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This Lecture

On-Line linear classification: two algorithms.

• Perceptron algorithm.

• Winnow algorithm.
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Linear Classification

Definition: a linear classifier is an algorithm that 
returns a hypothesis of the form
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with w ∈ RN , b ∈ R.

x �→ sgn(w · x + b),

w · x + b = 0

+
-
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Margin Definitions

Definition: the (geometric) margin of a point    
with label y for a linear classifier                         is 
its algebraic distance to the hyperplane                ,

Definition: the margin of a linear classifier    for a 
sample                          is the minimum margin of 
the points in that sample:

5

h : x �→ w · x + b

x

w·x+b=0

h

S =(x1, . . . , xm)

ρ(x) =
y(w · x + b)

�w� .

ρ = min
1≤i≤m

yi(w · xi + b)
�w� .
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Perceptron Algorithm

6

(Rosenblatt, 1958)

Perceptron(w0)
1 w1 ← w0 � typically w0 = 0
2 for t← 1 to T do
3 Receive(xt)
4 �yt ← sgn(wt · xt)
5 Receive(yt)
6 if (�yt �= yt) then
7 wt+1 ← wt + ytxt � more generally ηytxt, η>0
8 else wt+1 ← wt

9 return wT+1
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Perceptron - Notes

Update: if                     , then

Different modes of applications:

• repeated passes over sample of size    drawn 
according to some distribution   .

• infinite sample drawn according to   .

• no distributional assumption.

7

yt(wt · xt) < 0

yt(wt+1 · xt) = yt(wt · xt) + η�xt�2

� �� �
≥0

.

change in the desired direction.

m

D

D
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Separating Hyperplane

8

Margin and errors

ρ

w·x=0

ρ

w·x=0

−yi(w · xi)
�w�
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Perceptron    Stochastic Gradient Descent

Objective function: convex but not differentiable.

Stochastic gradient: for each    , the update is

Here:
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with

xt

f(w,x) = max
�
0,−y(w · x)

�
.

F (w) =
1
T

T�

t=1

max
�
0,−yt(w · xt)

�
= E

x∼ bD
[f(w,x)]

where        is a learning rate parameter.η>0

=

wt+1 ←
�

wt + ηytxt if yt(wt · xt) < 0
wt otherwise.

wt+1 ←
�

wt − η∇wf(wt,xt) if differentiable
wt otherwise,
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Perceptron Algorithm - Bound

Theorem: Assume that             for all            and 
that for some        and         , for all            ,

Proof: Let   be the set of  s at which there is an 
update and let    be the total number of updates.

10

(Novikoff, 1962)

�xt�≤R t∈ [1, T ]
ρ>0 v∈RN

ρ ≤ yt(v · xt)
�v� .

t∈ [1, T ]

Then, the number of mistakes made by the 
perceptron algorithm is bounded by         .R2/ρ2

I t
M



pageMehryar Mohri - Introduction to Machine Learning

• Summing up the assumption inequalities gives:
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Mρ ≤
v ·

�
t∈I ytxt

�v�

=
v ·

�
t∈I(wt+1 −wt)
�v� (definition of updates)

=
v · wT+1

�v�
≤ �wT+1� (Cauchy-Schwarz ineq.)
= �wtm + ytmxtm� (tm largest t in I)

=
�
�wtm�2 + �xtm�2 + 2ytmwtm · xtm� �� �

≤0

�1/2

≤
�
�wtm�2 + R2

�1/2

≤
�
MR2

�1/2
=
√

MR. (applying the same to previous ts in I)
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• Notes:

• bound independent of dimension and tight.

• convergence can be slow for small margin, it can 
be in          .

• among the many variants: voted perceptron 
algorithm. Predict according to

•              are the support vectors for the 
perceptron algorithm.

