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Boosting
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Boosting ldeas

B Main idea: use weak learner to create strong learner.

B Ensemble method: combine base classifiers returned
by weak learner.

® Finding simple relatively accurate base classifiers
often not hard.

® But, how should base classifiers be combined?
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AdaBoost

(Freund and Schapire, 1997)
HC{-1,+1}".

ADABOOST(S=((21,91), - -, (T, Ym)))

1 fori<—1tomdo

3 fort «— 1 to T do

4 h: < base classifier in H with small error ¢, =Prp, |h¢(x;) # ;]
5 p — = 5 1log — I—e

6 Ly 2[6,5(1 — et)] >normalization factor

7 for : — 1 to m do

8 D1 (3) < D (3) exp(—Z(:tyiht(:vi))

10 return h = sgn(f)
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Notes

® Distributions D;over training sample:
® originally uniform.

® at each round, the weight of a misclassified
example is increased.

® observation: D, (i)= £

s=1

since

Dt(i)e_atyiht(xi) Dt_l(Z')e—oét—wz'ht—l(I’i)e—atyz'ht(&"i) —yi Db ashs(xs)

1e
D ) = = —
t+1(3) m

Zy Zi—1724 1., Z,

B Weight assigned to base classifier h;: a; directy
depends on the accuracy of h; at round ¢ .
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lllustration
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Bound on Empirical Error
(Freund and Schapire, 1997)

B Theorem:The empirical error of the classifier
output by AdaBoost verifies:

R <o -23 (3-)]

o [f further for all te1,T], ”y<(%— t), then
°T).

AN

R(h) < exp(—2

® v does not need to be known in advance:
adaptive boosting.
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. ) —y; fe(xz;)
® Proof: Since, as we saw, Dt—l—l( ): Cl
s=1 S

— Z Ly, fzi)<0 < — Zexp(—yif(ilfz'))

1=1

< —Z {mHZt}DT—I—l HZt

® Now, since Zt is 2 normalization factor,

7, = iDt(Z‘)e_atyiht(xi)
1=1
> Di(i)em ™+ Y Dy(i)e™

iyzht(a:z)>0 i:yihe(x;)<0
(1 — €z)e™ ¥t + e

R(h)

=(1—¢ \/7 EzZ\/et(l—et).
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® Notes:
® o; minimizer of a— (1—¢;)e” “+ee
® since (1—e;)e =€, at each round,AdaBoost

assigns the same probability mass to correctly
classified and misclassified instances.

e for base classifiers x+—|[—1,+1],a;can be
similarly chosen to minimize Z,.
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AdaBoost = Coordinate Descent

m Objective Function: convex and differentiable.

m m

F(a) = Z e~ Yif (@) — Z o~ Vi iy athe(xs)

— X

€

|01 loss
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® Direction: unit vector e; with

dF(O{t_l -+ net)

e; — argmin
t gt dn

m

n=0

® Since F(ay_1 + ney) :Z Vi 26z she(w3) g —yinha (w:)

1=1
dF(Oét_l -+ net)
dn

t—1
— Zyzht T;) exp [— Vi Zozshs(a:

—Zyzht x;) Dy (i {mHZ}

(1= &) — €] [mﬁ Zs} -

2¢; — 1]

[m:r[iZs}.

Thus, direction corresponding to base classifier with smallest error.
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® Step size: obtained via

dF(o—1 + ney) h
=0 — yihe(z; exp[ Vi agsh }e yihe(zi)n — ()
i 2} Z
& — Zyzht () Dy (i [mHZ }e yihe(zi)n — ()
=1
o Zyiht(xi)Dt(Z’)e_yiht(xi)n — 0
i=1

& —[(1—€)e™"—ee =0

Thus, step size matches base classifier weight of AdaBoost.
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Alternative Loss Functions

square loss

10 4 boosting loss
r—(1— x)2 ly<1

rr—e *

g  logistic loss
:Ur—+19g2(1 +e )

loss function

hinge loss
r—max(l —x,0)\

zero-one loss
0 - 37'_>1:L’<0
| | | | |

-4 -2 0 2 4
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Standard Use in Practice

B Base learners: decision trees, quite often just
decision stumps (trees of depth one).
B Boosting stumps:

e data inR", e.g.,N =2, (height(x), weight(z)).
associate a stump to each component.
pre-sort each component:O(Nmlogm).
at each round, find best component and threshold.
total complexity: O((mlogm)N +mNT).

stumps not weak learners: think XOR example!
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Overfitting?

