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Regression Problem

B Training data: sample drawn i.i.d. from set X
according to some distribution D,

S:(($1,y1), Cee (xm,ym))EXxY,

with Y CR is a measurable subset.

m [oss function: L: Y xY —R_a measure of closeness,

typically L(y,v')=(v'—y)” or L(y,y")=|y'—y|* for
some p> 1.

® Problem: find hypothesis h: X —R in H with small
generalization error with respect to target f

Rp(h) = E [L(h(z), f(z))].

x~D
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Notes
® Empirical error:
R 1
Rp(h) = — > L(h(zi),y:)-
1=1

® |n much of what follows:
®Y =R orY =[-M, M]for some M >0.

® L(y,y")=(y' —y)’—> mean squared error.
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Generalization Bound - Finite H

B Theorem:let H be a finite hypothesis set, and
assume that L is bounded by M. Then, for any 6 >0,
with probability at least1—4,

log |H| + log 2

2m

Vh € H,R(h) < R(h) + M\/

B Proof: By the union bound,

Pr [ah c H|R(h) — R(n) >e} <Y Pr [\R(h) ~ R(n) >e]
heH

By Hoeffding, since L(h(x), f(z)) €0, M],

AN 2m62

Pr [|R(h) —R(h)\x} < 92¢™ BT

Mehryar Mohri - Introduction to Machine Learning page 5



Linear Regression

m Feature mapping®: X —R".

® Hypothesis set: linear functions.
{x — w-®(x)+b: WERN,[?E]R}.

® Optimization problem: empirical risk minimization.
1

m

1 _ . ) _ 2
min F(w,b) = — % (w-®(z;) +b—y:)".
1=1
Ya
®
o ® °
o &0
®
®
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Linear Regression - Solution

® Rewrite objective function as F(W)= iHXTW -Y|?
m
X — [q)(xl)...q)(xm)]

1 1 _ —
" B(xy) 1 o Y1
with X' = ; W=| ‘" |Y=]:
w
_(I)(ajm)—r 1_ bN | Ym

B Convex and differentiable function.

VF(W) = 3X(XTW -Y).

m

VFW)=0X(X'"W-Y)=0& XX'W=XY.

Mehryar Mohri - Introduction to Machine Learning page 7



Linear Regression - Solution

A Solution:

(XXT)"1XY if XX invertible.

W =«
(XX")'XY  in general.

\

e Computational complexity: O(mN + N?) if matrix
inversion in O(N®).

® Poor guarantees, no regularization.

® For output labels in R?, p>1, solve p distinct
linear regression problems.
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Ridge Regression
(Hoerl and Kennard, 1970)
B Optimization problem:

m“i’n F(w,b) = \|w|* + Z (W - ®(x;)+b—ys),
1=1
where A >0 is a (regularization) parameter.

® directly based on generalization bound.
® generalization of linear regression.
® closed-form solution.

® can be used with kernels.
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Ridge Regression - Solution

B Assume b=0: often constant feature used (but not
equivalent to the use of original offset!).

B Rewrite objective function as
F(W)=A|W[* +[X'W - Y]|*.
B Convex and diferentiable function.
VE(W) =2AW 4+ 2X(X'W - Y).
VF(W) =0« (XX"+ X)W = XY.

® Solution: |W = (XXT+ AI)"1XY]|
—

always invertible.
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Ridge Regression - Equivalent Formulations

B Optimization problem:

m

migl (W - ®(z;) +b—y;)°
WP =1

subject to: |[w|* < AZ.
B Optimization problem°

mm Zf

subject to: fi =w-®(z;)+b—y;
lwl]* < A
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Ridge Regression Equations

C Lagrangian'assume b=0.Forall¢, w,a’,\ >0,
L(& w,a, \) 252+Za i — & — W () + A w2 — A?),

ma KKT condltlons.

m 1 Tre
Ve, L =28 —a; =0 & = a; /2.

Vi € [Lm]aa;(y’b o gz — W (I)(.CBZ)):O
Allwl* =A%) = 0.
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Moving to The Dual

o Plugging in the expression of wand &;s gives

= ZE )3 ol ;A jf_:l a;a;@(xi)T@(xj)+>\($H ia;@(@)w—/\?).
& Thus,
L:—iia’?—l—i&gyi Z afol;®(z;) " ®(z;) — AN
i=1 i=1 ij=1
— —)\ia? + Qiaiyi — f: oo ®(x;) ®(x;) — A?,
i=1 i=1 ij=1

with o, =2\a; .
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RR - Dual Optimization Problem

B Optimization problem:

max “da'a+2a'y —a' X' X)a
aclR™

or max —a'(X"X + M) + 2a'y.
aclR™

A Solution:

h(x) = Zozq;@(xi) - P(x),

with a = (X'X + \I) 7 ly.
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Direct Dual Solution

B [emma:The following matrix identity always holds.
(XX + A7 X = X(X'X + AI) L
B Proof: Observe that(XX' + \I)X = X(X'X + AI).
Left-multiplying by (XX' 4+ A\I)~'and right-
multiplying by (X'X + AI) " 'yields the statement.

