

Introduction to Machine Learning

Lecture 4

Mehryar Mohri

Courant Institute and Google Research

mohri@cims.nyu.edu

Nearest-Neighbor Algorithms

Nearest Neighbor Algorithms

- **Definition:** fix $k \geq 1$, given a labeled sample

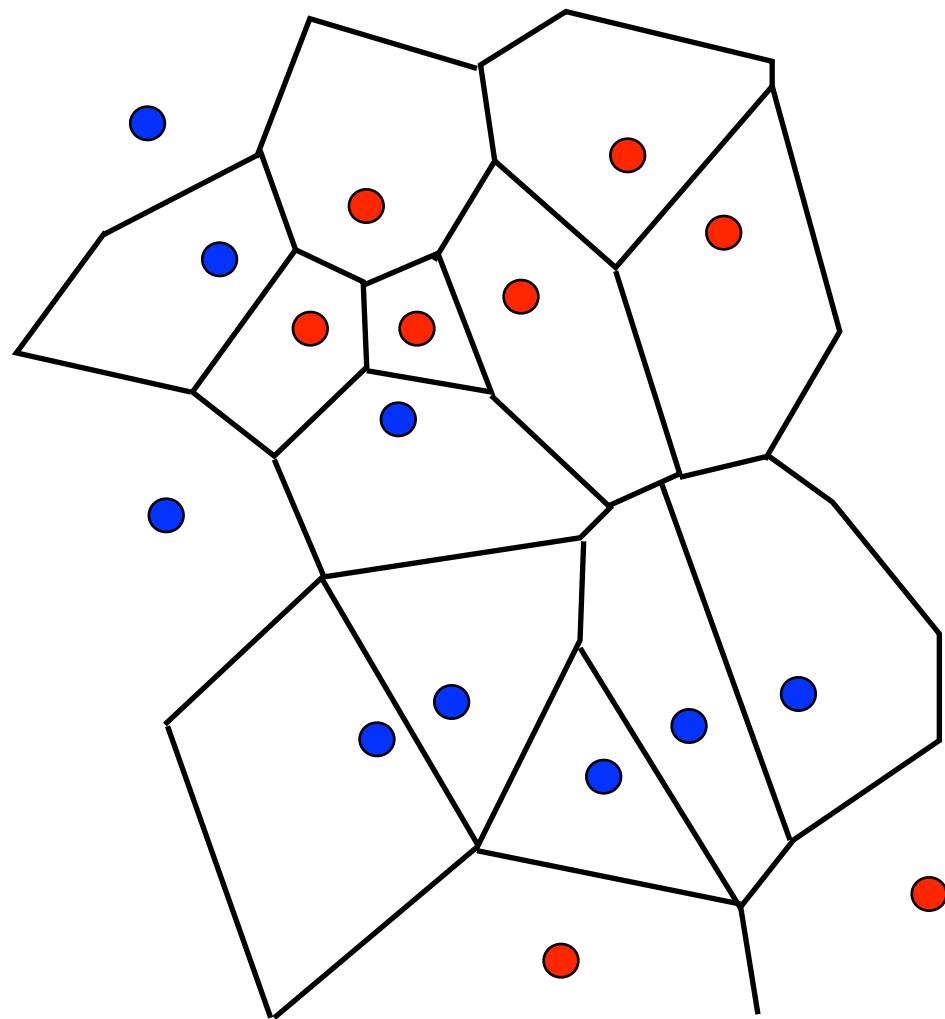
$$S = ((x_1, y_1), \dots, (x_m, y_m)) \in (\mathcal{X} \times \{0, 1\})^m,$$

the k -NN returns the hypothesis h_S defined by

$$\forall x \in \mathcal{X}, h_S(x) = 1_{\sum_{i:y_i=1} w_i > \sum_{i:y_i=0} w_i},$$

where the weights w_1, \dots, w_m are chosen such that $w_i = \frac{1}{k}$ if x_i is among the k nearest neighbors of x .

