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Motivation

Very large data sets:

• too large to display or process.

• limited resources, need priorities.

•        ranking more desirable than classification.

Applications:

• search engines, information extraction.

• decision making, auctions, fraud detection.

Can we learn to predict ranking accurately?
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Score-Based Setting

Single stage: learning algorithm

• receives labeled sample of pairwise preferences;

• returns scoring function              .
Drawbacks:

•    induces a linear ordering for full set    .

• does not match a query-based scenario.

Advantages:

• efficient algorithms.

• good theory: VC bounds, margin bounds, stability 
bounds (FISS 03, RCMS 05, AN 05, AGHHR 05, CMR 07).
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Preference-Based Setting

Definitions:

•   : universe, full set of objects.

•   : finite query subset to rank,          .

•   : target ranking for    (random variable).

Two stages: can be viewed as reduction.

• learn preference function                      .

• given   , use   to determine ranking   of   .

Running-time: measured in terms of |calls to   |.
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Related Problem

Rank aggregation: given   candidates and   voters 
each giving a ranking of the candidates, find 
ordering as close as possible to these.

• closeness measured in number of pairwise 
misrankings.

• problem NP-hard even for        (Dwork et al., 2001).
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This Talk

Score-based ranking

Preference-based ranking
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Score-Based Ranking

Training data: sample of i.i.d. labeled pairs drawn  
from         according to some distribution   ,

Problem: find hypothesis              in    with small 
generalization error

8

D

with

Hh :U→R

U×U

yi =






+1 if x�
i >pref xi

0 if xi =pref x�
i or no information

−1 if x�
i <pref xi.

RD(h) = Pr
(x,x�)∼D

�
f(x, x�)

�
h(x�)− h(x)

�
< 0

�
.

S =
�
(x1, x

�
1, y1), . . . , (xm, x�

m, ym)
�
∈U×U×{−1, 0, +1},
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Notes

Empirical error:

The relation                             may be non-
transitive (needs not even be anti-symmetric).
Problem different from classification.
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xRx� ⇔ f(x, x�)=1

�R(h) =
1
m

m�

i=1

1yi(h(x�
i)−h(xi))<0 .
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Distributional Assumptions

Distribution over points:     points (literature).

• labels for pairs.

•          squared number of examples          .

Distribution over pairs:     pairs.

• label for each pair received.

• independence assumption.

• same (linear) number of examples.

10
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Boosting for Ranking

Use weak ranking algorithm and create stronger 
ranking algorithm.

Ensemble method: combine base rankers returned 
by weak ranking algorithm.

Finding simple relatively accurate base rankers 
often not hard.

How should base rankers be combined?
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CD RankBoost

12

H⊆{0, 1}X
.

(Freund et al., 2003; Rudin et al., 2005)

�0t + �+t + �−t = 1, �s
t (h) = Pr

(x,x�)∼Dt

�
sgn

�
f(x, x�)(h(x�)− h(x))

�
= s

�
.

RankBoost(S = ((x1, x
�
1, y1) . . . , (xm, x

�
m, ym)))

1 for i← 1 to m do
2 D1(xi, x

�
i)← 1

m
3 for t← 1 to T do
4 ht ← base ranker in H with smallest �

−
t − �

+
t = −Ei∼Dt

�
yi

�
ht(x�i)− ht(xi)

��

5 αt ← 1
2 log �+t

�−t

6 Zt ← �
0
t + 2[�+t �

−
t ] 1

2 � normalization factor
7 for i← 1 to m do

8 Dt+1(xi, x
�
i)←

Dt(xi,x
�
i) exp

�
−αtyi

�
ht(x

�
i)−ht(xi)

��

Zt

9 ϕT ←
�T

t=1 αtht

10 return h = sgn(ϕT )
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Notes

Distributions     over pairs of sample points:

• originally uniform.

• at each round, the weight of a misclassified 
example is increased.

• observation:                                    , since

weight assigned to base classifier    :     directy 
depends on the accuracy of     at round   .
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Dt

ht αt

ht t

Dt+1(x, x�)= e−y[ϕt(x�)−ϕt(x)]

|S|
Qt

s=1 Zs

Dt+1(x, x�) =
Dt(x, x�)e−yαt[ht(x

�)−ht(x)]

Zt
=

1
|S|

e−y
Pt

s=1 αs[hs(x�)−hs(x)]

�t
s=1 Zs

.
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Objective Function: convex and differentiable.

    Coordinate Descent RankBoost

e−x

0−1pairwise loss

F (α) =
�

(x,x�,y)∈S

e−y[ϕT (x�)−ϕT (x)] =
�

(x,x�,y)∈S

exp
�
− y

T�

t=1

αt[ht(x�)−ht(x)]
�
.
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• Direction: unit vector    with

• Since                                                              ,

et

et = argmin
t

dF (α + ηet)
dη

����
η=0

.

