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Boosting
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Main idea: use weak learner to create strong learner.

Ensemble method: combine base classifiers returned 
by weak learner.

Finding simple relatively accurate base classifiers 
often not hard.

But, how should base classifiers be combined?

Boosting Ideas
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AdaBoost
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AdaBoost(S=((x1, y1), . . . , (xm, ym)))
1 for i← 1 to m do
2 D1(i)← 1

m
3 for t← 1 to T do
4 ht ← base classifier in H with small error �t =PrDt [ht(xi) �=yi]
5 αt ← 1

2 log 1−�t
�t

6 Zt ← 2[�t(1 − �t)]
1
2 � normalization factor

7 for i← 1 to m do
8 Dt+1(i)← Dt(i) exp(−αtyiht(xi))

Zt

9 f ←
�T

t=1 αtht

10 return h = sgn(f)

H⊆{−1, +1}X
.

(Freund and Schapire, 1997)
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Notes

Distributions    over training sample:

• originally uniform.

• at each round, the weight of a misclassified 
example is increased.

• observation:                      , since

Weight assigned to base classifier    :     directy 
depends on the accuracy of     at round   .

5

Dt

αtht

ht t

Dt+1(i) =
Dt(i)e−αtyiht(xi)

Zt
=

Dt−1(i)e−αt−1yiht−1(xi)e−αtyiht(xi)

Zt−1Zt
=

1
m

e−yi
Pt

s=1 αshs(xi)

�t
s=1 Zs

.

Dt+1(i)= e−yift(xi)

m
Qt

s=1 Zs
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Illustration

t = 1

t = 2
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t = 3

. . . . . .
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=

α1 +α3+α2
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Bound on Empirical Error

Theorem: The empirical error of the classifier 
output by AdaBoost verifies:

• If further for all            ,                  , then

•   does not need to be known in advance: 
adaptive boosting.

t∈ [1, T ] γ≤(1
2−�t)

�R(h) ≤ exp(−2γ2T ).

�R(h) ≤ exp
�
− 2

T�

t=1

�1
2
− �t

�2
�
.

γ

(Freund and Schapire, 1997)
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• Proof:  Since, as we saw,                           ,

• Now, since     is a normalization factor,

�R(h) =
1
m

m�

i=1

1yif(xi)≤0 ≤
1
m

m�

i=1

exp(−yif(xi))

≤ 1
m

m�

i=1

�
m

T�

t=1

Zt

�
DT+1(i) =

T�

t=1

Zt.

Zt

Zt =
m�

i=1

Dt(i)e−αtyiht(xi)

=
�

i:yiht(xi)≥0

Dt(i)e−αt +
�

i:yiht(xi)<0

Dt(i)eαt

= (1− �t)e−αt + �te
αt

= (1− �t)
�

�t
1−�t

+ �t

�
1−�t

�t
= 2

�
�t(1− �t).

Dt+1(i)= e−yift(xi)

m
Qt

s=1 Zs
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• Thus, 

• Notes:

•     minimizer of                             .

• since                          , at each round, AdaBoost 
assigns the same probability mass to correctly 
classified and misclassified instances.

• for base classifiers                  ,    can be 
similarly chosen to minimize    .

11

αt α �→(1−�t)e−α+�te
α

(1−�t)e−αt =�te
αt

αtx �→ [−1, +1]
Zt

T�

t=1

Zt =
T�

t=1

2
�

�t(1− �t) =
T�

t=1

�
1− 4

�
1
2 − �t

�2

≤
T�

t=1

exp
�
− 2

�
1
2 − �t

�2
�

= exp
�
− 2

T�

t=1

�
1
2 − �t

�2
�
.
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Objective Function: convex and differentiable.

AdaBoost    Coordinate Descent

F (α) =
m�

i=1

e−yif(xi) =
m�

i=1

e−yi
PT

t=1 αtht(xi).

e−x

0−1 loss

=
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• Direction: unit vector    with

• Since                                                       ,

et

Thus, direction corresponding to base classifier with smallest error. 

et = argmin
t

dF (αt−1 + ηet)
dη

����
η=0

.

F (αt−1 + ηet)=
m�

i=1

e−yi
Pt−1

s=1 αshs(xi)e−yiηht(xi)

dF (αt−1 + ηet)
dη

����
η=0

= −
m�

i=1

yiht(xi) exp
�
− yi

t−1�

s=1

αshs(xi)
�

= −
m�

i=1

yiht(xi)Dt(i)
�
m

t−1�

s=1

Zs

�

= −[(1− �t)− �t]
�
m

t−1�

s=1

Zs

�
= [2�t − 1]

�
m

t−1�

s=1

Zs

�
.
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• Step size: obtained via

Thus, step size matches base classifier weight of AdaBoost. 

dF (αt−1 + ηet)
dη

= 0⇔ −
m�

i=1

yiht(xi) exp
�
− yi

t−1�

s=1

αshs(xi)
�
e−yiht(xi)η = 0

⇔ −
m�

i=1

yiht(xi)Dt(i)
�
m

t−1�

s=1

Zs

�
e−yiht(xi)η = 0

⇔ −
m�

i=1

yiht(xi)Dt(i)e−yiht(xi)η = 0

⇔ −[(1− �t)e−η − �te
η] = 0

⇔ η =
1
2

log
1− �t

�t
.
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Alternative Loss Functions

15

x �→(1 − x)2 1x≤1

square loss
x �→e−x
boosting loss

x �→ log2(1 + e−x)
logistic loss

x �→max(1− x, 0)
hinge loss

x �→1x<0
zero-one loss
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Base learners: decision trees, quite often just 
decision stumps (trees of depth one).