Voronoi Diagram



Questions

- Performance: does it work?
- Choice of the weights: are there better choices than uniform? In particular, can take into account distance to each nearest neighbor.
- Choice of the distance metric: can a useful metric be defined (or even learned) for a particular problem?
- Computation in high dimension: data structures and algorithms to improve upon naive algorithm.

Bayes Classifier

- **Definition:** the **Bayes error** is defined by

$$R^* = \inf_{\substack{h \\ h \text{ measurable}}} \Pr_{(x,y) \sim D} [h(x) \neq y].$$

- the Bayes classifier is a measurable hypothesis achieving that error.

Set-up

- Sample drawn i.i.d. according to some distribution D

$$S = ((x_1, y_1), \dots, (x_m, y_m)) \in (\mathcal{X} \times \{0, 1\})^m.$$

- Nearest neighbor of $x \in \mathcal{X}$:

$$\text{NN}(S, x) = \operatorname{argmin}_{x' \text{ in } S} d(x, x').$$

- Error of hypothesis returned on point $x \in \mathcal{X}$:

$$R(h_S, x) = 1_{y(h_S(x)) \neq y(x)},$$

where $y(u)$ is the label of point u (random variable).

Convergence of NN Algorithm

- **Lemma:** for any x in support, $\text{NN}(S, x), x \rightarrow x$ with probability one when $|S| \rightarrow +\infty$.
- **Proof:** Let x be in the support of the distribution, then for any $\epsilon > 0$, $\Pr[B(x, \epsilon)] > 0$. Thus,

$$\Pr[d(\text{NN}(S, x), x) > \epsilon] = \left(1 - \Pr[B(x, \epsilon)]\right)^{|S|} \rightarrow 0.$$

Since $d(\text{NN}(S, x), x)$ is decreasing with $|S|$, this also implies convergence with probability one.

NN Algorithm - Limit Guarantee

- **Theorem:** let h_S be the hypothesis returned by the nearest neighbor algorithm. Then,

$$\lim_{|S| \rightarrow \infty} \mathbb{E}_{S \sim D^m} [R(h_S)] \leq 2R^* \left(1 - \frac{|\mathcal{Y}|/2}{|\mathcal{Y}| - 1} R^* \right).$$

- **Proof:**
$$\begin{aligned} & \mathbb{E}_{S \sim D^m} [R(h_S, x)] \\ &= \Pr_{S \sim D^m} [y(\text{NN}(S, x)) \neq y(x)] \\ &= \sum_{x'} \Pr [y(x') \neq y(x) \mid \text{NN}(S, x) = x'] \Pr_{S \sim D^m} [\text{NN}(S, x) = x'] \\ &= \sum_{x'} (1 - \Pr [y(x') = y(x) \mid \text{NN}(S, x) = x']) \Pr_{S \sim D^m} [\text{NN}(S, x) = x'] \\ &= \sum_{x'} \left(1 - \sum_{y \in \mathcal{Y}} \Pr[y \mid x] \Pr[y \mid x'] \right) \Pr_{S \sim D^m} [\text{NN}(S, x) = x']. \end{aligned}$$

NN Algorithm - Limit Guarantee

- In view of the lemma, $\text{NN}(S, x) \rightarrow x$ with probability one when $|S| \rightarrow +\infty$. Thus,

$$\lim_{|S| \rightarrow +\infty} \mathbb{E}_{S \sim D^m} [R(h_S, x)] = \left(1 - \sum_{y \in \mathcal{Y}} \Pr[y \mid x]^2\right).$$

From this it can be concluded that

$$\lim_{|S| \rightarrow +\infty} \mathbb{E}_{S \sim D^m} [R(h_S)] = \mathbb{E}_{x \sim D} \left[1 - \sum_{y \in \mathcal{Y}} \Pr[y \mid x]^2\right].$$

- Let $y^* = \operatorname{argmax}_y \Pr[y \mid x]$, then

$$1 - \sum_{y \in \mathcal{Y}} \Pr[y \mid x]^2 = 1 - \Pr[y^* \mid x]^2 - \sum_{y \neq y^*} \Pr[y \mid x]^2.$$

