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Bagging
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Problem: given   binary classification hypotheses 
(              ) find combined classifier

When does it work? Need diversity (e.g., different 
features, different training sets).

          use different subsets of the data for training.

Ensemble Methods - Classification

with better performance.

T
h1, . . . , hT

f : x �→ sgn
� T�

t=1

αtht

�
,



pageMehryar Mohri - Introduction to Machine Learning

Bagging - Classification
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(Breiman, 1996)
Bagging (Boostrap aggregating).

Bagging(S =((x1, y1), . . . , (xm, ym)))
1 for t← 1 to T do
2 St ← Bootstrap(S) � i.i.d. sampling with replacement from S.
3 ht ← TrainClassifier(St)
4 return hS = x �→MajorityVote((h1(x), . . . , hT (x)))
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Bagging - Regression
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(Breiman, 1996)
Bagging (Boostrap aggregating).

Bagging(S =((x1, y1), . . . , (xm, ym)))
1 for t← 1 to T do
2 St ← Bootstrap(S) � i.i.d. sampling with replacement from S.
3 ht ← TrainRegressionAlgorithm(St)
4 return hS = x �→Mean((h1(x), . . . , hT (x)))
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Bias-Variance Decomposition

Proposition: for any hypothesis     , the following 
decomposition holds:

Bias-variance minimization trade-off:

• small    and large   : small bias, large variance.

• large    and small   : large bias, small variance.
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Bias-Variance Decomp. Proof

Observe that

Therefore,
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Bias-Variance Decomp. Proof

Since                                  , the following holds:
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Ensemble Bias

Bias of averaged hypothesis in regression:
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Thus, relatively unbiased base hypotheses
lead to relatively unbiased ensemble.
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Ensemble Variance

Proposition: for any   , the variance of the 
ensemble hypothesis at    is given by

• thus, if approximately uncorrelated base 
hypotheses                              .

• assume approximately equal variances, then
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Bagging - Regression

Regression properties:

• small covariances (different subsets).

• similar variances (on average).

• similar biases.

Classification: unclear explanation.
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