• non-separable case: does not converge.
12

Ω(2N )

where    is the number of iterations     survives.ct wt

{xt : t∈I}

sgn
�
(
�

t∈I

ctwt) · x
�
,
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Leave-One-Out Error

Definition: let     be the hypothesis output by 
learning algorithm    after receiving sample   of 
size   . Then, the leave-one-out error of    over    is:

Property: unbiased estimate of expected error of 
hypothesis trained on sample of size        ,

13

hS

L S

m L S

�Rloo(L) =
1
m

m�

i=1

1hS−{xi}(xi) �=f(xi).

m−1

E
S∼Dm

[ �Rloo(L)]=
1
m

m�

i=1

E
S
[1hS−{xi}(xi) �=f(xi)]=E

S
[1hS−{x}(x) �=f(x)]

= E
S�∼Dm−1

[ E
x∼D

[1hS�(x) �=f(x)]] = E
S�∼Dm−1

[R(hS�)].
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Perceptron - Leave-One-Out Analysis

Theorem: Assume that the data is separable. Let     
be the hypothesis returned by the Perceptron 
algorithm after training on sample             (repeated 
passes) and let         be the number of updates 
made and let          be the error of     . Then,

Proof: Let    be a point in sample   . Then, If           
misclassifies   , there must have been an update at    
during training to obtain      . Thus,

14

M(S)

hS

E
S∼Dm

[R(hS)] ≤ E
S∼Dm+1

�
min(M(S), R2

m+1/ρ2
m+1)

m + 1

�
.

S∼Dm+1

hS−{x}

hS

x

R(hS) hS

x S
x

�Rloo(perceptron) ≤ M(S)
m+1 .



pageMehryar Mohri - Introduction to Machine Learning

Dual Perceptron Algorithm
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Dual-Perceptron(α0)
1 α1 ← α0 � typically α0 = 0
2 for t← 1 to T do
3 Receive(xt)
4 �yt ← sgn

� �T
s=1 αsys(xs · xt)

�

5 Receive(yt)
6 if (�yt �= yt) then
7 αt+1 ← αt + 1
8 else αt+1 ← αt

9 return α
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Kernel Perceptron Algorithm
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(Aizerman et al., 1964)

K PDS kernel.

Kernel-Perceptron(α0)
1 α1 ← α0 � typically α0 = 0
2 for t← 1 to T do
3 Receive(xt)
4 �yt ← sgn(

�T
s=1 αsysK(xs, xt))

5 Receive(yt)
6 if (�yt �= yt) then
7 αt+1 ← αt + 1
8 else αt+1 ← αt

9 return α
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(1, 1,−

√

2,+
√

2,−

√

2, 1)

XOR Problem

Use second-degree polynomial kernel with        :

x1

x2
(1, 1)

(-1, -1)

(-1, 1)

(1, -1)

√

2 x1x2

√

2 x1

Linearly non-separable Linearly separable by
   

(1, 1,−

√

2,−

√

2,+
√

2, 1)

(1, 1,+
√

2,−

√

2,−

√

2, 1) (1, 1,+
√

2,+
√

2,+
√

2, 1)
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c = 1

x1x2 = 0.
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D=
��T

t=1 d2
tand let                     . Then, the number of 

perceptron updates after processing                 
is bounded by 

Theorem: Let   be any vector with           and 
let       . Define the deviation of     by:

Non-Separable Case
(Freund and Schapire, 1998)

v �v�=1
ρ>0 xt

dt = max{0, ρ− yt(v · xt)},

�
R + D

ρ

�2

.

18

x1, . . . ,xT
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• Proof: Reduce problem to separable case in higher 
dimension.

• Mapping (similar to trivial mapping):

19

th component(N +t)

xt =




xt,1
...

xt,N



→ x�
t =





xt,1
...

xt,N

0
...
0
∆
0
...
0





v→ v� =





v1/Z
...

vN/Z
y1d1/(∆Z)

...
yT dT /(∆Z)





�v��=1⇒ Z =

�
1+

D2

∆2
.
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• Now,

• Since                      , the bound of the separable 
case applies:

• With                 this bound is minimized and equal 
to:           .  

• Predictions made by the perceptron in the higher-
dimension coincide with those of the perceptron 
in the original space.

