
x∈X

f(x) +
m�

i=1

αigi(x).
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Dual Optimization Problem

Definition: the dual (optimization) problem 
associated to the constraint optimization is

• always a convex optimization problem.

• optimal value    .
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max
α

F (α)

subject to: α ≥ 0.

d∗
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Weak and Strong Duality

Weak duality:            .

• always holds (clear from previous observations).

Strong duality:            .

• does not hold in general.

• holds for convex problems with constraint 
qualifications.
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d∗ ≤ p∗

d∗ = p∗
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Constraint Qualification

Definition: Assume that              Then, the following 
is the strong constraint qualification or Slater’s 
condition:

Definition: Assume that              Then, the following 
is the weak constraint qualification or Slater’s 
condition:
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intX �=∅.

∃x ∈ intX: g(x) < 0.

intX �=∅.

∃x ∈ intX: ∀i ∈ [1, m],
�
gi(x) < 0

�
∨

�
gi(x) = 0 ∧ gi affine

�
.
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Saddle Point - Sufficient Condition

Theorem: Let P be a constrained optimization 
problem over           . If            is a saddle point, 
that is 

Proof:  By the first inequality,

• In view of that, the second inequality gives

(Lagrange, 1797)

13

X =RN

then it is a solution of P.

(x∗, α∗)
∀x ∈ RN , ∀α ≥ 0, L(x∗, α) ≤ L(x∗, α∗) ≤ L(x, α∗),

∀x, L(x∗, α∗) ≤ L(x, α∗)⇒ ∀x, f(x∗) ≤ f(x) + α∗ · g(x).

Thus, for all   such that           ,

∀α ≥ 0, L(x∗, α) ≤ L(x∗, α∗)⇒ ∀α ≥ 0, α · g(x∗) ≤ α∗ · g(x∗)
(use α→ +∞ then α→ 0)⇒ g(x∗) ≤ 0 ∧α∗ · g(x∗) = 0.

g(x)≤0 f(x∗) ≤ f(x).x
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Saddle Point - Necessary Conditions

Theorem: Assume that   and    ,            , are 
convex functions and that Slater’s condition holds. 
If    is a solution of the constrained optimization 
problem, then there exists        such that        is a 
saddle point of the Lagrangian.

Theorem: Assume that   and    ,            , are 
convex differentiable functions and that the weak 
Slater’s condition holds. If    is a solution of the 
constrained optimization problem, then there 
exists        such that        is a saddle point of the 
Lagrangian.
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f gi i∈ [1, m]

(x, α)α≥0
x

f gi i∈ [1, m]

(x, α)α≥0

x
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Kuhn-Tucker’s Theorem

Theorem: Assume that                 ,             are 
convex and differentiable and that the constraints 
are qualified. Then   is a solution of the constrained 
program iff there exists        such that:

Note: Last two conditions equivalent to

(Karush 1939; Kuhn-Tucker, 1951)

�
KKT 

conditions
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f, gi : X→R i∈ [1, m]

x
α≥0

∇xL(x, α) = ∇xf(x) + α · ∇xg(x) = 0

∇αL(x, α) = g(x) ≤ 0

α · g(x) =
m�

i=1

αig(xi) = 0.

�
g(x) ≤ 0

�
∧

�
∀i ∈ [1, m], ᾱigi(x) = 0� �� �
complementary conditions

�
.



pageMehryar Mohri - Introduction to Machine Learning

• Since the constraints are qualified, if   is solution, 
then there exists    such that         is a saddle 
point. In that case, the three conditions are 
verified (for the 3rd condition see proof of 
sufficient condition slide).

• Conversely, assume that the conditions are 
verified. Then, for any   such that            ,
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x
(x, α)α

f(x)− f(x) ≥ ∇xf(x) · (x− x) (convexity of f)

≥ −
m�

i=1

αi∇xgi(x) · (x− x) (first condition)

≥ −
m�

i=1

αi[gi(x) − gi(x)] (convexity of gis)

≥ −
m�

i=1

αigi(x) ≥ 0. (third and second condition)

x g(x)<0
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