

Introduction to Machine Learning

Lecture 10

Mehryar Mohri

Courant Institute and Google Research

mohri@cims.nyu.edu

Decision Trees

Supervised Learning Problem

- **Training data:** sample drawn i.i.d. from set X according to some distribution D ,

$$S = ((x_1, y_1), \dots, (x_m, y_m)) \in X \times Y,$$

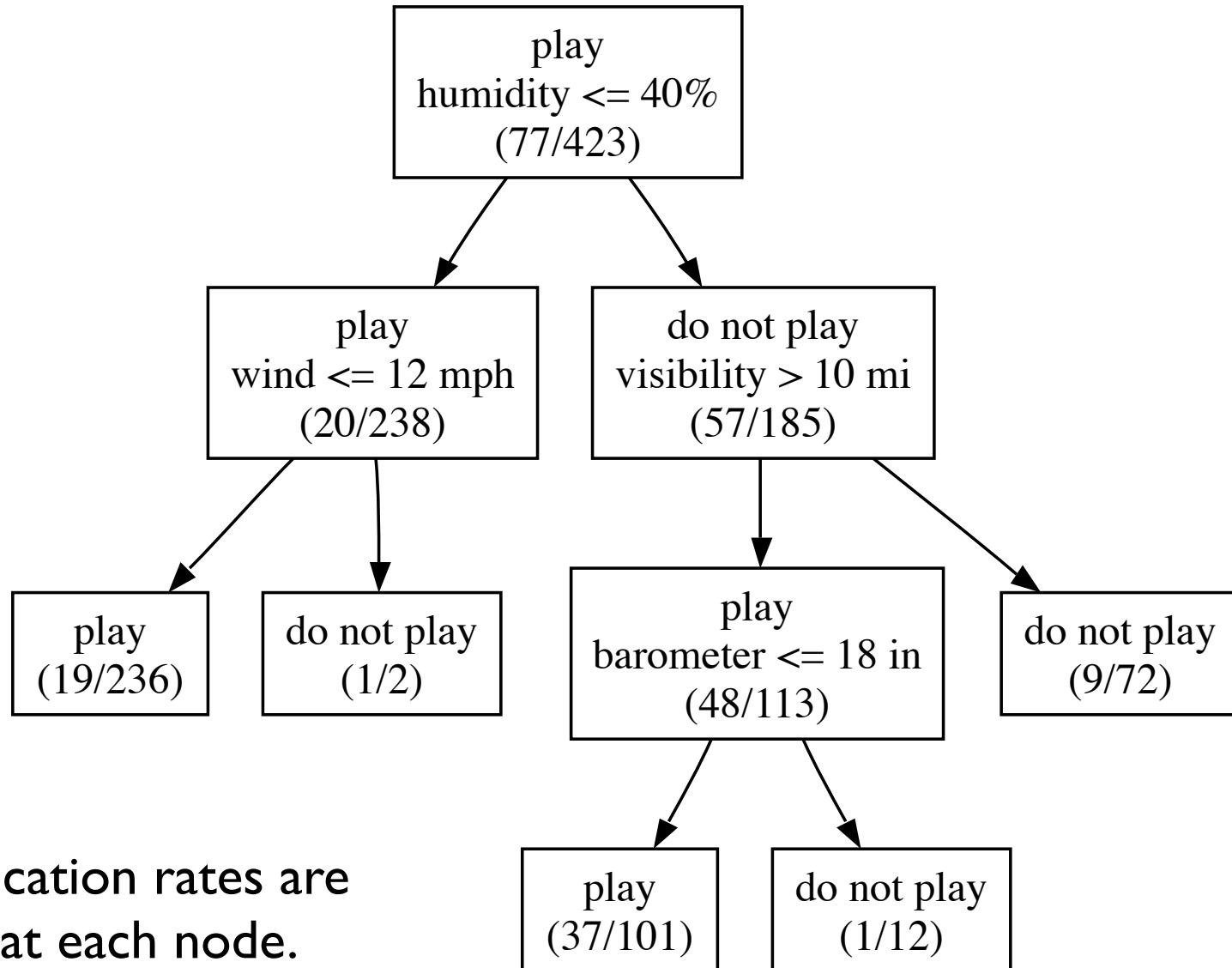
- **classification:** $\text{Card}(Y) = k$.
- **regression:** $Y \subseteq \mathbb{R}$.