A Dual solution:ﬂ? such that m
W = ZaiK(azi, ) = Z a; P (r;) = Xa.
1=1 1=1
By lemma, W = (XX '+ A\I) ' XY = X(X'X+ AI) Y.
This gives a=(X'X+AI)"1Y|
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Computational Complexity

Solution Prediction
Primal O(mN? + N?) O(N)
Dual O(km® +m®) O(km)
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Kernel Ridge Regression

(Saunders et al., 1998)
B Optimization problem:

max —da' a+2a'y — a' Ka
acR™

or max —a'(K+ MN)a +2a'y.
aclR™

A Solution:

E a; K 33'1,7

with o= (K + )\I)
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Notes

® Advantages:
® strong theoretical guarantees.

® generalization to outputs in R”: single matrix
Inversion (Cortes et al., 2007).

® use of kernels.

® Disadvantages:
® solution not sparse.

® training time for large matrices: low-rank
approximations of kernel matrix, e.g., Nystrom
approx., partial Cholesky decomposition.
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Support Vector Regression

(Vapnik, 1995)
B Hypothesis set:

{x—w- ®(x)+b:weRY beR}.
B Loss function:e-insensitive loss.

L(y,y') =y — yle = max(0, |y’ — y| —€).

Fit ‘tube’ with
width € to data.
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Support Vector Regression (SVR)

(Vapnik, 1995)
m Optimization problem: similar to that of SVM.

1 m
Il +C Y fyi — (w- @(2:) + ).
=1

® Equivalent formulation:
1

Juin, o flwlf® + CY (& +E)
T i=1

subject to (w - ®(x;) +b) —y; < e+¢&;
i — (W -®(x;) +b) <e+&
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SVR - Dual Optimization Problem

B Optimization problem:

1
max —e(a +a)'1+ (e —a)'y—=(ad —a) Ko — a)

a,o’

subject to: (0 < a<CIA(0<a' <C)A((a —a)'1=0).

A Solution:

h(x) = Z(Oz; — ;) K(x4,%) + b

with » = _221(a9_aj)K($j7$i)+yi—l—€ when 0 < o; < C
_221(04;_%)K($j7%)+y7;—6 when 0 < o < C.

B Support vectors: points strictly outside the tube.
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Notes

® Advantages:
® strong theoretical guarantees.
® sparser solution.

® use of kernels.

® Disadvantages:
® selection of two parameters: C'and e. Heuristics:

® search C' near maximum y, € near average
difference of ys, measure of no. of SVs.

® |arge matrices: low-rank approximations of
kernel matrix.
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Alternative Loss Functions

quadratic €-insensitive

8- > max(0, |z| — ¢)2
(- Huber
z? if |z] <c
T _
" 2c|z| — ¢ otherwise.
0 47 . .
E-insensitive
r—max(0, |z| — €)
2_
O_
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SVR - Quadratic Loss

B Optimization problem:

1 1
max — e(a’ + a)'1+(ad —a)'y— i(a’ —a)' (K + EI) (o' — )

subject to: (¢ > 0) A (@ >0)A (o —a)'1=0).

A Solution: -
= (0} — ) K (xi,%) + b
1=1
with b = Z (J )K( )_l_yz‘|_€ when 0 < a; AN =0

O Support vectors: points strictly outside the tube.
B Fore=0, coincides with KRR.
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On-line Regression

B On-line version of batch algorithms:
® stochastic gradient descent.
® primal or dual.

B Examples:

® Mean squared error function:Widrow-Hoff (or
LMS) algorithm (Widrow and Hoff, 1995).

® SVR ¢-insensitive (dual) linear or quadratic
function: on-line SVR.
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Widrow-Hoff

(Widrow and Hoff, 1988)

WIDROWHOFF(wy)
1 wi; «— wg > typically wg =0
2 fort«—1toT1 do
3 RECEIVE(x;)
4 Yt — Wi - Xy
5 RECEIVE(y:)
6 Wil < Wi +20(We - Xe —yp)x¢ >n>0
7 return wopq
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Dual On-Line SVR

( h— 0) (Vijayakumar and Wu, 1988)
DUALSVR()
l a0
2 a0
3 fort<—1to1 do
4 RECEIVE(x¢)
5 G — D as (0 — ) K (w5, 1)
6 RECEIVE(y¢)
7 iy < ap + min(max(n(y: — 4 —€), —a;),C — a)
8 i1 — ap + min(max(n(y: — yr — €), —az), C — ay)
9 return Zthl ar K (x4, -)
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LASSO

(Tibshirani, 1996)

B Optimization problem: ‘least absolute shrinkage
and selection operator’.

min F(w,b) = A|wli+ Y (w-xi +b—y,)",
1=1
where A >0 is a (regularization) parameter.
B Solution: convex quadratic program (QP).
® general: standard QP solvers.

® specific algorithm: LARS (least angle regression
procedure), entire path of solutions.
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Sparsity of L1 regularization

" |

LI regularization L2 regularization
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Notes

® Advantages:
® theoretical guarantees.

® sparse solution.

® feature selection.

® Drawbacks:
® no natural use of kernels.

® no closed-form solution (not necessary, but can
be nice for theoretical analysis).
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Regression

B Many other families of algorithms: including
® neural networks.
® decision trees.

® boosting trees for regression.
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