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Motivation

®m Real-world problems often have multiple classes:
text, speech, image, biological sequences.

® Algorithms studied so far: designed for binary
classification problems.

® How do we design multi-class classification
algorithms?

® can the algorithms used for binary classification
be generalized to multi-class classification?

® can we reduce multi-class classification to binary
classification?
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Multi-Class Classification Problem

B Training data: sample drawn i.i.d. from set X
according to some distribution D,

S=(z1,y1),--+, (Tm,Ym)) EX XY,
® mono-label case: Card(Y)=k.
e multi-label case:Y ={—1,+1}"
® Problem:find classifier h: X —Y in H with small
generalization error,
® mono-label case: Rp(h)=E,~p[ln(w)2s(2)] -

e multi-label case: Rp(h)=E.wp [2 0 Lin(o)eslf ()] -
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Notes

B |n most tasks, number of classes k£ <100.

B Fork large or infinite, problem often not treated as
a multi-class classification problem, e.g., automatic
speech recoghnition.

B Computational efficiency issues arise for larger ks.

| |n general, classes not balanced.
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Approaches

| Single classifier:
® Decision trees.
® AdaBoost-type algorithm.
® SVM-type algorithm.

® Combination of binary classifiers:
® One-vs-all.
® One-vs-one.

® Error-correcting codes.
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AdaBoost- Type Algorithm

(Schapire and Singer, 2000)
® Training data (multi-label case):

(Z1,Y1)s -+, (Tins Ym ) €EX x {—1, 117,
®m Reduction to binary classification:
® each example leads to k£ binary examples:
(@i, 9:) = (@6, 1), 9al1]), - - o, (i, k), wilk]), @ € [1,m)].
® apply AdaBoost to the resulting problem.

® choice of oy .

B Computational cost: mk distribution updates at
each round.
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AdaBoost. MH

HC({~1,+1}5)),

ADABOOST.MH(S=((21,41), -, (TmsYm)))

1 fori+1tomdo
2 for [ — 1 to k do
D1 (Z, l) — ﬁ
fort«+1to 1T do
h; < base classifier in H with small error ¢, =Prp, [h¢(x;, 1) #yill]]
oy < choose > to minimize Z;
Lt Zi,l Dt@? l) eXp(_O‘tyi [l]ht(xzv l))
for 2 <— 1 to m do

for [ — 1 to k do
10 Dyy1(4,1) < Dy (4,1) exp(=atyi[lhe (2i,0))

Zy
11 fr e 3y auhy
12 return hp = sgn(fr)

© 00 O Ot i W
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Bound on Empirical Error

B Theorem:The empirical error of the classifier
output by AdaBoost.MH verifies:

T
R(h) <[] 2.
t=1
® Proof: similar to the proof for AdaBoost.

B Choice of ay:

® forH C({-1,+1}")**as for AdaBoost, o, =1 log 1=<.

€t

® forH C([-1,1]%)**)same choice: minimize upper
bound.

® other cases: numerical/approximation method.
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Multi-Class SVMs

(Weston and Watkins, 1999)

B Optimization problem

min 5Zuwm2+0> D G

1=1 l#y;
subject to: wy, - x; + by, > Wi -x; + 0 +2 — &

Ea >0, (3,0)€[l,m]x (Y —{yi}).

B Decision function:

h: x+—argmax (w; - X + b;).
ley
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Notes

B [dea:slack variable &; penalizes case where
(Wy, ~Xi +by,) — (W -x; +bp) < 2.

® Binary SVM obtained as special case:

W1 = —Wag, b1 = —b9, &1 = &2 = 2¢;.
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Dual Formulation

® Notation: k
o, = ZO&U C;l — 1yi:l'
[=1

B Optimization problem:

m
1 1
max 2 Dot Z[—iji%aj +aqagy, — Saaag(x; - x;)
i=1 il
subject to: VI € [1, k], Za” = Z Ci1 Ol
i=1 i=1

V(Z,l) < [l,m] X (Y—{yz}),o <y < C, Ny, = 0.

B Decision function:

m

h: x — argmax {Z(Cilai — ;1) (X - X) + by |.
I=1,...k "7
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Notes

® PDS kernel instead of inner product
® Optimization: complex constraints,mk-size problem.

® Generalization error: leave-one-out analysis and
bounds of binary SVM apply similarly.

B One-vs-all solution (non-optimal) feasible solution
of multi-class SVM problem.

| Simplification: single slack variable per point (Crammer
and Singer, 2002), &1 — &; .
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Simplified Multi-Class SVMs

(Crammer and Singer, 2001)

B Optimization problem°

mln — Z w||* + CZfz

subject to: Wy, - X; +0y,1 > W - X; +1 =&
(i, 1) €[1,m] x Y.

B Decision function:

h: x+— argmax (w; - X).
leY
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Notes

| Single slack variable per point: maximum of previous
slack variables (penalty for worst class):
k

k
> - max ;.
=1 B

® PDS kernel instead of inner product

® Optimization: complex constraints,mk-size problem.

