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Motivation

B Very large data sets:
® too large to display or process.
® |imited resources, need priorities.

® —— ranking more desirable than classification.

B Applications:
® search engines, information extraction.

® decision making, auctions, fraud detection.

® Can we learn to predict ranking accurately!?
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Score-Based Setting

B Single stage: learning algorithm
® receives labeled sample of pairwise preferences;
® returns scoring function h: U — R.

B Drawbacks:
® hinduces a linear ordering for full set U.

® does not match a query-based scenario.

B Advantages:
o efficient algorithms.

® good theory:VC bounds, margin bounds, stability
bounds (FISS 03. RCMS 05.AN 05.AGHHR 05. CMR 07).
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Preference-Based Setting

B Definitions:
® [:universe, full set of objects.
® V:finite query subset to rank, V' C U.

® 7 target ranking for V (random variable).

® Two stages: can be viewed as reduction.
® |earn preference function h: U xU — |0, 1].

® given V, use hto determine ranking cof V.

® Running-time: measured in terms of |calls to & |.
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Related Problem

®m Rank aggregation: given n candidates and k voters
each giving a ranking of the candidates, find
ordering as close as possible to these.

® closeness measured in number of pairwise
misrankings.

® problem NP-hard even fork=4 (Dwork et al., 2001).
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This Talk

B Score-based ranking

B Preference-based ranking
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Score-Based Ranking

B Training data: sample of i.i.d. labeled pairs drawn
from U x U according to some distribution D,

S= ((azl,:z;’l, Y1)y« ey (T, :c;n,ym)> cUxUx{-1,0,+1},
+1 if ) >pref @
with y; = 0 if x; =pref ; or no information
—1 if @) <pret .
® Problem: find hypothesis h:U —R in H with small
generalization error

Ro(h) = Pr |fwa")(ha') = h(x) < 0],

Mehryar Mohri - Foundations of Machine Learning page 8



Notes

B Empirical error:
. 1 &
R(h) = - Z Ly (h(2!)—h(z:))<0 -
1=1
B The relationz Rz’ < f(x,2')=1may be non-
transitive (needs not even be anti-symmetric).

B Problem different from classification.
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Distributional Assumptions

®m Distribution over points: m points (literature).
® |abels for pairs.

® — squared number of examples O(m?).

| Distribution over pairs: m pairs.
® |abel for each pair received.
® independence assumption.

® same (linear) number of examples.
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Boosting for Ranking

® Use weak ranking algorithm and create stronger
ranking algorithm.

B Ensemble method: combine base rankers returned
by weak ranking algorithm.

® Finding simple relatively accurate base rankers
often not hard.

B How should base rankers be combined?
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CD RankBoost

(Freund et al., 2003; Rudin et al., 2005)
HC{0,1}X. &+ ¢ +6 =1,e8(h) = Pr [sgn (f(z,2)(h(z)) — h(z))) = s]

(z,x")~Dy
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Notes

| Distributions D; over pairs of sample points:
® originally uniform.

® at each round, the weight of a misclassified
example is increased.

oyl () —pt ()]

® observation: ;1 (z, 1) = “grr—p— Since
s=1 S
D1 (z,2) Dy (x, aj’)e—yat[ht(l”)—ht(w)] 1 e~ Ui aslhs(z))—hs(@)]
t+1\ L, T ) = — -
Zt S| 1, z

B weight assignhed to base classifier h;: a; directy
depends on the accuracy of h; at round ¢.
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Coordinate Descent RankBoost

m Objective Function: convex and differentiable.

Flay= Y e yler (@) —er ()] _ 3 eXp(_yZatht )])_

(z,zy)€S (x,z",y)ES

_ |0—1 pairwise \oss
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® Direction: unit vector e; with

dF
e; = argmin (@ + ne:)
t dn

n=0

® Since Fla+ne)= 3 e vTimalhal@)-h@leynlhe)—h(@)

(z,x',y)€S

- — Z ylhe(z") — he(x)] exp [— yzws[hs(l") — hs(l')]}

=0 (z,2%y)€S

= > ylhle) — @) Dra (w2 [ ﬁ .|

($,$/,y)€S s=1

dF (o + ney)
dn

Thus, direction corresponding to base classifier selected by the
algorithm.
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® Step size: obtained via

dF (o +mne;) 0
dn B

&= 3 ylh(@) = hi(@)]exp [ QZO‘S (x)]} —ulhe(@)—ha (@)l
(z,zhy)es

&= > ylh@) ~ k(@)D (@, a') | m I 2, | eyl )bl — o

(x,x’\y)ES s=1
= Y ylhu(@) = (@)D (e, al)e It @h = g
(z,2'y)eS
& —lefe ™ —e e =0
1 T
&n = = log — il
2 €

Thus, step size matches base classifier weight used in algorithm.
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LI Margin Definitions

®m Definition: the margin of a pair (z, 2" )with label y #0

IS
N yle@) — @) yS_jou[he(a’) —he(x)] o Ah(z)
e e BT “V Tl

B Definition: the margin of the hypothesis i for a
sampleS=((z1,27,y1) - -, (Tm, T, Ym)) is the
minimum margin for pairs in.S with non-zero labels:

