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Nearest-Neighbor Algorithms



Nearest Neighbor Algorithms

®m Definition: fixk > 1, given a labeled sample

S = ((3717 y1)7 O (CBm, ym)) = (X X {07 1})m7
the k.-NN returns the hypothesis h5 defined by

\V/ZC & X, hS(CIj) — 1Zi:yi=1 wi>zi:yi20 Wi 9

where the weights w, ..., w,, are chosen such
that w; = ¢ if z; is among the k nearest neighbors
of .
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Voronoi Diagram
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Questions

B Performance: does it work!?

® Choice of the weights: are there better choices
than uniform!? In particular, can take into account
distance to each nearest neighbor.

B Choice of the c

istance metric: can a useful metric

be defined (or even learned) for a particular

problem!?

B Computation in high dimension: data structures
and algorithms to improve upon naive algorithm.
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Bayes Classifier

®m Definition: the Bayes error is defined by

R* = inf Pr [h(x .
hmea}sburable (m,y)ND[ ( ) # y]

® the Bayes classifier is a measurable hypothesis
achieving that error.
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Set-up

B Sample drawn i.i.d. according to some distribution D
S=((z1,91),- s (Tm,ym)) € (X x {0,1})™.
® Nearest neighbor of z ¢ X':
NN(S, z) = argmin d(x,z").

x’ in S

B Error of hypothesis returned on point z € X :

R(hs, ) = Ly(hs(a))2y(a);

where y(u)is the label of point u (random variable).

Mehryar Mohri - Introduction to Machine Learning page 7



Convergence of NN Algorithm

B [emma:for any z in support,NN(S,z),z) — x with
probability one when |S| — +o00.

® Proof: Let  be in the support of the distribution,
then for any € > 0, Pr[B(z,€)] > 0.Thus,

Pr [d(NN(S, r), ) > e] - (1 — Pr[B(z, e)]) "o

Since d(NN(S, z), z) is decreasing with|S], this
also implies convergence with probability one.
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NN Algorithm - Limit Guarantee

B Theorem:let hs be the hypothesis returned by the
nearest neighbor algorithm.Then,

lim E [R(hs)] < 2R* (1 B 1R*>.

S| —o00 S~D™

B Proof: E [R(hs,2)]

S~Dm
= Pr [y(NN(S,z)) # y(@)
=Y Prly(a’) # y(x) INN(S,2) = 2] Pr [NN(S,z) =2

S~Dm

=) (1=Prly(@) = y(z) [ NN(S,z) = 2]) Pr [NN(S,z) = ']

_2(1— > Prly|a] x]) JPr [INN(S,z) = o).
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NN Algorithm - Limit Guarantee

| |n view of the lemma, NN(S, x) — z with probability
one when|S| — +o0.Thus,

lim E [R(hs,x) (1—2131‘ |:I})

S|l—4+oc0c S~D™
S| yey

From this it can be concluded that

lim E [R(hg) [1— Prly | }
B = B, [1- S«

B |ety® = argmax Pr[y|z], then

1—ZPry|az]—1—Pry|az ZPI‘ | x]°.

yey y£y*
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NN Algorithm - Limit Guarantee

® Now, since the variance is non-negative,
1 1 2
> Prly|al® - ( > Prly|al) =o.
V-1 == V-1 ==
Y7y Y7y

Thus, in view of >

Prly | z] = (1 — Prly* | z]),

y#y*
B |1- 2; Prly | o] < B :1 gy a2 _‘l;r'[gf 1| W]
=5 :1 —(1-R*(2)) - ﬁj"(f)j]
- PS5
opr _ IR (using E[R*(2)?] < E[R*(2)]?)
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Notes

® Similar results for the k.-NN algorithm.

o m =S| — ocoor(k— oo)A (L —0).

® Guarantees only for infinite amount of data:
® machine learning deals with finite samples.

® arbitrarily slow convergence rate.

Mehryar Mohri - Introduction to Machine Learning page 12



NN Problem

® Problem: given sample S = ((z1,v1),---, (Tm, Ym)),
find the nearest neighbor of test pointz.

® general problem extensively studied in computer
science.

® exact vs. approximate algorithms.

® dimensionality N crucial.

® better algorithms for small intrinsic dimension
(e.g., limited doubling dimension).
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NN Problem - Case N = 2

B Algorithm:
® compute Voronoi diagram in O(mlogm).
® point location data structure to determine NN.

® complexity: O(m)space, O(logm) time.
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NN Problem - Case N > 2

® Voronoi diagram: size in O(m/"/21).

| Linear algorithm (no pre-processing):
® compute distance ||z — z;|| for all i € [1,m)].
® complexity of distance computation: Q(Nm).

® no additional space needed.

B Tree-based data structures: pre-processing.

® often used in applications:k-d trees (k-dimensional
trees).
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k-d Trees
(Bentley, 1975)
| Binary space partioning trees.

® Prominent tree-based data structure.
® Works for low or medium dimensionality.

®m NN search:

® O(logm) for randomly distributed points.

e O(Nm'~%)in the worst case (Lee and Wong, 1977).
® Can be extended to k-NN search.

B High dimension: typically inefficient.
—>» approximate NN methods.
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k-d Trees - lllustration
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k-d Trees - Construction

® Algorithm: for each non-leaf node,

® choose dimension (e.g., longest of hyperrectangle).

® choose pivot (median).

® sp

—3 ba

it node according to (pivot, dimension).

anced

tree, binary space partitioning.
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lk-d Trees - NN Search
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lk-d Trees - NN Search

& Algorithm:

® find region containing z (starting from root
node, move to child node based on node test).

® save region point g as current best.

® move up tree and recursively search regions
intersecting hypersphere S(zx, ||z — xo||):

® update current best if current point is closer.
® restart search with each intersecting sub-tree.

® move up tree when no more intersecting sub-
tree.
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