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Perceptron and Winnow



This Lecture

® On-Line linear classification: two algorithms.
® Perceptron algorithm.

® Winnow algorithm.
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Linear Classification

B Definition: a linear classifier is an algorithm that
returns a hypothesis of the form

T — sgn(w - x + b),
withw € RY,b € R

w-x+b=0 ®
@
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Margin Definitions

B Definition: the (geometric) margin of a point x
with label y for a linear classifier h: x — w-x+ b is
its algebraic distance to the hyperplanew -x+b6=0,

B Definition: the margin of a linear classifier h for a

sample S=(x1,...,2,,)is the minimum margin of
the points in that sample:
YW - x; + D)
0 = 1min :

1<i<m [|w]
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Perceptron Algorithm

(Rosenblatt, 1958)

PERCEPTRON (W)
1 wi«— wg > typically wg =0
2 fort«—1toT do
3 RECEIVE(x;)
4 Y < sgn(wy - Xy)
5 RECEIVE(y:)
6 if (y: # y;) then
7 Wi < Wy + Xy D more generally nyx:, >0
8 else w11 «— wy
9 return wrq
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Perceptron - Notes

® Update:if ys(w: - x¢) <0, then

yt(Wt+1 'Xt) — yt(Wt ' Xt) -+ 77HXtH2 :
N——
>0

-3 change in the desired directio_n.

| Different modes of applications:

® repeated passes over sample of size m drawn
according to some distribution D.

® infinite sample drawn according to D.

® no distributional assumption.
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Separating Hyperplane

® Margin and errors
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Perceptron = Stochastic Gradient Descent

m Objective function: convex but not differentiable.
T
1
F(w) = Ezj max (0. ~yr(w - x)) = E_[f(w.)

with f(w, x) = max (0, —y(w - x)).

B Stochastic gradient: for each x;, the update is

(Wt —nVwf(we,x¢) if differentiable
Wil ¢ 9 ,
W otherwise,

\

where >0 is a learning rate parameter.

| Here: (Wt + nyexe  if ye(wy - xp) <0
Wip1 < 3

Wy otherwise.
\
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Perceptron Algorithm - Bound

(Novikoff, 1962)
B Theorem:Assume that||z;||<R for allt€[1,T]and
that for some p>0andveR" for all t[1, 7],

Then, the number of mistakes made by the
perceptron algorithm is bounded by|R*/p?.

® Proof: Let I be the set of ts at which there is an
update and let M be the total number of updates.
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® Summing up the assumption inequalities gives:

M,O v Zte] Yt Xt
- [v]]
v - Wit] — W
— el ‘(’ |t|+1 2 (definition of updates)
%
_ VW71
v
< ||wri1]] (Cauchy-Schwarz ineq.)
= ||we, + Yy, Xe, || (t,, largest t in 1)
- , , 1/2
= we, 17 4+ lIxe,, 17 + 290, We,, - X4,
i 1/2 <0
< |we,, |I? + B?| -
: 11/2
< |MR? =V MR. (applying the same to previous ts in I)
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® Notes:
® bound independent of dimension and tight.

® convergence can be slow for small margin, it can
be in Q(27).

® among the many variants: voted perceptron
algorithm. Predict according to

sgn ((Z CtWi) - X),

tel
where ¢; is the number of iterations w; survives.

® {z,: tcl}are the support vectors for the
perceptron algorithm.

® non-separable case: does not converge.
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Leave-One-Out Error

B Definition: let hg be the hypothesis output by
learning algorithm L after receiving sample S of
size m. Then, the leave-one-out error of L over S is:

. 1 «—
RIOO(L) — E Z 1hS—{xi}($i)#f(xi).
1=1

® Property: unbiased estimate of expected error of
hypothesis trained on sample of size m—1,

= 1
B [Rioo(L)]=— Zl Ellhg (o) @02 s @] =Ellns_ o) (@)24()

= kK E |1 = Lk |R(hg)|.
S’NDm_l[a?ND[ hS’(x)#f(x)H S/NDm_l[ ( S )]
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Perceptron - Leave-One-Out Analysis

B Theorem:Assume that the data is separable. Let i g
be the hypothesis returned by the Perceptron
algorithm after training on sample S~ D™ (repeated
passes) and let M (S) be the number of updates
made and let R(hs) be the error of hs.Then,

in( M 2 2
E [R(h )] S E mln( (S)7Rm—|—1/10m—|—1)
S~ D™ S~ DA m + 1

B Proof: Let x be a point in sample S.Then, If hs_(x)
misclassifies x, there must have been an update at x
during training to obtain s .Thus,

=~ M(S
Rjoo(perceptron) < ﬁ
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Dual Perceptron Algorithm

DUAL-PERCEPTRON(x)

1 a1 «+— ag > typically ag = 0
2 fort«—1toT do
3 RECEIVE(x¢)

4 Yt < sgn (ZZ::[ AslYs (XS ' Xt))
5 RECEIVE (1)

0 if (@\t 7é yt) then

Y Qpyq — oy + 1

8 else a1 — oy

9 return o
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Kernel Perceptron Algorithm
(Aizerman et al., 1964)

K PDS kernel.

