
Introduction to Machine Learning
Lecture 13

Mehryar Mohri
Courant Institute and Google Research

mohri@cims.nyu.edu

mailto:mohri@cims.nyu.edu
mailto:mohri@cims.nyu.edu


pageMehryar Mohri - Introduction to Machine Learning 2

Multi-Class Classification
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Motivation

Real-world problems often have multiple classes: 
text, speech, image, biological sequences.

Algorithms studied so far: designed for binary 
classification problems.

How do we design multi-class classification 
algorithms? 

• can the algorithms used for binary classification 
be generalized to multi-class classification?

• can we reduce multi-class classification to binary 
classification?
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Multi-Class Classification Problem

Training data: sample drawn i.i.d. from set    
according to some distribution   ,

• mono-label case:                  .

• multi-label case:                    .

Problem: find classifier              in    with small 
generalization error,

• mono-label case:                                 .

• multi-label case:                                               .

H

X
D

Card(Y )=k

Y ={−1, +1}k

h : X→Y

RD(h)=Ex∼D[1h(x) �=f(x)]

S =((x1, y1), . . . , (xm, ym))∈X×Y,

RD(h)=Ex∼D

�
1
k

�k
l=1 1[h(x)]k �=[f(x)]k

�
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Notes

In most tasks, number of classes 

For   large or infinite, problem often not treated as 
a multi-class classification problem, e.g., automatic 
speech recognition.

Computational efficiency issues arise for larger   s.

In general, classes not balanced.

5

k≤100.

k

k
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Approaches

Single classifier:

• Decision trees.

• AdaBoost-type algorithm.

• SVM-type algorithm.

Combination of binary classifiers:

• One-vs-all.

• One-vs-one.

• Error-correcting codes.
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AdaBoost-Type Algorithm

Training data (multi-label case):

Reduction to binary classification:

• each example leads to    binary examples: 

• apply AdaBoost to the resulting problem.

• choice of     .

Computational cost:      distribution updates at 
each round.

(Schapire and Singer, 2000)

(x1, y1), . . . , (xm, ym)∈X×{−1, 1}k.

(xi, yi)→ ((xi, 1), yi[1]), . . . , ((xi, k), yi[k]), i ∈ [1, m].

αt

k

mk
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AdaBoost.MH

8

AdaBoost.MH(S=((x1, y1), . . . , (xm, ym)))
1 for i← 1 to m do
2 for l← 1 to k do
3 D1(i, l)← 1

mk
4 for t← 1 to T do
5 ht ← base classifier in H with small error �t =PrDt [ht(xi, l) �=yi[l]]
6 αt ← choose � to minimize Zt

7 Zt ←
�

i,l Dt(i, l) exp(−αtyi[l]ht(xi, l))
8 for i← 1 to m do
9 for l ← 1 to k do

10 Dt+1(i, l)← Dt(i,l) exp(−αtyi[l]ht(xi,l))
Zt

11 fT ←
�T

t=1 αtht

12 return hT = sgn(fT )

H⊆({−1, +1}k)(X×Y )
.
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Bound on Empirical Error

Theorem: The empirical error of the classifier 
output by AdaBoost.MH verifies:

Proof: similar to the proof for AdaBoost.

Choice of    : 

• for                         , as for AdaBoost,

• for                     , same choice: minimize upper 
bound.

• other cases: numerical/approximation method.
9

�R(h) ≤
T�

t=1

Zt.

αt = 1
2 log 1−�t

�t
.