- **Problem:** find classifier $h: X \rightarrow Y$ in H with small generalization error.

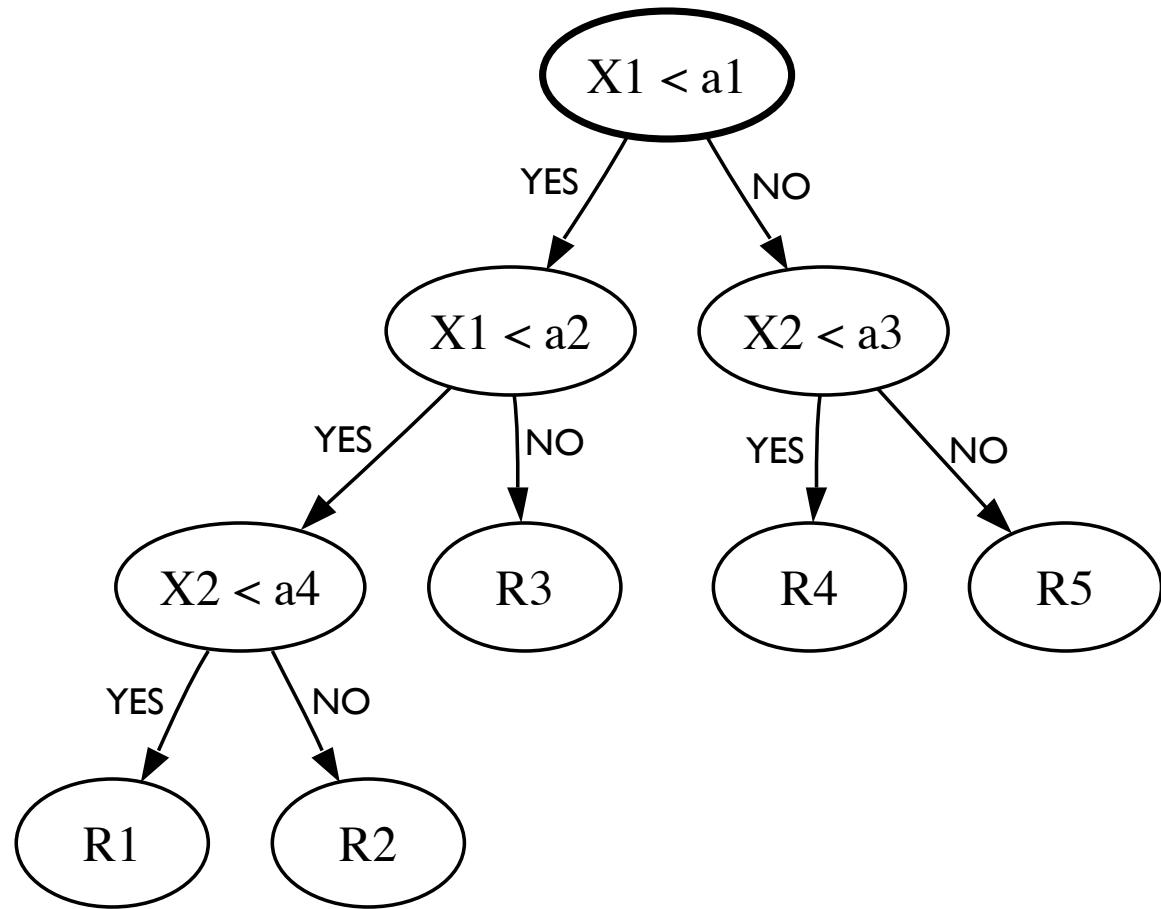
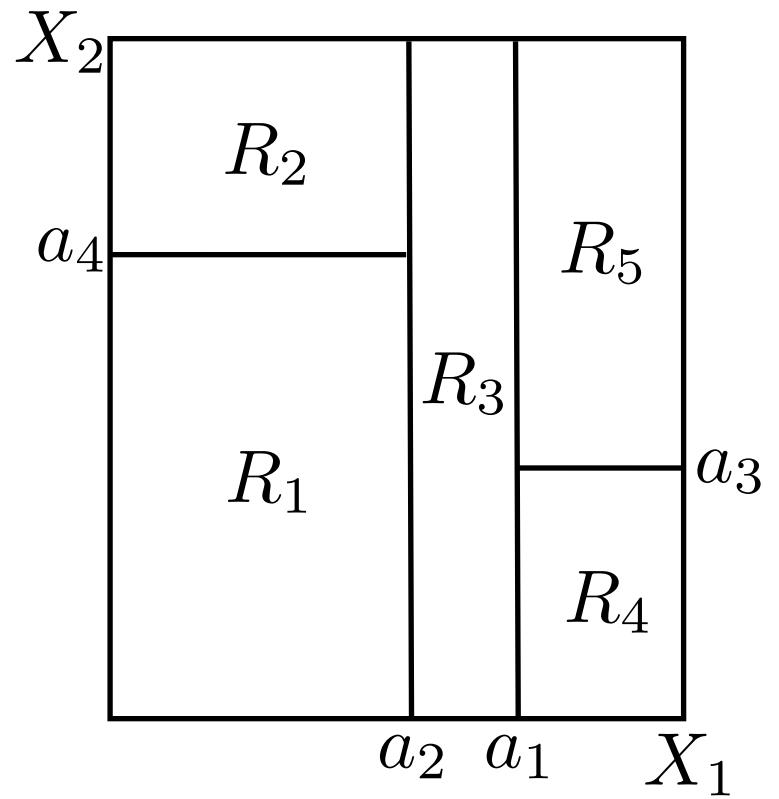
Advantages