20

||x�
t||2≤R2+∆2

∆ =
√

RD,
(R+D)2

ρ2

(R2+∆2)(1+D2/∆2)
ρ2 .

yt(v� · x�
t) = yt

�v · xt

Z
+ ∆

ytdt

Z∆

�

=
ytv · xt

Z
+

dt

Z

≥ ytv · xt

Z
+

ρ− yt(v · xt)
Z

=
ρ

Z
.
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Winnow Algorithm

21

Winnow(η)
1 w1 ← 1/N
2 for t← 1 to T do
3 Receive(xt)
4 �yt ← sgn(wt · xt) � yt ∈ {−1, +1}
5 Receive(yt)
6 if (�yt �= yt) then
7 Zt ←

�N
i=1 wt,i exp(ηytxt,i)

8 for i← 1 to N do
9 wt+1,i ← wt,i exp(ηytxt,i)

Zt

10 else wt+1 ← wt

11 return wT+1

(Littlestone, 1988)
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Winnow - Notes

Winnow   weighted majority:

• for                            ,                 coincides with 
the majority vote.

• multiplying by     or      the weight of correct or 
incorrect experts, is equivalent to multiplying   
by            the weight of incorrect ones.

Relationships with other algorithms: e.g., boosting 
and Perceptron (Winnow and Perceptron can be 
viewed as special instances of a general family).

Motivation: large number of irrelevant features.
22

=

yt,i =xt,i∈{−1, +1} sgn(wt · xt)

eη e−η

β =e−2η
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Winnow Algorithm - Bound

Theorem: Assume that                 for all            and 
that for some          and         ,        for all            ,

Proof: Let   be the set of  s at which there is an 
update and let    be the total number of updates.

23

t∈ [1, T ]
v∈RN t∈ [1, T ]

Then, the number of mistakes made by the 
Winnow algorithm is bounded by                         .

I t
M

v≥0
�xt�∞≤R∞

ρ∞>0

ρ∞ ≤ yt(v · xt)
�v�1

.

2 (R2
∞/ρ2

∞) log N
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Winnow Algorithm - Bound

Potential: 

Upper bound: for each   in  ,

24

(relative entropy)Φt =
N�

i=1

vi

�v� log
vi/�v�

wt,i
.

t I
Φt+1 − Φt =

�N
i=1

vi
�v�1 log

wt,i

wt+1,i

=
�N

i=1
vi
�v�1 log

Zt
exp(ηytxt,i)

= log Zt − η
�N

i=1
vi
�v�1 ytxt,i

≤ log
� �N

i=1 wt,i exp(ηytxt,i)
�
− ηρ∞

= log E
wt

�
exp(ηytxt)

�
− ηρ∞

(Hoeffding) ≤ log
�
exp(η2

(2R∞)
2/8)

�
+ ηytwt · xt − ηρ∞

≤ η2R2
∞/2− ηρ∞.
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Winnow Algorithm - Bound

Upper bound: summing up the inequalities yields

Lower bound: note that

Comparison:                                            For    
we obtain

25

and for all  ,          (property or relative entropy).t Φt≥0

ΦT+1 − Φ1 ≤ M(η2R2
∞/2− ηρ∞).

Thus, ΦT+1 − Φ1 ≥ 0− log N = − log N.

− log N ≤M(η2R2
∞/2− ηρ∞). η= ρ∞

R2
∞

M ≤ 2 logN R2
∞

ρ2
∞

.

Φ1 =
N�

i=1

vi
�v�1

log vi/�v�1
1/N = log N +

N�

i=1

vi
�v�1

log vi
�v�1

≤ log N
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Notes

Comparison with perceptron bound:

• dual norms: norms for     and   .

• similar bounds with different norms.

• each advantageous in different cases:

• Winnow bound favorable when a sparse set of 
experts can predict well. For example, if                  
and                ,         vs   .

• Perceptron favorable in opposite situation.

26

xt v

xt∈{±1}N
v=e1

log N N