αt

H⊆({−1, +1}k)X×Y

H⊆([−1, 1]k)X×Y
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Multi-Class SVMs

Optimization problem:

Decision function:

(Weston and Watkins, 1999)

min
w,ξ

1
2

k�

l=1

�wl�2 + C
m�

i=1

�

l �=yi

ξil

subject to: wyi · xi + byi ≥ wl · xi + bl + 2− ξil

ξil ≥ 0, (i, l)∈ [1, m]×(Y −{yi}).

h : x �→argmax
l∈Y

(wl · x + bl).
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Notes

Idea: slack variable    penalizes case where

Binary SVM obtained as special case:

11

ξil

(wyi · xi + byi)− (wl · xi + bl) < 2.

w1 · x + b1 = +1
w1 · x + b1 = −1

w2 · x + b2 = −1

w2 · x + b2 = +1

w1 = −w2, b1 = −b2, ξi1 = ξi2 = 2ξi.
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Notation: 

Optimization problem:

Decision function:

Dual Formulation

αi =
k�

l=1

αil cil = 1yi=l.

max
α

2
m�

i=1

αi +
�

i,j,l

[−1
2
cjyiαiαj + αilαjyi −

1
2
αilαjl](xi · xj)

subject to: ∀l ∈ [1, k],
m�

i=1

αil =
m�

i=1

cilαi

∀(i, l) ∈ [1, m]×(Y −{yi}), 0 ≤ αil ≤ C, αiyi = 0.

h : x �→ argmax
l=1,...,k

� m�

i=1

(cilαi − αil)(xi · x) + bl

�
.
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PDS kernel instead of inner product

Optimization: complex constraints,     -size problem.

Generalization error: leave-one-out analysis and 
bounds of binary SVM apply similarly.

One-vs-all solution (non-optimal) feasible solution 
of multi-class SVM problem.

Simplification: single slack variable per point (Crammer 

and Singer, 2002),            .ξil → ξi

Notes

mk
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Simplified Multi-Class SVMs

Optimization problem:

Decision function:

(Crammer and Singer, 2001)

h : x �→argmax
l∈Y

(wl · x).

min
w,ξ

1
2

k�

l=1

�wl�2 + C
m�

i=1

ξi

subject to: wyi · xi + δyi,l ≥ wl · xi + 1− ξi

(i, l)∈ [1, m]×Y.
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Single slack variable per point: maximum of previous 
slack variables (penalty for worst class):

PDS kernel instead of inner product

Optimization: complex constraints,     -size problem.

• specific solution based on decomposition into   
disjoint sets of constraints (Crammer and Singer, 2001).

Notes

mk

m

k�

l=1

ξil →
kmax

l=1
ξil.
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Dual Formulation

Optimization problem: (     th row of matrix   )

Decision function:

16

max
α=[αij ]

m�

i=1

αi · eyi −
1
2

m�

i=1

(αi · αj)(xi · xj)

subject to: 0 ≤ αi ≤ C ∧αi · 1 = 0, i ∈ [1, m].

h(x) = kargmax
l=1

� m�

i=1

αil(xi · x)
�
.

αi αi
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Approaches

Single classifier:

• Decision trees.

• AdaBoost-type algorithm.

• SVM-type algorithm.

Combination of binary classifiers:

• One-vs-all.

• One-vs-one.

• Error-correcting codes.
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One-vs-All

Technique: 

• for each class        learn binary 
classifier                . 

• combine binary classifiers via voting mechanism, 
typically majority vote:

Problem: poor justification.

• calibration: classifier scores not comparable.

• nevertheless: simple and frequently used in 
practice, computational advantages in some 
cases.

l∈Y
hl =sgn(fl)

h : x �→ argmax
l∈Y

fl(x).
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One-vs-One

Technique: 

• for each pair                    learn binary 
classifier                     . 

• combine binary classifiers via majority vote:

Problem:

• computational: train                binary classifiers.

• overfitting: size of training sample could become 
small for a given pair.

(l, l�)∈Y, l �= l�

hll� :X→{0, 1}

h(x) = argmax
l�∈Y

��{l : hll� (x) = 1}
��.

k(k − 1)/2
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Computational Comparison

O(kBtrain(m)) O(kBtest)

O(k2Btrain(m/k))
(on average)

O(k2
Btest)

Training Testing

One-vs-all

One-vs-one

O(km
α)

O(k2−α
m

α) smaller NSV per B

Time complexity for SVMs, α less than 3.
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Heuristics

Training: 

• reuse of computation between classifiers, e.g., 
sharing of kernel computations.

• caching.

Testing: 

• directed acyclic graph.