® specific solution based on decomposition into m
diSjOint sets of constraints (Crammer and Singer, 2001).
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Dual Formulation

B Optimization problem° (a; ith row of matrix o)

m

max Zaz ey, — —Z(ai'aj)(xi'xj)

CVz
“7 1=1

subject to: Ogai <CAa;-1=0,7€ [1,m].

B Decision function:

h(x) = argmax (Zazl X; - ))

1=1
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Approaches

| Single classifier:
® Decision trees.
® AdaBoost-type algorithm.
® SVM-type algorithm.

B Combination of binary classifiers:
® One-vs-all.
® One-vs-one.

® Error-correcting codes.
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One-vs-All

B Technique:

® for each class /€Y learn binary
classifier h; =sgn(f;).

® combine binary classifiers via voting mechanism,

typically majority vote: h: x — argmax fi(x).
leY

® Problem: poor justification.
® calibration: classifier scores not comparable.

® nevertheless: simple and frequently used in
practice, computational advantages in some
cases.
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One-vs-One

B Technique:

® for each pair(l,l")€Y,l#l’ learn binary
classifier 1y : X — {0, 1}.

® combine binary classifiers via majority vote:

h(z) = argmax |{l : hy (z) = 1}|.
l'ey

B Problem:
® computational: train k(k — 1)/2 binary classifiers.

® overfitting: size of training sample could become
small for a given pair.
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Computational Comparison

Training Testing
One'VS'a” O(kBtrain (m)) O(kBtest)
O(km*®)
O(kQBtrain (m/k)) 2
One-vs-one (on average) O(k”Byest)
|O(k2_o‘mo‘) smaller Ngy per B

Time complexity for SVMs, & less than 3.
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Heuristics

(Platt et al., 2000)
B Training:

® reuse of computation between classifiers, e.g.,
sharing of kernel computations. @

® caching.
not 1 \‘not4
A Testing:
® directed acyclic graph.
not 2 ot4 /notl ot3
® smaller number of tests. / / \

E
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Error-Correcting Code Approach

(Dietterich and Bakiri, 1995)

B Technique:

® assign F-long binary code word to each class:
—> M = [My;] € {0, L}

® |earn binary classifier f;: X — {0, 1} for each
column. Example zin class [ labeled with M.

e classifier output( ()= (f1(z), ---,fF(fE))),

h: z+— argmin dgamming (Ml : f(x)) :
leYy
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lllustration

®m 8 classes, code length: 6.

f1(x

fa(z

fS(ZU

fa(x

f5(x

fo(x

0

codes

1| 2| 3| 4| 5] 6
llo|lo|O0|1]0]O
2l 1|lolojo|lo]|oO
3ol | rjol1|o
2l 4] 1] 1]0l0|0]O
Slslil1lolol 1]o
6l ol o[ 1] 1]|0] I
710/o0|1]0]|o0]O
slolI1]o]1|0O]|oO
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Error-Correcting Codes - Design

B Main ideas:

® independent columns: otherwise no effective
discrimination.

e distance between rows: if the minimal Hamming
distance between rows is d, then the multi-class

can correct L%J errors.

® columns may correspond to features selected
for the task.

® one-vs-all and one-vs-one (with ternary codes)
are special cases.
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Extensions

(Allwein et al., 2000)
® Matrix entries in{—1,0,+1}:

® examples marked with 0 disregarded during
training.

® ——> one-vs-one becomes also a special case.

® Margin loss L: function of yf(x), e.g., hinge loss.
® Hamming loss: .
h(x) = argmin Z 5
® Margin loss: ;,
h(x) = argmin ZL(Mljfj (2)).

lE{1,0.k} 5
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Continuous Codes

(Crammer and Singer, 2000, 2002)

® Optimization problem: (M; ith row of M)
min [|[M]|2 + C ;
in [MIE +C )¢

subject to: K(f(z;),M,,) > K(f(x;),M;) +1—¢;
(2,1) € [1,m] x [1, k].

B Decision function:

h: x — argmax K(f(x), M;).
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|deas

B Continuous codes: real-valued matrix.
B Learn matrix code M.

® Similar optimization problems with other matrix
norms.

m Kernel K used for similarity between matrix row
and prediction vector.
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Multiclass Margin

m Definition: let H CR**" . The margin of the training
point (z,y) € X x Yfor the hypothesis h€ H is

/Yh(xvy) — h(ajay) o H,laXh($,y/).
y' 7y

B Thus, h misclassifies(z,y) iff v, (2, y) <0.
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Margin Bound
(Koltchinskii and Panchenko, 2002)
B Theorem:LetHi={x— h(z,y): he Hyyec Y}
where H CR**Y  Fix p>0.Then, for anyé >0, with
probability at least 1 -4, the following holds

~ k2R, (H log *
Prfyn(.9) < 0] < i) < p) + -2t oy [250

for some constants ¢, ¢ >0.
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Applications

® One-vs-all approach is the most widely used.

® No clear empirical evidence of the superiority of
other approaches (Rifkin and Klautau, 2004).

® except perhaps on small data sets with relatively
large error rate.

B large structured multi-class problems: often
treated as ranking problems (see next lecture).
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