5= min a - Ah(x) |

(@a'yes ~ e
y70
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Ranking Margin Bound
(Cortes and MM, 201 1)
B Theorem:let H be a family of real-valued functions.
Fix p >0, then, for any § >0, with probability at
least 1 —0 over the choice of a sample of size m, the
following holds for allhe H:

R(h) < ﬁp(h) + %(%lel (H)+RE2(H)) + 1;5;%
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RankBoost Margin

B But, RankBoot does not maximize the margin.
—> smooth-margin RankBoost (Rudin et al.,

2005): log F (o)

® Empirical performance not reported.
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Ranking with SVMs

see for example (Joachims, 2002)

B Optimization problem° application of SVMs.

2
mm—w + C ;
it |w] E &i

subject to: y; [W (®(x]) — @(xz))} >1—-¢&;
& >0, ViE[l,m].
B Decision function:

h: x—w-®(x)+b.
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Notes

B The algorithm coincides with SVMs using feature
mapping
(x,2") — W(x,2") = ®(2") — P(x).

B Can be used with kernels.

® Algorithm directly based on margin bound.
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Bipartite Ranking

® Training data:
® sample of negative points drawn according to D_
Si=(x1,...,2m)€U.
® sample of positive points drawn according to D,
S_=(x4,...,2 ) eU.

® Problem: find hypothesis %:U —R in H with small
generalization error

Rp(h) = Pr h(z')<h(z)].

x~D_ x'~Dy
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Notes

B More efficient algorithm in this special case (Freund
et al., 2003).

B Connection between AdaBoost and RankBoost
(Cortes & MM, 04; Rudin et al., 05).
® if constant base ranker used.

® relationship between objective functions.

| Bipartite ranking results typically reported in terms
of AUC.
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ROC Curve
(Egan, 1975)

B Definition: the receiver operating characteristic
(ROC) curve is a plot of the true positive rate (TP)
vs. false positive rate (FP).

® TP:% positive points correctly labeled positive.

® FP:% negative points incorrectly labeled positive.
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Area under the ROC Curve (AUC)

(Hanley and McNeil, 1982)

B Definition: the AUC is the area under the ROC
curve. Measure of ranking quality.

A
1

= >

_True positive rate

[}

0
[ | EqUiV&'EI’\t')’, ’ 2 Fa'lzsle pos'ifive ratg :
1 m m/
AUCH) = —— SN Lnosny = Pr [h(z) > b))
IS = z~v Dy
~ 2/ D
=1—R(h).
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AdaBoost and CD RankBoost

® Objective functions: comparison.

Fasa(@)= 3 exp(—y.f(2)

r,€ES_ US_|_
= E exp (+f(x;)) + E exp (
T, €S _ CUES_|_

=F_(a) + Fi(a).
FRrank (@) = Z €Xp ( — [f(=;) — f(flfz)])

(2,J)€S— XS54

— Z exp (+f(x;)) exp (—f(z;))

(1,7)€S_ XS4
= F_(a)Fy(a).
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AdaBoost and CD RankBoost

(Rudin et al., 2005)
® Property:AdaBoost (non-separable case).

® constant base learner h=1-—>equal contribution
of positive and negative points (in the limit).

® consequence:AdaBoost asymptotically achieves
optimum of CD RankBoost objective.

m Observations:if i (a)=F_(a),
d(FRank) — F—I—d(F—) + F—d(F-I—)

= I} (d(F-) + d(Fy))
= F,d(Faga).
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Bipartite RankBoost - Efficiency

B Decomposition of distribution: for (z,z")€(S_,S,),
D(z,2") = D_(x)Ds(x").
B Thus,

D / —ozt[ht(a:’)—ht(a:)]
Dt+1($,33/) — t(aj?x )6

With Zt,— — Z Dt7—(x)6atht(x) Zt,—|— — Z Dt,_|_(x/)€_atht(x/).

reS_ .CU/ES_|_
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Ranking # Classification

B Bipartite case: can we learn to rank by training a
classifier on positive and negative sets!?

e different objective functions: AUC vs.0/1 loss.

® preliminary analysis (Cortes and MM, 2004): different
results for imbalanced data sets, on average over
all classifications.

® example, stochastic case:

BC
AC -
AB
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This Talk

B Score-based ranking

B Preference-based ranking
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Preference-Based Setting

B Definitions:
® [:universe, full set of objects.
® V:finite query subset to rank, V' C U.

® 7 target ranking for V (random variable).

® Two stages: can be viewed as reduction.
® |earn preference function h: U xU — |0, 1].

® given V, use hto determine ranking cof V.

® Running-time: measured in terms of |calls to & |.
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Preference-Based Ranking Problem

® Training data: pairs (V,7*) sampled i.i.d. according
to D:
/Y(Vl,Tf),(VQ,T;),...,(Vm,T,;;) V; CU.

subsets ranked by .
different labelers. learn classifier

preference function h: U xU — |0, 1].