Thus, direction corresponding to base classifier selected by the 
algorithm. 

F (α + ηet)=
�

(x,x�,y)∈S

e−y
PT

s=1 αs[hs(x
�)−hs(x)]e−yη[ht(x

�)−ht(x)]

dF (α + ηet)
dη

����
η=0

= −
�

(x,x�,y)∈S

y[ht(x�)− ht(x)] exp
�
− y

T�

s=1

αs[hs(x�)− hs(x)]
�

= −
�

(x,x�,y)∈S

y[ht(x�)− ht(x)]DT+1(x, x�)
�
m

T�

s=1

Zs

�

= −[�+t − �−t ]
�
m

T�

s=1

Zs

�
.
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• Step size: obtained via

Thus, step size matches base classifier weight used in algorithm. 

dF (α + ηet)
dη

= 0

⇔ −
�

(x,x�,y)∈S

y[ht(x�)− ht(x)] exp
�
− y

T�

s=1

αs[hs(x�)− hs(x)]
�
e−y[ht(x

�)−ht(x)]η = 0

⇔ −
�

(x,x�,y)∈S

y[ht(x�)− ht(x)]DT+1(x, x�)
�
m

T�

s=1

Zs

�
e−y[ht(x

�)−ht(x)]η = 0

⇔ −
�

(x,x�,y)∈S

y[ht(x�)− ht(x)]DT+1(x, x�)e−y[ht(x
�)−ht(x)]η = 0

⇔ −[�+t e−η − �−t eη] = 0

⇔ η =
1
2

log
�+t
�−t

.
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L1 Margin Definitions

Definition: the margin of a pair         with label     
is

Definition: the margin of the hypothesis    for a   
sample                                               is the 
minimum margin for pairs in   with non-zero labels:
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h

(x, x�)

ρ(x, x�) =
y(ϕ(x�)− ϕ(x))�m

t=T αt
=

y
�T

t=1 αt[ht(x�)− ht(x)]
�α�1

= y
α · ∆h(x)
�α�1

.

y �=0

S =((x1, x
�
1, y1) . . . , (xm, x�

m, ym))
S

ρ = min
(x,x�,y)∈S

y �=0

y
α · ∆h(x)

�α�1
.
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Ranking Margin Bound

Theorem: let    be a family of real-valued functions. 
Fix       , then, for any       , with probability at   
least       over the choice of a sample of size   , the 
following holds for all        :
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(Cortes and MM, 2011)

H

ρ>0 δ>0
1−δ m

h∈H

R(h) ≤ �Rρ(h) +
2
ρ

�
RD1

m (H) + RD2
m (H)

�
+

�
log 1

δ

2m
.
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RankBoost Margin

But, RankBoot does not maximize the margin.

Empirical performance not reported.

19

smooth-margin RankBoost (Rudin et al. , 

2005):
G(α) = − log F (α)

�α�1
.
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 Ranking with SVMs

Optimization problem: application of SVMs.

Decision function:

20

h : x �→w · Φ(x) + b.

see for example (Joachims, 2002)

min
w,ξ

1
2
�w�2 + C

m�

i=1

ξi

subject to: yi

�
w ·

�
Φ(x�

i)−Φ(xi)
��
≥ 1− ξi

ξi ≥ 0, ∀i ∈ [1, m] .
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Notes

The algorithm coincides with SVMs using feature 
mapping

Can be used with kernels.
Algorithm directly based on margin bound.

21

(x, x�) �→ Ψ(x, x�) = Φ(x�)−Φ(x).
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Bipartite Ranking

Training data: 

• sample of negative points drawn according to

• sample of positive points drawn according to

Problem: find hypothesis              in    with small 
generalization error

22

Hh :U→R

D+

S+ =(x1, . . . , xm)∈U.

D−

S−=(x�1, . . . , x
�
m�)∈U.

RD(h) = Pr
x∼D−,x�∼D+

�
h(x�)<h(x)

�
.
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Notes

More efficient algorithm in this special case (Freund 

et al., 2003).

Connection between AdaBoost and RankBoost 
(Cortes & MM, 04; Rudin et al., 05).

• if constant base ranker used.

• relationship between objective functions.

Bipartite ranking results typically reported in terms 
of AUC.

23
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ROC Curve

Definition: the receiver operating characteristic 
(ROC) curve is a plot of the true positive rate (TP) 
vs. false positive rate (FP).

• TP: % positive points correctly labeled positive.

• FP: % negative points incorrectly labeled positive.

