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Nearest Neighbor Algorithms

Definition: fix        , given a labeled sample 
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the  -NN returns the hypothesis     defined byk hS

∀x ∈ X , hS(x) = 1P
i:yi=1 wi>

P
i:yi=0 wi

,

where the weights                 are chosen such 
that            if     is among the   nearest neighbors 
of   .

w1, . . . , wm

wi = 1
k

xi k
x

S = ((x1, y1), . . . , (xm, ym)) ∈ (X × {0, 1})m,

k ≥ 1
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Voronoi Diagram
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Questions

Performance: does it work?

Choice of the weights: are there better choices 
than uniform? In particular, can take into account 
distance to each nearest neighbor.

Choice of the distance metric: can a useful metric 
be defined (or even learned) for a particular 
problem?

Computation in high dimension: data structures 
and algorithms to improve upon naive algorithm.
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Bayes Classifier

Definition: the Bayes error is defined by

• the Bayes classifier is a measurable hypothesis 
achieving that error.
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R� = inf
h

hmeasurable

Pr
(x,y)∼D

[h(x) �= y].
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Set-up

Sample drawn i.i.d. according to some distribution

Nearest neighbor of          :

Error of hypothesis returned on point          :
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D

S = ((x1, y1), . . . , (xm, ym)) ∈ (X × {0, 1})m.

x ∈ X

NN(S, x) = argmin
x� in S

d(x, x�).

x ∈ X

R(hS , x) = 1y(hS(x)) �=y(x),

where       is the label of point   (random variable).y(u) u
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Convergence of NN Algorithm

Lemma: for any    in support,                         with 
probability one when                .

Proof: Let    be in the support of the distribution, 
then for any        ,                      . Thus, 
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|S| → +∞

x
Pr[B(x, �)] > 0� > 0

Pr
�
d
�
NN(S, x), x

�
> �

�
=

�
1− Pr[B(x, �)]

�|S|
→ 0.

Since                     is decreasing with    , this 
also implies convergence with probability one.

NN(S, x), x)→ x

d
�
NN(S, x), x

�
|S|

x
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NN Algorithm - Limit Guarantee

Theorem: let     be the hypothesis returned by the 
nearest neighbor algorithm. Then, 

Proof:
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hS

E
S∼Dm

[R(hS , x)]

= Pr
S∼Dm

[y(NN(S, x)) �= y(x)]

=
�

x�

Pr [y(x�) �= y(x) | NN(S, x) = x�] Pr
S∼Dm

[NN(S, x) = x�]

=
�

x�

(1− Pr [y(x�) = y(x) | NN(S, x) = x�]) Pr
S∼Dm

[NN(S, x) = x�]

=
�

x�

�
1−

�

y∈Y
Pr[y | x] Pr[y | x�]

�
Pr

S∼Dm
[NN(S, x) = x�].

lim
|S|→∞

E
S∼Dm

[R(hS)] ≤ 2R∗
�

1− |Y|/2
|Y| − 1

R∗
�

.
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NN Algorithm - Limit Guarantee

In view of the lemma,                     with probability 
one when               . Thus,

Let                            , then 
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NN(S, x)→ x
|S| → +∞

lim
|S|→+∞

E
S∼Dm

[R(hS , x)] =
�
1−

�

y∈Y
Pr[y | x]2

�
.

From this it can be concluded that

lim
|S|→+∞

E
S∼Dm

[R(hS)] = E
x∼D

�
1−

�

y∈Y
Pr[y | x]2

�
.

y∗ = argmax
y

Pr[y|x]

1−
�

y∈Y
Pr[y | x]2 = 1− Pr[y∗ | x]2 −

�

y �=y∗

Pr[y | x]2.
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NN Algorithm - Limit Guarantee

Now, since the variance is non-negative,
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1
|Y| − 1

�

y �=y∗

Pr[y | x]2 −
� 1
|Y| − 1

�

y �=y∗

Pr[y | x]
�2
≥ 0.

Thus, in view of                                               ,
�

y �=y∗ Pr[y | x] = (1− Pr[y∗ | x])

E
x∼D

�
1−

�

y∈Y
Pr[y | x]2

�
≤ E

x∼D

�
1− Pr[y∗ | x]2 − (1− Pr[y∗ | x])2

|Y| − 1

�

= E
x∼D

�
1− (1 −R∗(x))2 − R∗(x)2

|Y| − 1

�

= E
x∼D

�
2R∗(x)− |Y|R∗(x)2

|Y| − 1

�

≤ 2R∗ − |Y|R∗2

|Y| − 1
. (using E[R∗(x)2] ≤ E[R∗(x)]2)
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Notes

Similar results for the  -NN algorithm.

•                    or                             .

Guarantees only for infinite amount of data:

• machine learning deals with finite samples.

• arbitrarily slow convergence rate.
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k

(k →∞) ∧ ( k
m → 0)m = |S| → ∞
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NN Problem

Problem: given sample                                      , 
find the nearest neighbor of test point   .

• general problem extensively studied in computer 
science.

• exact vs. approximate algorithms.

• dimensionality    crucial.

• better algorithms for small intrinsic dimension 
(e.g., limited doubling dimension).

13

S = ((x1, y1), . . . , (xm, ym))
x

N
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NN Problem - Case N = 2

Algorithm:

• compute Voronoi diagram in                 .

• point location data structure to determine NN.

• complexity:         space,              time.

14

O(m log m)

O(m) O(log m)

x
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NN Problem - Case N > 2

Voronoi diagram: size in                .

Linear algorithm (no pre-processing): 

• compute distance             for all             .

• complexity of distance computation:           .

• no additional space needed.

Tree-based data structures: pre-processing.

• often used in applications:  -d trees ( -dimensional 
trees).
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�x− xi� i ∈ [1, m]

Ω(Nm)

kk

O
�
m

�N/2��
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k-d Trees

Binary space partioning trees.

Prominent tree-based data structure.

Works for low or medium dimensionality.

NN search:

•             for randomly distributed points.

•                 in the worst case (Lee and Wong, 1977).

Can be extended to  -NN search.

High dimension: typically inefficient.

16

(Bentley, 1975)

O(log m)
O(Nm

1− 1
N )

approximate NN methods.

k
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k-d Trees - Illustration
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(4, 2), X (5, 9), X

(3, 5), Y

(1, 1) (8, 4) (2, 9.5) (7, 5.5)
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k-d Trees - Construction

Algorithm: for each non-leaf node,

• choose dimension (e.g., longest of hyperrectangle).

• choose pivot (median).

• split node according to (pivot, dimension).

18

balanced tree, binary space partitioning.



pageMehryar Mohri - Introduction to Machine Learning

k-d Trees - NN Search
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k-d Trees - NN Search

Algorithm:

• find region containing    (starting from root 
node, move to child node based on node test).

• save region point     as current best.

• move up tree and recursively search regions  
intersecting hypersphere                     :

• update current best if current point is closer.

• restart search with each intersecting sub-tree.

• move up tree when no more intersecting sub-
tree.
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x

x0

S(x, �x− x0�)
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