• smaller number of tests.

• ordering?

1 vs 4

2 vs 4

not 1

1 vs 3

not 4

3 vs 4

not 2

2 vs 3

not 4 not 1

1 vs 2

not 3

4 3 2 1

(Platt et al., 2000)
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Error-Correcting Code Approach

Technique:

• assign   -long binary code word to each class:

• learn binary classifier                    for each 
column.  Example   in class   labeled with      .

• classifier output:                                      ,

 (Dietterich and Bakiri, 1995)

x l

F

M = [Mlj ] ∈ {0, 1}[1,k]×[1,F ].

Mlj

fj: X→{0, 1}

h : x �→argmin
l∈Y

dHamming

�
Ml, f(x)

�
.

�
f(x)=

�
f1(x), . . . , fF (x)

��
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8 classes, code length: 6.

Illustration

1 2 3 4 5 6
1 0 0 0 1 0 0
2 1 0 0 0 0 0
3 0 1 1 0 1 0
4 1 1 0 0 0 0
5 1 1 0 0 1 0
6 0 0 1 1 0 1
7 0 0 1 0 0 0
8 0 1 0 1 0 0

f1(x)f2(x)f3(x)f4(x)f5(x)f6(x)

0 1 1 0 1 1

cl
as

se
s

codes

new example    x
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Error-Correcting Codes - Design

Main ideas:

• independent columns: otherwise no effective 
discrimination.

• distance between rows: if the minimal Hamming 
distance between rows is   , then the multi-class 
can correct         errors.

• columns may correspond to features selected 
for the task.

• one-vs-all and one-vs-one (with ternary codes) 
are special cases.

d�
d−1
2

�
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Extensions

Matrix entries in                :

• examples marked with   disregarded during 
training.

•          one-vs-one becomes also a special case.

Margin loss   : function of         , e.g., hinge loss.

• Hamming loss: 

• Margin loss:

25

 (Allwein et al., 2000)

{−1, 0, +1}
0

L yf(x)

h(x) = argmin
l∈{1,...,k}

F�

j=1

1− sgn
�
Mljfj(x)

�

2
.

h(x) = argmin
l∈{1,...,k}

F�

j=1

L
�
Mljfj(x)

�
.
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Continuous Codes

Optimization problem: (      th row of    )

Decision function:

26

Ml l M

min
M,ξ

�M�22 + C
m�

i=1

ξi

subject to: K(f(xi),Myi) ≥ K(f(xi),Ml) + 1− ξi

(i, l) ∈ [1, m]× [1, k].

h : x �→ argmax
l∈{1,...,k}

K(f(x),Ml).

(Crammer and Singer, 2000, 2002)
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Ideas

Continuous codes: real-valued matrix.

Learn matrix code    .

Similar optimization problems with other matrix 
norms.

Kernel    used for similarity between matrix row 
and prediction vector.

27

K

M
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Multiclass Margin

Definition: let               . The margin of the training                 
point                   for the hypothesis         is

Thus,    misclassifies        iff                .

28

H⊆RX×Y

(x, y)∈X×Y h∈H

h (x, y)

γh(x, y) = h(x, y)−max
y� �=y

h(x, y�).

γh(x, y)≤0
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Margin Bound

Theorem: Let                                             
where               . Fix       . Then, for any       , with 
probability at least       , the following holds

29

H⊆RX×Y
H1 ={x �→ h(x, y) : h ∈ H, y ∈ Y }

δ>0
1−δ

ρ>0

Pr[γh(x, y) ≤ 0] ≤ �Pr[γh(x, y) ≤ ρ] + c
k

2Rm(H1)
ρ

+ c
�

�
log 1

δ

m
,

for some constants           .c, c� >0

(Koltchinskii and Panchenko, 2002)
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Applications

One-vs-all approach is the most widely used.

No clear empirical evidence of the superiority of 
other approaches (Rifkin and Klautau, 2004).

• except perhaps on small data sets with relatively 
large error rate.

Large structured multi-class problems: often 
treated as ranking problems (see next lecture).
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