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Regression Problem

Training data: sample drawn i.i.d. from set    
according to some distribution   ,

Loss function:                     a measure of closeness, 
typically                          or                          for 
some       .

Problem: find hypothesis              in    with small 
generalization error with respect to target  
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H

D
X

S =((x1, y1), . . . , (xm, ym))∈X×Y,

with          is a measurable subset.Y ⊆R

L(y, y�)=(y�−y)2 L(y, y�)= |y�−y|p
p≥1

f

RD(h) = E
x∼D

�
L

�
h(x), f(x)

��
.

h :X→R

L : Y ×Y →R+
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Notes

Empirical error:

In much of what follows:

•         or                   for some 

•                              mean squared error.
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Y =R Y =[−M, M ] M >0.

L(y, y�)=(y�−y)2

�RD(h) =
1
m

m�

i=1

L
�
h(xi), yi

�
.
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Generalization Bound - Finite H

Theorem: let    be a finite hypothesis set, and 
assume that    is bounded by    . Then, for any        , 
with probability at least       , 

Proof: By the union bound, 
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H

δ>0
1−δ

L M

∀h ∈ H, R(h) ≤ �R(h) + M

�
log |H | + log 2

δ

2m
.

Pr
�
∃h ∈ H

��R(h)− �R(h)
��>�

�
≤

�

h∈H

Pr
���R(h)− �R(h)

��>�

�
.

By Hoeffding, since                              ,L
�
h(x), f(x)

�
∈ [0, M ]

Pr
���R(h)− �R(h)

��>�
�
≤ 2e−

2m�2

M2 .
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Linear Regression

Feature mapping                  .

Hypothesis set: linear functions.

Optimization problem: empirical risk minimization.
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Φ : X→RN

{x �→ w · Φ(x) + b : w ∈ RN , b ∈ R}.

Φ(x)

y

min
w,b

F (w, b) =
1
m

m�

i=1

(w · Φ(xi) + b− yi)
2 .
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Linear Regression - Solution

Rewrite objective function as

Convex and differentiable function.
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F (W)=
1
m
�X�W −Y�2,

with W=





w1
...

wN

b




Y=




y1
...

ym



 .

∇F (W) =
2
m

X(X�W −Y).

∇F (W) = 0⇔ X(X�W−Y) = 0⇔ XX�W = XY.

X�=




Φ(x1)� 1
...

Φ(xm)� 1





X=
�

Φ(x1)...Φ(xm)
1 ... 1

�
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Linear Regression - Solution

Solution:

• Computational complexity:                   if matrix 
inversion in          .

• Poor guarantees, no regularization.

• For output labels in     ,        , solve   distinct 
linear regression problems.

8

O(mN +N
3)

O(N3)

Rp p>1 p

W =

�
(XX�)−1XY if XX� invertible.
(XX�)†XY in general.
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Ridge Regression

Optimization problem:

• directly based on generalization bound.

• generalization of linear regression.

• closed-form solution.

• can be used with kernels.
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where         is a (regularization) parameter.λ≥0

(Hoerl and Kennard, 1970)

min
w

F (w, b) = λ�w�2 +
m�

i=1

(w · Φ(xi) + b− yi)
2 ,
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Ridge Regression - Solution

Assume       : often constant feature used (but not 
equivalent to the use of original offset!).

Rewrite objective function as

Convex and diferentiable function.
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b=0

F (W)=λ�W�2 + �X�W−Y�2.

∇F (W) = 2λW + 2X(X�W −Y).

∇F (W) = 0⇔ (XX�+ λI)W = XY.

W = (XX�+ λI)−1XY.Solution:
� �� �

always invertible.
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Ridge Regression - Equivalent Formulations

Optimization problem:

Optimization problem:
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min
w,b

m�

i=1

(w · Φ(xi) + b− yi)2

subject to: �w�2 ≤ Λ2.

min
w,b

m�

i=1

ξ2
i

subject to: ξi = w · Φ(xi) + b− yi

�w�2 ≤ Λ2.



pageMehryar Mohri - Introduction to Machine Learning

Ridge Regression Equations

Lagrangian: assume       . For all 

KKT conditions:
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b=0 ξ,w, α�, λ ≥ 0,

L(ξ,w, α�, λ) =
m�

i=1

ξ2
i +

m�

i=1

α�
i(yi − ξi −w · Φ(xi)) + λ(�w�2 − Λ2).