Boosting stumps:

• data in     , e.g.,        ,                               .

• associate a stump to each component.

• pre-sort each component:                   .

• at each round, find best component and threshold.

• total complexity:                                  .

• stumps not weak learners: think XOR example!

Standard Use in Practice

RN N =2 (height(x), weight(x))

O(Nm log m)

O((m log m)N + mNT )
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Overfitting?

We could expect that AdaBoost would overfit for 
large values of    , and that is in fact observed in 
some cases, but in various others it is not!
Several empirical observations (not all): AdaBoost 
does not seem to overfit, furthermore: 
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Figure 2: Error curves and the margin distribution graph for boosting C4.5 on

the letter dataset as reported by Schapire et al. [69]. Left: the training and test

error curves (lower and upper curves, respectively) of the combined classifier as

a function of the number of rounds of boosting. The horizontal lines indicate the

test error rate of the base classifier as well as the test error of the final combined

classifier. Right: The cumulative distribution of margins of the training examples

after 5, 100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly

hidden) and solid curves, respectively.

It is a number in and is positive if and only if correctly classifies the

example. Moreover, as before, the magnitude of the margin can be interpreted as a

measure of confidence in the prediction. Schapire et al. proved that larger margins

on the training set translate into a superior upper bound on the generalization error.

Specifically, the generalization error is at most

for any with high probability. Note that this bound is entirely independent

of , the number of rounds of boosting. In addition, Schapire et al. proved that

boosting is particularly aggressive at reducing the margin (in a quantifiable sense)

since it concentrates on the examples with the smallest margins (whether positive

or negative). Boosting’s effect on the margins can be seen empirically, for instance,

on the right side of Fig. 2 which shows the cumulative distribution of margins of the

training examples on the “letter” dataset. In this case, even after the training error

reaches zero, boosting continues to increase the margins of the training examples

effecting a corresponding drop in the test error.

Although the margins theory gives a qualitative explanation of the effectiveness

of boosting, quantitatively, the bounds are rather weak. Breiman [9], for instance,

7

training error

test error

C4.5 decision trees (Schapire et al., 1998).
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L1 Margin Definitions

Definition: the margin of a point    with label   is 
(the         algebraic distance of                                
to the hyperplane           ):

Definition: the margin of the classifier for a   
sample                          is the minimum margin of 
the points in that sample:

18

S =(x1, . . . , xm)

x y

α·x=0
x=[h1(x), . . . , hT (x)]�� · �∞

ρ(x) =
yf(x)�m
t=T αt

=
y

�T
t=1 αtht(x)
�α�1

= y
α · x
�α�1

.

ρ = min
i∈[1,m]

yi
α · xi

�α�1
.
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• Note:

• SVM margin:

• Boosting margin:

• Distances:        distance to hyperplane                :

ρ = min
i∈[1,m]

yi
α · H(xi)
�α�1

,

ρ = min
i∈[1,m]

yi
w · Φ(xi)
�w�2

.

with H(x) =
�

h1(x)...
hT (x)

�
.

� · �q w·x+b=0

|w · x + b|
�w�p

,

with
1
p

+
1
q

=1.
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Convex Hull of Hypothesis Set

Definition: Let    be a set of functions mapping   
from    to   . The convex hull of    is defined by 

• ensemble methods are often based on such 
convex combinations of hypotheses.

20

H

X R H

conv(H) = {
p�

k=1

µkhk : p≥1, µk≥0,

p�

k=1

µk≤1, hk ∈ H}.
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Margin Bound - Ensemble Methods 

Theorem: Let    be a set of real-valued functions. 
Fix       . For any       , with probability at least       , 
the following holds for all                 :

21

ρ>0 δ>0 1−δ
H

h∈conv(H)

(Koltchinskii and Panchenko, 2002)

R(h) ≤ �Rρ(h) +
2
ρ
Rm

�
H

�
+

�
log 1

δ

2m
,

where            is a measure of the complexity of    .Rm

�
H

�
H
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Notes

For AdaBoost, the bound applies to the functions

Note that    does not appear in the bound.

22

x �→ f(x)
�α�1

=
�T

t=1 αtht(x)
�α�1

∈ conv(H).

T
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No: AdaBoost may converge to a margin that is 
significantly below the maximum margin (Rudin et al., 

2004) (e.g., 1/3 instead of 3/8)!

Lower bound: AdaBoost can achieve asymptotically 
a margin that is at least       if data separable and 
some conditions on the base learners (Rätsch and 

Warmuth, 2002).

Several boosting-type margin-maximization 
algorithms: but, performance in practice not clear 
or not reported.

But, Does AdaBoost Maximize the Margin?

ρmax
2
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Outliers

AdaBoost assigns larger weights to harder 
examples.

Application:

• Detecting mislabeled examples.

• Dealing with noisy data: regularization based on 
the average weight assigned to a point (soft 
margin idea for boosting) (Meir and Rätsch, 2003).
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Advantages of AdaBoost

Simple: straightforward implementation.

Efficient: complexity              for stumps:

• when    and    are not too large, the algorithm is 
quite fast.

Theoretical guarantees: but still many questions.

• AdaBoost not designed to maximize margin.

• regularized versions of AdaBoost.

O(mNT )

N T
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Weaker Aspects

Parameters:

• need to determine   , the number of rounds of 
boosting: stopping criterion.

• need to determine base learners: risk of 
overfitting or low margins.

Noise: severely damages the accuracy of Adaboost
(Dietterich, 2000).

• boosting algorithms based on convex potentials 
do not tolerate even low levels of random 
noise, even with L1 regularization or early 
stopping (Long and Servedio, 2010).

T
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