24

(Egan, 1975)
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Area under the ROC Curve (AUC)

Definition: the AUC is the area under the ROC 
curve. Measure of ranking quality.

Equivalently, 

25

(Hanley and McNeil, 1982)
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AdaBoost and CD RankBoost

Objective functions: comparison.

26

FRank(α) =
�

(i,j)∈S−×S+

exp
�
− [f(xj)− f(xi)]

�

=
�

(i,j)∈S−×S+

exp (+f(xi)) exp (−f(xi))

= F−(α)F+(α).

FAda(α) =
�

xi∈S−∪S+

exp (−yif(xi))

=
�

xi∈S−

exp (+f(xi)) +
�

xi∈S+

exp (−f(xi))

= F−(α) + F+(α).
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AdaBoost and CD RankBoost

Property: AdaBoost (non-separable case).

• constant base learner             equal contribution 
of positive and negative points (in the limit).

• consequence: AdaBoost asymptotically achieves 
optimum of CD RankBoost objective.

Observations: if                      ,

27

h=1

F+(α)=F−(α)

d(FRank) = F+d(F−) + F−d(F+)
= F+

�
d(F−) + d(F+)

�

= F+d(FAda).

(Rudin et al., 2005)
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Bipartite RankBoost - Efficiency

Decomposition of distribution: for                        ,

Thus,  

28

D(x, x�) = D−(x)D+(x�).

(x, x�)∈(S−, S+)

Dt+1(x, x�) =
Dt(x, x�)e−αt[ht(x

�)−ht(x)]

Zt

=
Dt,−(x)eαtht(x)

Zt,−

Dt,+(x�)e−αtht(x
�)

Zt,+
,

Zt,− =
�

x∈S−

Dt,−(x)eαtht(x) Zt,+ =
�

x�∈S+

Dt,+(x�)e−αtht(x
�).with
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Ranking ≠ Classification

Bipartite case: can we learn to rank by training a 
classifier on positive and negative sets?

• different objective functions:  AUC vs. 0/1 loss.

• preliminary analysis (Cortes and MM, 2004): different 
results for imbalanced data sets, on average over 
all classifications.

• example, stochastic case:

29

A     BC
B     AC
C     AB

+ -



pageMehryar Mohri - Foundations of Machine Learning

This Talk

Score-based ranking

Preference-based ranking

30
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Preference-Based Setting

Definitions:

•   : universe, full set of objects.

•   : finite query subset to rank,          .

•   : target ranking for    (random variable).

Two stages: can be viewed as reduction.

• learn preference function                      .

• given   , use   to determine ranking   of   .

Running-time: measured in terms of |calls to   |.

31

V ⊆ U

U

V

τ∗ V

V h σ

h

V

h: U×U→ [0, 1]
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Preference-Based Ranking Problem

Training data: pairs          sampled i.i.d. according 
to   :

Problem: for any query set          , use   to return 
ranking        close to target     with small average 
error

32

(V, τ∗)

subsets ranked by
different labelers.

D

(V1, τ
∗
1 ), (V2, τ

∗
2 ), . . . , (Vm, τ∗m) Vi ⊆ U.

preference function                       .

V ⊆ U
τ∗

h
σh,V

learn classifier

h : U×U→ [0, 1]

R(h, σ) = E
(V,τ∗)∼D

[L(σh,V , τ∗)].
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Preference Function

         close to   when    preferred to   , close to   
otherwise. For the analysis,                     .

Assumed pairwise consistent:

May be non-transitive, e.g.,

Output of classifier or ‘black-box’.

33

h(u, v) + h(v, u) = 1.

h(u, v) = h(v, w) = h(w, v) = 1.

h(u, v) u1 v 0
h(u, v)∈{0, 1}
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Loss Functions

Preference loss:

Ranking loss:

34

L(σ, τ∗) =
2

n(n− 1)

�

u �=v

σ(u, v)τ∗(v, u).

L(h, τ∗) =
2

n(n− 1)

�

u �=v

h(u, v)τ∗(v, u).

(for fixed          )(V, τ∗)
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(Weak) Regret

Preference regret:

Ranking regret:

35

R�
rank(A) = E

V,τ∗,s
[L(As(V ), τ∗)]− E

V
min

σ̃∈S(V )
E

τ∗|V
[L(σ̃, τ∗)].

R�
class(h) = E

V,τ∗
[L(h|V , τ∗)]− E

V
min

h̃
E

τ∗|V
[L(h̃, τ∗)].
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Deterministic Algorithm

Stage one: standard classification. Learn preference 
function                       .

Stage two: sort-by-degree using comparison 
function   .

• sort by number of points ranked below.

• quadratic time complexity         .