NN Algorithm - Limit Guarantee

- Now, since the variance is non-negative,

$$\frac{1}{|\mathcal{Y}| - 1} \sum_{y \neq y^*} \Pr[y \mid x]^2 - \left(\frac{1}{|\mathcal{Y}| - 1} \sum_{y \neq y^*} \Pr[y \mid x] \right)^2 \geq 0.$$

Thus, in view of $\sum_{y \neq y^*} \Pr[y \mid x] = (1 - \Pr[y^* \mid x])$,

$$\begin{aligned} \mathbb{E}_{x \sim D} \left[1 - \sum_{y \in \mathcal{Y}} \Pr[y \mid x]^2 \right] &\leq \mathbb{E}_{x \sim D} \left[1 - \Pr[y^* \mid x]^2 - \frac{(1 - \Pr[y^* \mid x])^2}{|\mathcal{Y}| - 1} \right] \\ &= \mathbb{E}_{x \sim D} \left[1 - (1 - R^*(x))^2 - \frac{R^*(x)^2}{|\mathcal{Y}| - 1} \right] \\ &= \mathbb{E}_{x \sim D} \left[2R^*(x) - \frac{|\mathcal{Y}|R^*(x)^2}{|\mathcal{Y}| - 1} \right] \\ &\leq 2R^* - \frac{|\mathcal{Y}|R^{*2}}{|\mathcal{Y}| - 1}. \quad (\text{using } \mathbb{E}[R^*(x)^2] \leq \mathbb{E}[R^*(x)]^2) \end{aligned}$$

Notes

- Similar results for the k -NN algorithm.
 - $m = |S| \rightarrow \infty$ or $(k \rightarrow \infty) \wedge \left(\frac{k}{m} \rightarrow 0\right)$.
- Guarantees only for infinite amount of data:
 - machine learning deals with finite samples.
 - arbitrarily slow convergence rate.

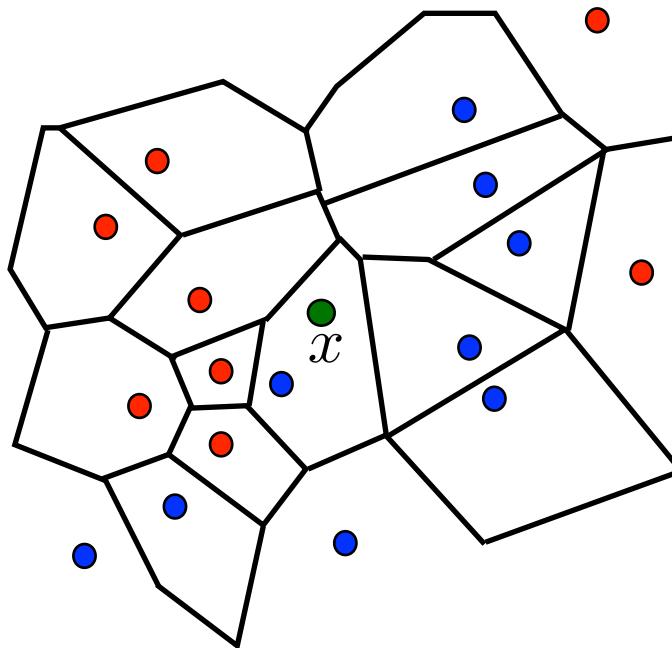
NN Problem

- **Problem:** given sample $S = ((x_1, y_1), \dots, (x_m, y_m))$, find the nearest neighbor of test point x .
 - general problem extensively studied in computer science.
 - exact vs. approximate algorithms.
 - dimensionality N crucial.
 - better algorithms for small intrinsic dimension (e.g., limited doubling dimension).

NN Problem - Case $N = 2$

Algorithm:

- compute Voronoi diagram in $O(m \log m)$.
- point location data structure to determine NN.
- complexity: $O(m)$ space, $O(\log m)$ time.