KERNEL-PERCEPTRON ()
l a1 — ap > typically oag=0
2 fort«<1to71 do
3 RECEIVE(x4)
4 Uy — sgn(zzzl asys K (g, 24))
5 RECEIVE(y;)
0 if (y; # y:) then
7 Qpy1 — o+ 1
8 else a; 11 «— a4
9 return o
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XOR Problem

B Use second-degree polynomial kernel with ¢ = 1:
\/533133‘2

X2$
CL1) o (D
X
@ @
(-1,-1) (1,-1)

Linearly non-separable

Mehryar Mohri - Introduction to Machine Learning

|

(1,1, +v2, =2, —v/2,1) t
()

(1, 1,.+¢§, +v2,4+v2,1)

@
(1,1, =v2,—v2,+v2,1)

» /21

O
(1,1, ~v2, +v/2, /2, 1)

Linearly separable by

L1X9 — 0.
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Non-Separable Case
(Freund and Schapire, 1998)

B Theorem: Letvbe any vector with||v||=1 and
let p> 0. Define the deviation of x; by:

dy = max{0,p — y:(v - x¢)},

and let D= \/Zthl d7 . Then, the number of
perceptron updates after processing xi, ..., Xt

is bounded by {R+D 2
p ] |
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® Proof: Reduce problem to separable case in higher
dimension.

® Mapping (similar to trivial mapping):

Lt 1
(N +1t)th component| .

Tt N i Ul/Z |

- 0 :

£.1 '

xi=| @ | -x=\ : vV — v = oN /2
t : : \o y1d1/(AZ)

_ajt,N_ A .
0 yrdr/(AZ) ]
: s
0] V|=1= Z:\/1+F.
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O Now,yt(V/'X;):yt(VZXt | Aggi)
Ytv - Xe  dy
- Z  Z
NEARES i p— yr(v - xyt) _ ﬁ.
- Z Z A

® Sincel|x}||* < R?+ A?, the bound of the separable
case applies: (RQ+A2)(1+D2/A2)

° WlthA VR th|s bound is minimized and equal
o: (F+D)°
P2
® Predictions made by the perceptron in the higher-

dimension coincide with those of the perceptron
in the original space.
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Winnow Algorithm

(Littlestone, 1988)

WINNOW (7))
1 w; «—1/N
2 fort«<1toT do
3 RECEIVE(x;)
4 Ye < sgn(wy - Xy) > oy € {—1,+1}
5 RECEIVE(y;)
6 if (y: # y¢) then
! At 4= Zi\il we,; €XP(NYsT4,i)
S for i +— 1 to N do
) We41,i * wtaieXPZ(Z?ytwt,i)
10 else w; 1 «— wy

11 return wp,
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Winnow - Notes

® Winnow=weighted majority:
e fory,,=x:;€{—1,+1},sgn(w; - x¢)coincides with
the majority vote.

® multiplying by ¢” ore™" the weight of correct or

incorrect experts, is equivalent to multiplying
by 3=¢"?"the weight of incorrect ones.

®m Relationships with other algorithms: e.g., boosting
and Perceptron (Winnow and Perceptron can be
viewed as special instances of a general family).

B Motivation: large number of irrelevant features.
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Winnow Algorithm - Bound

B Theorem:Assume that||z;||. < Rforallte[l,T]and
that for some po, >0andveR"Y,v>0for all te[1, T],

Then, the number of mistakes made by the
Winnow algorithm is bounded by|2 (R2_ /p2. ) log N|.

® Proof: Let I be the set of ts at which there is an
update and let M be the total number of updates.
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Winnow Algorithm - Bound

N
B Potential: ¢; = Z Y log UZ/HVH , (relative entropy)
1=1
® Upper bound:for each ¢ in/,

N i ) Wt, 4
Pip1 =P =) o log ——

1 Wt41,4

o N R Zi
T ZiZl Vi1 108 eXp(??ytxt,i)

N
= log Zt — 7 Zz':l Wytxt,i
N
<log [ Y7; wei exp(nyeei)] — Moo
— logvla [GXP(U?/tSBtﬂ — NP0
(Hoeffding) < log [ exp(n°(2Re)?/8)] + nyswi - Xt — npoo
< UZRgo/Q — 1Poo -
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Winnow Algorithm - Bound

® Upper bound: summing up the inequalities yields
Ory1 — P1 < M(°R3,/2 = 1poo)-

B | ower bound: note that

N N
_ v, vi/|lvill1 _ v;
P1= < VT log =N —logN+.§; it 108 iy < log N

and for all ¢,®, >0 (property or relative entropy).

Thus, dr,; —®; > 0 —log N = —log N.

® Comparison: —log N < M (n*RZ_ /2 — npso). For n= 2z

we obtain
M < QIOngTOO.
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Notes

® Comparison with perceptron bound:
® dual norms: norms for x; and v.
® similar bounds with different normes.
® cach advantageous in different cases:

® Winnow bound favorable when a sparse set of

experts can predict well. For example, if v=e;
and x; € {1} log N vs N.

® Perceptron favorable in opposite situation.
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