∇wL = −
m�

i=1

α�
iΦ(xi) + 2λw = 0 ⇐⇒ w =

1
2λ

m�

i=1

α�
iΦ(xi).

∇ξiL = 2ξi − α�
i = 0 ⇐⇒ ξi = α�

i/2.

∀i ∈ [1, m], α�
i(yi − ξi −w · Φ(xi))=0

λ(�w�2 − Λ2) = 0.
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Moving to The Dual

Plugging in the expression of    and   s gives

Thus, 
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w ξi

L = −1
4

m�

i=1

α�2
i +

m�

i=1

α�
iyi −

1
4λ

m�

i,j=1

α�
iα

�
jΦ(xi)�Φ(xj)− λΛ2

= −λ
m�

i=1

α2
i + 2

m�

i=1

αiyi −
m�

i,j=1

αiαjΦ(xi)�Φ(xj)− λΛ2,

with              .α�
i =2λαi

L =
m�

i=1

α�2
i

4
+

m�

i=1

α�
iyi−

m�

i=1

α�
i
2

2
− 1

2λ

m�

i,j=1

α�
iα

�
jΦ(xi)�Φ(xj)+λ

� 1
4λ2

�
m�

i=1

α�
iΦ(xi)�2−Λ2

�
.
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RR - Dual Optimization Problem

Optimization problem:

Solution:
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or

h(x) =
m�

i=1

αiΦ(xi) · Φ(x),

with

max
α∈Rm

−λα�α + 2α�y −α�(X�X)α

max
α∈Rm

−α�(X�X + λI)α + 2α�y.

α = (X�X + λI)−1y.
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Direct Dual Solution

Lemma: The following matrix identity always holds.

Proof: Observe that                                            
Left-multiplying by                    and right-
multiplying by                    yields the statement.

Dual solution:    such that 
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(XX�+ λI)−1X = X(X�X + λI)−1.

(XX�+ λI)X = X(X�X + λI).
(XX�+ λI)−1

(X�X + λI)−1

α

W =
m�

i=1

αiK(xi, ·) =
m�

i=1

αiΦ(xi) = Xα.

By lemma, W = (XX�+ λI)−1XY = X(X�X+ λI)−1Y.

This gives α = (X�X+ λI)−1Y.
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O(mN
2 + N

3) O(N)

O(κm
2 + m

3) O(κm)

Solution Prediction

Primal

Dual

Computational Complexity

16
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Kernel Ridge Regression

Optimization problem:

Solution:

17

or max
α∈Rm

−α�(K + λI)α + 2α�y.

max
α∈Rm

−λα�α + 2α�y −α�Kα

with α = (K + λI)−1y.

h(x) =
m�

i=1

αiK(xi, x),

(Saunders et al., 1998)
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Notes

Advantages:

• strong theoretical guarantees.

• generalization to outputs in    : single matrix 
inversion (Cortes et al., 2007).

• use of kernels.

Disadvantages:

• solution not sparse.

• training time for large matrices: low-rank 
approximations of kernel matrix, e.g., Nyström 
approx., partial Cholesky decomposition.

18

Rp



pageMehryar Mohri - Introduction to Machine Learning

Support Vector Regression

Hypothesis set:

Loss function:  -insensitive loss.
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(Vapnik, 1995)

{x �→ w · Φ(x) + b : w ∈ RN , b ∈ R}.
�

L(y, y�) = |y� − y|� = max(0, |y� − y| − �).

Φ(x)

y

�

w·Φ(x)+b

Fit ‘tube’ with 
width   to data.�
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Support Vector Regression (SVR)

Optimization problem: similar to that of SVM.

Equivalent formulation:
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1
2
�w�2 + C

m�

i=1

��yi − (w · Φ(xi) + b)
��
�
.

min
w,ξ,ξ�

1
2
�w�2 + C

m�

i=1

(ξi + ξ�
i)

subject to (w · Φ(xi) + b)− yi ≤ � + ξi

yi − (w · Φ(xi) + b) ≤ � + ξ�
i

ξi ≥ 0, ξ�
i ≥ 0.