NN Problem - Case $N > 2$

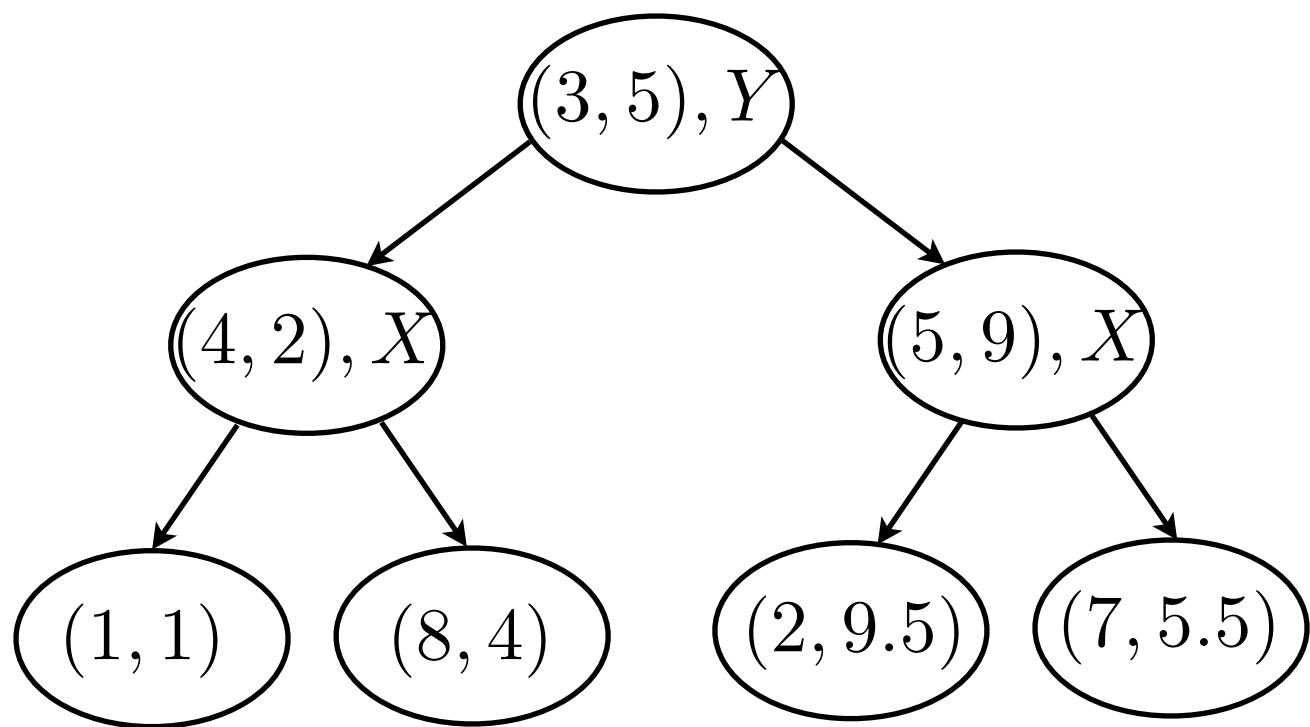
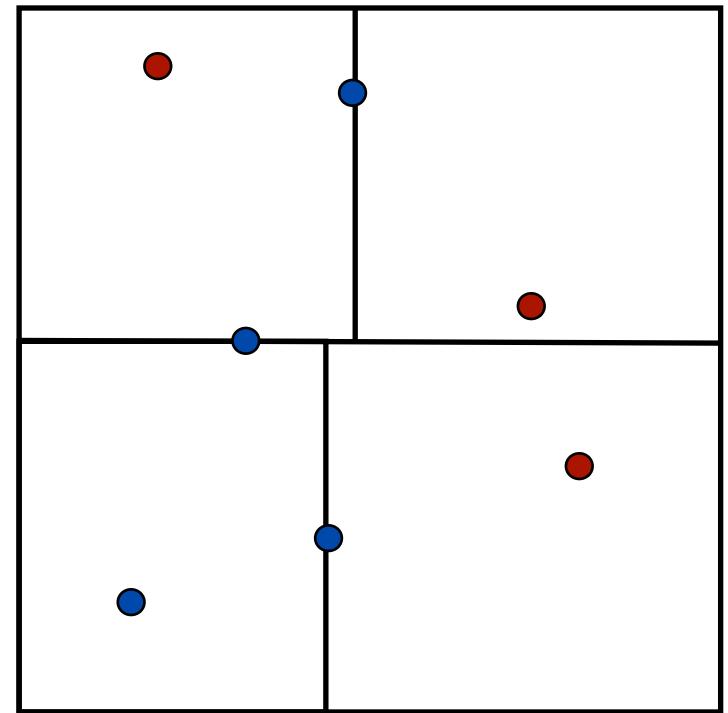
- Voronoi diagram: size in $O(m^{\lceil N/2 \rceil})$.
- Linear algorithm (no pre-processing):
 - compute distance $\|x - x_i\|$ for all $i \in [1, m]$.
 - complexity of distance computation: $\Omega(Nm)$.
 - no additional space needed.
- Tree-based data structures: pre-processing.
 - often used in applications: k -d trees (k -dimensional trees).