B We could expect that AdaBoost would overfit for
large values of 7', and that is in fact observed in
some cases, but in various others it is not!

| Several empirical observations (not all): AdaBoost
does not seem to overfit, furthermore:

/ test error

training error _

10 100 1000
C4.5 decision trees (Schapire et al., 1998). # rounds
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LI Margin Definitions

B Definition: the margin of a point x with label v is
(the || - || algebraic distance of x=|hi(x),..., hr(z)]
to the hyperplanea-x=0):

yf(:c) _ ythzl CVtht(ilj) o X

p(z) = =m =y -
2= Qt |1 |||

B Definition: the margin of the classifier for a
sample S=(x1,...,2,,)is the minimum margin of
the points in that sample:

-

- - X

p = min Yy, .
ic[1,m]” ||a|1
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® Note:

. P (x;
® SVM margin: p = ,Em[lin]y WHW\(E )
® Boosting margin: p= n[ain]y - ”HH(%),

i€[1,m |1
. hl(a;)
with H(z) = { E } :
hT(ac)

® Distances:|| - ||, distance to hyperplane w-x+4b=0:

with

=
Q| =
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Convex Hull of Hypothesis Set

® Definition: Let H be a set of functions mapping
from XtoR.The convex hull of H is defined by

p p
conv(H) = {Zukhk:pZL,ukZO,Z,ukgl,hk c H}.
k=1 k=1

® ensemble methods are often based on such
convex combinations of hypotheses.
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Margin Bound - Ensemble Methods
(Koltchinskii and Panchenko, 2002)
B Theorem:Let H be a set of real-valued functions.
Fix p> 0. For any 0 >0, with probability at least1—7,
the following holds for all h € conv(H):

log %

)

~ 2
R(h) < Ry(h) + =% (H) +1 5=

where R,, (H)is a measure of the complexity of H.
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Notes

B For AdaBoost, the bound applies to the functions

Cfle) Yl arhy(2)

el el

T | € conv(H).

B Note that 7T'does not appear in the bound.

Mehryar Mohri - Introduction to Machine Learning page 22



But, Does AdaBoost Maximize the Margin!?

B No:AdaBoost may converge to a margin that is
significantly below the maximum margin (Rudin et al,
2004) (e.g., |/3 instead of 3/8)!

B [ower bound:AdaBoost can achieve asymptotically
a margin that is at least 2=ax if data separable and
some conditions on the base learners (Ritsch and
Warmuth, 2002).

B Several boosting-type margin-maximization
algorithms: but, performance in practice not clear
or not reported.
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Qutliers

B AdaBoost assigns larger weights to harder
examples.

& Application:
® Detecting mislabeled examples.

® Dealing with noisy data: regularization based on
the average weight assigned to a point (soft
margin idea for boosting) (Meir and Ritsch, 2003).
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Advantages of AdaBoost

| Simple: straightforward implementation.

| Efficient: complexity O(mNT) for stumps:
® when Nand T are not too large, the algorithm is
quite fast.
B Theoretical guarantees: but still many questions.
® AdaBoost not designed to maximize margin.

® regularized versions of AdaBoost.
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Weaker Aspects

B Parameters:

® need to determine T, the number of rounds of
boosting: stopping criterion.

® need to determine base learners: risk of
overfitting or low margins.

B Noise: severely damages the accuracy of Adaboost
(Dietterich, 2000).

® boosting algorithms based on convex potentials
do not tolerate even low levels of random
noise, even with LI regularization or early
stopping (Long and Servedio, 2010).
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