- Interpretation: explain complex data, result easy to analyze and understand.
- Adaptation: easy to update to new data.
- Different types of variables: categorical, numerical.
- Monotone transformation invariance: measuring unit is not a concern.
- Dealing with missing labels.
- But: beware of interpretation!

Example - Playing Golf



Decision Trees



Different Types of Questions

■ Decision trees

- $X \in \{\text{blue, white, red}\}$: **categorical questions**.
- $X \leq a$: **continuous variables**.

■ Binary space partition (BSP) trees:

- $\sum_{i=1}^n \alpha_i X_i \leq a$: **partitioning with convex polyhedral regions**.

■ Sphere trees:

- $\|X - a_0\| \leq a$: **partitioning with pieces of spheres**.

Prediction

- In each region R_t (tree leaf):
 - **classification**: majority vote - ties broken arbitrarily.

$$\hat{y}_t = \operatorname{argmax}_{y \in Y} |\{x_i \in R_t : i \in [1, m], y_i = y\}|.$$

- **regression**: average value.

$$\hat{y}_t = \frac{1}{|R_t|} \sum_{x_i \in R_t} y_i.$$

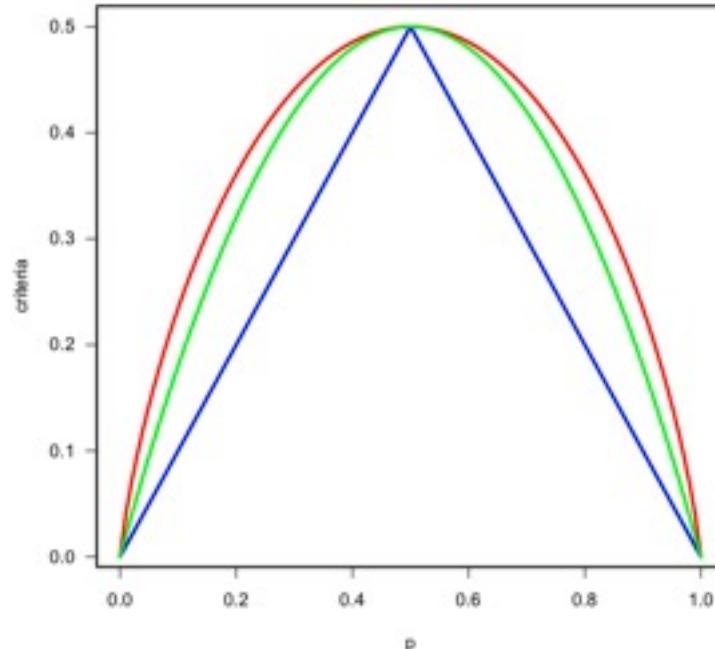
→ for confident predictions, need enough points in each region.