(Vapnik, 1995)
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SVR - Dual Optimization Problem

Optimization problem:

Solution:

Support vectors: points strictly outside the tube.
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h(x) =
m�

i=1

(α�
i − αi)K(xi,x) + b

with b =

�
−

�m
i=1(α

�
j − αj)K(xj , xi) + yi + � when 0 < αi < C

−
�m

i=1(α
�
j − αj)K(xj , xi) + yi − � when 0 < α�

i < C.

max
α,α�

− �(α� + α)�1 + (α� − α)�y − 1
2
(α� −α)�K(α� −α)

subject to: (0 ≤ α ≤ C) ∧ (0 ≤ α� ≤ C) ∧ ((α� −α)�1 = 0) .
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Notes

Advantages:

• strong theoretical guarantees.

• sparser solution.

• use of kernels.

Disadvantages:

• selection of two parameters:    and  . Heuristics:

• search    near maximum   ,    near average 
difference of   s, measure of no. of SVs.

• large matrices: low-rank approximations of 
kernel matrix.

22

C �

C y �
y
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Alternative Loss Functions
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    













x

x !→max(0, |x|− ε)2




x !→

{

x
2 if |x| ≤ c

2c|x|− c
2 otherwise.


x !→max(0, |x|− ε)
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SVR - Quadratic Loss

Optimization problem:

Solution:

Support vectors: points strictly outside the tube.
For       , coincides with KRR.
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h(x) =
m�

i=1

(α�
i − αi)K(xi,x) + b

with b =

�
−

�m
i=1(α

�
j − αj)K(xj , xi) + yi + � when 0 < αi ∧ ξi = 0

−
�m

i=1(α
�
j − αj)K(xj , xi) + yi − � when 0 < α�

i ∧ ξ�
i = 0.

max
α,α�

− �(α� + α)�1 + (α� −α)�y − 1
2
(α� −α)�

�
K +

1
C

I
�

(α� −α)

subject to: (α ≥ 0) ∧ (α ≥ 0) ∧ (α� −α)�1 = 0) .

�=0
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On-line Regression

On-line version of batch algorithms:

• stochastic gradient descent.

• primal or dual.

Examples:

• Mean squared error function: Widrow-Hoff (or 
LMS) algorithm (Widrow and Hoff, 1995).

• SVR ε-insensitive (dual) linear or quadratic 
function: on-line SVR.
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Widrow-Hoff

26

WidrowHoff(w0)
1 w1 ← w0 � typically w0 = 0
2 for t← 1 to T do
3 Receive(xt)
4 �yt ← wt · xt

5 Receive(yt)
6 wt+1 ← wt + 2η(wt · xt − yt)xt � η>0
7 return wT+1

(Widrow and Hoff, 1988)
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Dual On-Line SVR
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(b=0) (Vijayakumar and Wu, 1988)

DualSVR()
1 α← 0
2 α� ← 0
3 for t← 1 to T do
4 Receive(xt)
5 �yt ←

�T
s=1(α

�
s − αs)K(xs, xt)

6 Receive(yt)
7 α�

t+1 ← α�
t + min(max(η(yt − �yt − �),−α�

t), C − α�
t)

8 αt+1 ← αt + min(max(η(�yt − yt − �),−αt), C − αt)
9 return

�T
t=1 αtK(xt, ·)
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LASSO

Optimization problem:  ‘least absolute shrinkage 
and selection operator’.

Solution: convex quadratic program (QP).

• general: standard QP solvers.

• specific algorithm: LARS (least angle regression 
procedure), entire path of solutions.

28

min
w

F (w, b) = λ�w�1 +
m�

i=1

(w · xi + b− yi)
2 ,

where         is a (regularization) parameter.λ≥0

(Tibshirani, 1996)
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Sparsity of L1 regularization

29

L1 regularization L2 regularization
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Notes

Advantages:

• theoretical guarantees.

• sparse solution.

• feature selection.

Drawbacks:

• no natural use of kernels.

• no closed-form solution (not necessary, but can 
be nice for theoretical analysis).

30
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Regression

Many other families of algorithms: including

• neural networks.

• decision trees.

• boosting trees for regression.

31
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