36

h : U×U→ [0, 1]

h

(Balcan et al., 07)

O(n2)
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Randomized Algorithm

Stage one: standard classification. Learn preference 
function                       .

Stage two: randomized QuickSort (Hoare, 61) using    
as comparison function.

• comparison function non-transitive unlike 
textbook description.

• but, time complexity shown to be               in 
general.

37

h : U×U→ [0, 1]

h

O(n log n)

(Ailon & MM, 08)
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Randomized QS

38

left recursion right recursion

random 
pivot

u

v

h(v, u)=1 h(u, v)=1
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Bounds: for deterministic sort-by-degree algorithm 

• expected loss:

• regret:

Time complexity:            .

Deterministic Algo. - Bipartite Case

39

E
V,τ∗

[L(A(V ), τ∗)] ≤ 2 E
V,τ∗

[L(h, τ∗)].

R�
rank(A(V )) ≤ 2R�

class(h).

Ω(|V |2)

(V = V+ ∪ V−) (Balcan et al., 07)
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Bounds: for randomized QuickSort (Hoare, 61).

• expected loss (equality):

• regret:

Time complexity:  

• full set:                .

• top k:

Randomized Algo. - Bipartite Case

40

R�
rank(Qh

s (·)) ≤ R�
class(h) .

E
V,τ∗,s

[L(Qh
s (V ), τ∗)] = E

V,τ∗
[L(h, τ∗)].

O(n log n)
O(n + k log k).

(V = V+ ∪ V−) (Ailon & MM, 08)
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Proof Ideas

QuickSort decomposition:

Bipartite property:

41

puv +
1
3

�

w �∈{u,v}

puvw

�
h(u, w)h(w, v) + h(v, w)h(w, u)

�
= 1.

u

v w

τ∗(u, v) + τ∗(v, w) + τ∗(w, u) =

τ∗(v, u) + τ∗(w, v) + τ∗(u, w).
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Lower Bound

Theorem: for any deterministic algorithm   , there 
is a bipartite distribution for which

• thus, factor of 2    best in deterministic case.

• randomization necessary for better bound.
Proof: take simple case                        and assume 
that    induces a cycle.

• up to symmetry,    returns

42

Rrank(A) ≥ 2Rclass(h).

U =V ={u, v, w}
h

A

A

u, v, w w, v, u.or

u

v w
h

=
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Lower Bound

If    returns          , then 
choose     as:

If    returns          , then 
choose     as:

43

u, v, w u

v w
h

A
τ∗

u, v w

+-

A
τ∗

w, v, u

+-

w, v u

L[h, τ∗] =
1
3
;

L[A, τ∗] =
2
3
.
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Guarantees - General Case

Loss bound for QuickSort:

Comparison with optimal ranking (see (CSS 99)):

44

E
V,τ∗,s

[L(Qh
s (V ), τ∗)] ≤ 2 E

V,τ∗
[L(h, τ∗)].

Es[L(Qh
s (V ),σoptimal)] ≤ 2 L(h, σoptimal)

Es[L(h, Qh
s (V ))] ≤ 3 L(h, σoptimal),

where σoptimal = argmin
σ

L(h, σ).
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Weight Function

Generalization:

Properties: needed for all previous results to hold,

• symmetry:                       for all     .

• monotonicity:                                 for              .

• triangle inequality:                                    for all 
triplets        .

45

τ∗(u, v) = σ∗(u, v) ω(σ∗(u),σ∗(v)).

ω(i, j) = ω(j, i) i, j

ω(i, j),ω(j, k) ≤ ω(i, k) i < j < k

ω(i, j) ≤ ω(i, k) + ω(k, j)
i, j, k
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Weight Function - Examples

Kemeny:

Top-k:

Bipartite:

k-partite:  can be defined similarly.

46

w(i, j) = 1, ∀ i, j.

w(i, j) =

�
1 if i ≤ k and j > k;
0 otherwise.

w(i, j) =

�
1 if i ≤ k or j ≤ k;
0 otherwise.
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(Strong) Regret Definitions

Ranking regret:

Preference regret:

All previous regret results hold if for                     ,

47

Rclass(h) = E
V,τ∗

[L(h|V , τ∗)]−min
h̃

E
V,τ∗

[L(h̃|V , τ∗)].

E
τ∗|V1

[τ∗(u, v)] = E
τ∗|V2

[τ∗(u, v)]

V1, V2 ⊇ {u, v}

for all       (pairwise independence on irrelevant alternatives).

Rrank(A) = E
V,τ∗,s

[L(As(V ), τ∗)]−min
σ̃

E
V,τ∗

[L(σ̃|V , τ∗)].

u, v
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