Learning

- How to build a decision tree from data:
 - choose question, e.g., $x \leq 3$, yielding best **purity**.
 - partition data into corresponding subsets.
 - reiterate with resulting subsets.
 - stop when regions are approximately pure.

Impurity Criteria - Classification

- **Binary case:** p fraction of positive instances.
 - **misclassification:** $F(p) = \min(p, 1 - p)$.
 - **entropy:** $F(p) = -p \log_2(p) - (1 - p) \log_2(1 - p)$.
 - **Gini index:** $F(p) = 2p(1 - p)$.



Impurity Criteria - Regression

- Mean squared error:

$$F(R) = \frac{1}{|R|} \sum_{x_i \in R} (y_i - \langle y \rangle)^2.$$

- Other similar L_p norm criteria.

Training

- **Problem:** general problem of determining partition with minimum empirical error is NP-hard.
- **Heuristics:** greedy algorithm.
 - **for all** $j \in [1, N]$, $\theta \in \mathbb{R}$, $R^+(j, \theta) = \{x_i \in R: x_i[j] \geq \theta, i \in [1, m]\}$
 $R^-(j, \theta) = \{x_i \in R: x_i[j] < \theta, i \in [1, m]\}.$

DECISION-TREES($S = ((x_1, y_1), \dots, (x_m, y_m))$)

- 1 $P \leftarrow \{S\}$ \triangleright initial partition
- 2 **for** each region $R \in P$ such that $\text{Pred}(R)$ **do**
- 3 $(j, \theta) \leftarrow \text{argmin}_{(j, \theta)}$ $\text{error}(R^-(j, \theta)) + \text{error}(R^+(j, \theta))$
- 4 $P \leftarrow P - R \cup \{R^-(j, \theta), R^+(j, \theta)\}$
- 5 **return** P

Overfitting

■ Problem: size of tree?

- tree must be large enough to fit the data.
- tree must be small enough not to overfit.
- minimizing training error or impurity does not help.

■ Theory: generalization bound.

$$R(h) \leq \hat{R}(h) + O\left(\sqrt{\frac{\text{complexity measure}}{m}}\right).$$

- \rightarrow minimize (impurity + $\alpha |\text{tree}|$).

Controlling Size of Tree

- Grow-then-prune strategy (CART):
 - create very large tree.
 - prune back according to some criterion.
- Pruning criteria:
 - $(\text{impurity} + \alpha |\text{tree}|)$.
 - α determined by cross-validation.

Categorical Variables

- **Problem:** with N possible unordered variables, e.g., color (blue, white, red), there are $2^{N-1} - 1$ possible partitions.
- **Solution (when only two possible outcomes):** sort variables according to the number of 1s in each, e.g., white .9, red .45, blue .3. Split predictor as with ordered variables.

Missing Values

- **Problem:** points x with missing values y , due to:
 - the proper measurement not taken,
 - a source causing the absence of labels.
- **Solution:**
 - categorical case: create new category missing;
 - use surrogate variables: use only those variables that are available for a split.

Instability

■ Problem: high variance

- small changes in the data may lead to very different splits,
- price to pay for the hierarchical nature of decision trees,
- more stable criteria could be used.

Decision Tree Tools

- Most commonly used tools for learning decision trees:
 - **CART** (classification and regression tree) (Breiman et al., 1984).
 - **C4.5** (Quinlan, 1986, 1993) and **C5.0** (RuleQuest Research) a commercial system.
- Differences: minor between latest versions.

Summary

- Straightforward to train.
- Easily interpretable (modulo instability).
- Often not best results in practice.

→ **boosting decision trees (next lecture).**

References

- Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. *Classifications and Regression Trees*. Chapman & Hall, 1984.
- Luc Devroye, Laszlo Gyorfi, Gabor Lugosi. *A Probabilistic Theory of Pattern Recognition*. Springer, 1996.
- Quinlan, J. R. *C4.5: Programs for Machine Learning*. Morgan Kaufmann Publishers, 1993.
- Quinlan, J. R. Induction of Decision Trees, in *Machine Learning, Volume 1*, pages 81-106, 1986.