® Problem:for any query set V' C U, use h to return
ranking o, v close to target 7° with small average

error

R(h,0c)= E |L 1.
(ho)= B [Llowy.7)
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Preference Function

B h(u,v)close to 1when u preferred to v, close to 0
otherwise. For the analysis, h(u,v) €{0,1}.

B Assumed pairwise consistent:
h(u,v) + h(v,u) = 1.

® May be non-transitive, e.g.,
h(u,v) = h(v,w) = h(w,v) = 1.

B Qutput of classifier or ‘black-box’.

Mehryar Mohri - Foundations of Machine Learning page 33



Loss Functions

(for fixed (V,77))
B Preference loss:

L(h7%) = - (nz_ 5 > )T ()

UFV

® Ranking loss:
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(Weak) Regret

® Preference regret:

/ h)= E |L(h ) —E
class( ) V,T*[ ( v, T )] Vo v

® Ranking regret:

/ = ) —E min E [L(5,7%)].
ok (4) = B [L(A(V),7)] ~ E_min B [L(z.7)

Mehryar Mohri - Foundations of Machine Learning page 35



Deterministic Algorithm
(Balcan et al., 07)
B Stage one: standard classification. Learn preference
function h: U xU — [0, 1].

B Stage two: sort-by-degree using comparison
function h.

® sort by number of points ranked below.

® quadratic time complexity O(n?).
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Randomized Algorithm
(Ailon & MM, 08)
B Stage one: standard classification. Learn preference
function h: U xU — [0, 1].

B Stage two: randomized QuickSort (Hoare, 61) using h
as comparison function.

® comparison function non-transitive unlike
textbook description.

® but, time complexity shown to be O(nlogn)in
general.
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Randomized QS

U
h(v,u)=1 h(u,v)=1
Uu
@
random
pivot
left recursion right recursion
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Deterministic Algo. - Bipartite Case

(V =V UV (Balcan et al., 07)
B Bounds: for deterministic sort-by-degree algorithm

® expected loss:
E [L(AV),7%)] <2 E [L(h,7")].

V,T* V,T*
® regr'et:
R;ank(A(V)) S QR/CZaSS(h)'

B Time complexity: Q(|V|?).
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Randomized Algo. - Bipartite Case
(V=V,UV.) (Ailon & MM, 08)
B Bounds: for randomized QuickSort (Hoare, 61).

® expected loss (equality):

VB [LQLYV). )] = E [L(h )]
® regret:
Riank(Q5()) < Rigass(h) -
® Time complexity:
o full set: O(nlogn).
® topk: O(n+klogk).
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Proof ldeas

B QuickSort decomposition:
Puv + = Puvaw (h(u, w)h(w,v) + h(v,w)h(w, u)) = 1.
| Bipartite property:

T (u,v) + 75 (v, w) + 7 (w,u) =

(v, u) + 7 (w,v) + 77 (u, w).
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Lower Bound

B Theorem:for any deterministic algorithm A, there
is a bipartite distribution for which

Rrank (A) Z QRCZGSS(h)'

® thus, factor of 2 = best in deterministic case.
® randomization necessary for better bound.

B Proof: take simple case U=V ={u, v, w}and assume
that h induces a cycle. U

® up to symmetry, A returns

U, V, W or W, v, U.
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Lower Bound

® If Areturns u,v,w,then u
choose 7" as:

Cefr > w
h

- [+

® If Areturnsw,v,u ,then
choose 7" as: LiA,

<D

- [+
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Guarantees - General Case

B | oss bound for QuickSort:

B L@Q(V), 7)) <2 E [L(h,77)].

V,m*.s

® Comparison with optimal ranking (see (CSS 99)):

1D
1D

L(QZ(V), Uoptz’mal)] S 2 L(ha Uoptimal)

L(h, Q3(V))] < 3 L(h, 0optimat);

where o,,tima = argmin L(h, o).

o)
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Weight Function

B Generalization:
T (u,v) =" (u,v) w(o™ (u),c™(v)).
B Properties: needed for all previous results to hold,
® symmetry: w(i,j) = w(y,7) forall i, .
® monotonicity: w(i, j),w(j, k) < w(i, k)fori < j < k.

® triangle inequality: w(i,j) < w(i, k) + w(k, j) for all
triplets 7, j, k.
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Weight Function - Examples

| Kemeny: w(i,j) =1, Vi,j.

(

1 ie<korj<k;

\ 0 otherwise.

B Top-k: w(t,J) = 4

(1 ifi<kandj>Ek:

® Bipartite: w(i,j) = 4
P (4,7) 0 otherwise.

\

B k-partite: can be defined similarly.
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(Strong) Regret Definitions

® Ranking regret:

Reank(A) = E [L(A4(V),7%)] —min E [L(Gp, 7).

V,Tm* s o V,r*

B Preference regret:

RClGSS(h) — V@_*[L(}”V? T*)] _ mijﬂ V@_*[L(EW'? T*)]

®m All previous regret results hold if for Vi, Vs D {u, v},

E [P = B [ ()

for all u, v (pairwise independence on irrelevant alternatives).
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