k-d Trees

(Bentley, 1975)

- Binary space partitioning trees.
- Prominent tree-based data structure.
- Works for low or medium dimensionality.
- NN search:
 - $O(\log m)$ for randomly distributed points.
 - $O(Nm^{1-\frac{1}{N}})$ in the worst case (Lee and Wong, 1977).
- Can be extended to k -NN search.
- High dimension: typically inefficient.
 - approximate NN methods.

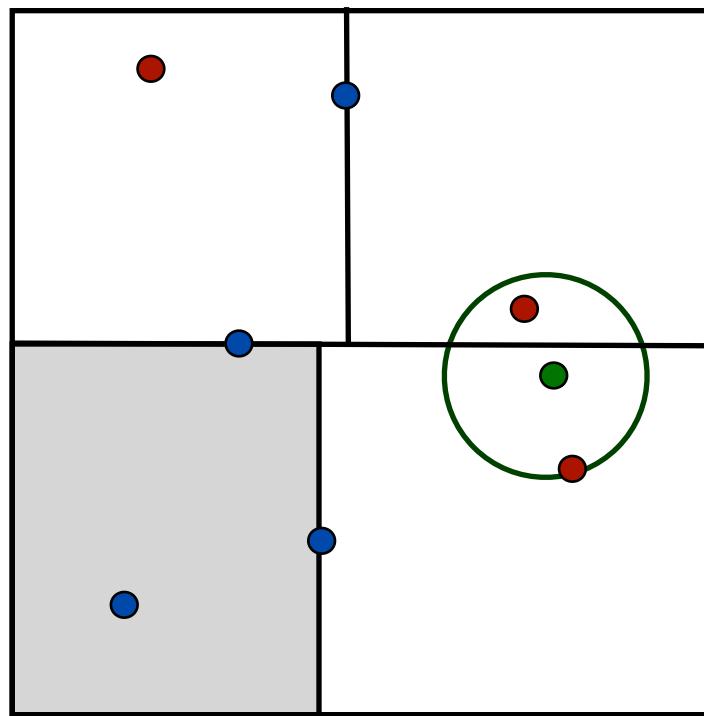
k-d Trees - Illustration



k-d Trees - Construction

- **Algorithm:** for each non-leaf node,
 - choose dimension (e.g., longest of hyperrectangle).
 - choose pivot (median).
 - split node according to (pivot, dimension).
- balanced tree, binary space partitioning.

k-d Trees - NN Search



k-d Trees - NN Search

■ Algorithm:

- find region containing x (starting from root node, move to child node based on node test).
- save region point x_0 as current best.
- move up tree and recursively search regions intersecting hypersphere $S(x, \|x - x_0\|)$:
 - update current best if current point is closer.
 - restart search with each intersecting sub-tree.
 - move up tree when no more intersecting sub-tree.

References

- Jon Louis Bentley. Multidimensional binary search trees used for associative searching. *Communications of the ACM*, Vol. 18, No. 9, 1975.
- Lee, D.T. and Wong, C. K. Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees. *Acta Informatica* Vol. 9, Issue 1. Springer, NY, 1977.