Introduction to Machine Learning
Lecture 10

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu
Decision Trees
Supervised Learning Problem

- **Training data**: sample drawn i.i.d. from set X according to some distribution D,
 \[S = \{(x_1, y_1), \ldots, (x_m, y_m)\} \in X \times Y, \]
- classification: $\text{Card}(Y) = k$.
- regression: $Y \subseteq \mathbb{R}$.

- **Problem**: find classifier $h : X \rightarrow Y$ in H with small generalization error.
Advantages

- Interpretation: explain complex data, result easy to analyze and understand.
- Adaptation: easy to update to new data.
- Different types of variables: categorical, numerical.
- Monotone transformation invariance: measuring unit is not a concern.
- Dealing with missing labels.
- But: beware of interpretation!
Example - Playing Golf

Misclassification rates are indicated at each node.
Decision Trees

![Decision Tree Diagram]

- **Decision Trees**

- **X1 < a1**
 - YES
 - NO

- **X1 < a2**
 - YES
 - NO

- **X2 < a3**
 - YES
 - NO

- **X2 < a4**
 - YES
 - NO

- **R1**
 - YES
 - NO

- **R2**
 - YES
 - NO

- **R3**
 - YES
 - NO

- **R4**
 - YES
 - NO

- **R5**
 - YES
 - NO

- **X2**
 - R2
 - a4

- **a2**
 - R3
 - R1

- **a3**
 - R4
 - R5

- **X1**
 - a1
Different Types of Questions

- Decision trees
 - $X \in \{\text{blue, white, red}\}$: categorical questions.
 - $X \leq a$: continuous variables.

- Binary space partition (BSP) trees:
 - $\sum_{i=1}^{n} \alpha_i X_i \leq a$: partitioning with convex polyhedral regions.

- Sphere trees:
 - $\|X - a_0\| \leq a$: partitioning with pieces of spheres.
Prediction

- In each region R_t (tree leaf):
 - **classification**: majority vote - ties broken arbitrarily.
 \[
 \hat{y}_t = \arg\max_{y \in Y} \left| \left\{ x_i \in R_t : i \in [1, m], y_i = y \right\} \right|.
 \]
 - **regression**: average value.
 \[
 \hat{y}_t = \frac{1}{|R_t|} \sum_{x_i \in R_t} y_i.
 \]

- for confident predictions, need enough points in each region.
Learning

How to build a decision tree from data:

• choose question, e.g., $x \leq 3$, yielding best purity.
• partition data into corresponding subsets.
• reiterate with resulting subsets.
• stop when regions are approximately pure.
Impurity Criteria - Classification

- Binary case: p fraction of positive instances.
 - misclassification: $F(p) = \min(p, 1 - p)$.
 - entropy: $F(p) = -p \log_2(p) - (1 - p) \log_2(1 - p)$.
 - Gini index: $F(p) = 2p(1 - p)$.
Impurity Criteria - Regression

- Mean squared error:

\[F(R) = \frac{1}{|R|} \sum_{x_i \in R} (y_i - \langle y \rangle)^2. \]

- Other similar \(L_p \) norm criteria.
Training

- **Problem:** general problem of determining partition with minimum empirical error is NP-hard.

- **Heuristics:** greedy algorithm.

 - for all $j \in [1, N], \theta \in \mathbb{R}$, $R^+(j, \theta) = \{x_i \in R: x_i[j] \geq \theta, i \in [1, m]\}$

 $R^-(j, \theta) = \{x_i \in R: x_i[j] < \theta, i \in [1, m]\}$.

Decision-Trees ($S = ((x_1, y_1), \ldots, (x_m, y_m))$)

1. $P \leftarrow \{S\}$ \triangleright initial partition
2. for each region $R \in P$ such that $\text{Pred}(R)$ do
3. $(j, \theta) \leftarrow \arg\min_{(j, \theta)} \text{error}(R^-(j, \theta)) + \text{error}(R^+(j, \theta))$
4. $P \leftarrow P - R \cup \{R^-(j, \theta), R^+(j, \theta)\}$
5. return P
Overfitting

Problem: size of tree?
- tree must be large enough to fit the data.
- tree must be small enough not to overfit.
- minimizing training error or impurity does not help.

Theory: generalization bound.

\[R(h) \leq \hat{R}(h) + O \left(\sqrt{\frac{\text{complexity measure}}{m}} \right) . \]
- minimize \(\text{impurity} + \alpha |\text{tree}| \).
Controlling Size of Tree

- Grow-then-prune strategy (CART):
 - create very large tree.
 - prune back according to some criterion.

- Pruning criteria:
 - $(\text{impurity} + \alpha |\text{tree}|)$.
 - α determined by cross-validation.
Categorical Variables

Problem: with N possible unordered variables, e.g., color (blue, white, red), there are $2^{N-1} - 1$ possible partitions.

Solution (when only two possible outcomes): sort variables according to the number of 1s in each, e.g., white .9, red .45, blue .3. Split predictor as with ordered variables.
Missing Values

Problem: points \(x \) with missing values \(y \), due to:
- the proper measurement not taken,
- a source causing the absence of labels.

Solution:
- categorical case: create new category missing;
- use surrogate variables: use only those variables that are available for a split.
Instability

- **Problem**: high variance
 - small changes in the data may lead to very different splits,
 - price to pay for the hierarchical nature of decision trees,
 - more stable criteria could be used.
Decision Tree Tools

Most commonly used tools for learning decision trees:

- **CART** (classification and regression tree) (Breiman et al., 1984).

- **C4.5** (Quinlan, 1986, 1993) and **C5.0** (RuleQuest Research) a commercial system.

Differences: minor between latest versions.
Summary

- Straightforward to train.
- Easily interpretable (modulo instability).
- Often not best results in practice.

Boosting decision trees (next lecture).
References

