Foundations of Machine Learning
Reinforcement Learning

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu
Reinforcement Learning

- **Agent** exploring **environment**.

- **Interactions** with environment:

 - action
 - state
 - reward

- **Problem**: find action **policy** that maximizes cumulative reward over the course of interactions.
Key Features

Contrast with supervised learning:
• no explicit labeled training data.
• distribution defined by actions taken.

Delayed rewards or penalties.

RL trade-off:
• exploration (of unknown states and actions) to gain more reward information; vs.
• exploitation (of known information) to optimize reward.
Applications

- Robot control e.g., Robocup Soccer Teams (Stone et al., 1999).
- Board games, e.g., TD-Gammon (Tesauro, 1995).
- Elevator scheduling (Crites and Barto, 1996).
- Ads placement.
- Telecommunications.
- Inventory management.
- Dynamic radio channel assignment.
This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem
Markov Decision Process (MDP)

Definition: a Markov Decision Process is defined by:

- a set of **decision epochs** $\{0, \ldots, T\}$.
- a set of **states** S, possibly infinite.
- a start state or initial state s_0;
- a set of **actions** A, possibly infinite.
- a **transition probability** $\Pr[s' | s, a]$: distribution over destination states $s' = \delta(s, a)$.
- a **reward probability** $\Pr[r' | s, a]$: distribution over rewards returned $r' = r(s, a)$.
Model

- State observed at time t: $s_t \in S$.
- Action taken at time t: $a_t \in A$.
- State reached $s_{t+1} = \delta(s_t, a_t)$.
- Reward received: $r_{t+1} = r(s_t, a_t)$.

![Diagram of model](attachment:image_url)
MDPs - Properties

- **Finite MDPs**: A and S finite sets.
- **Finite horizon** when $T < \infty$.
- **Reward** $r(s, a)$: often deterministic function.
Example - Robot Picking up Balls

start → search/[.1, R1]

search/[.9, R1] → other → carry/[.5, R3]

other → carry/[.5, -1] → pickup/[1, R2]
Policy

- **Definition**: a policy is a mapping $\pi : S \to A$.

- **Objective**: find policy π maximizing expected return.

 - finite horizon return: $\sum_{t=0}^{T-1} r(s_t, \pi(s_t))$.

 - infinite horizon return: $\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t))$.

- **Theorem**: there exists an optimal policy from any start state.
Policy Value

- **Definition:** the value of a policy π at state s is
 - finite horizon:
 \[
 V_\pi(s) = \mathbb{E} \left[\sum_{t=0}^{T-1} r(s_t, \pi(s_t)) \bigg| s_0 = s \right].
 \]
 - infinite horizon: discount factor $\gamma \in [0, 1)$,
 \[
 V_\pi(s) = \mathbb{E} \left[\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t)) \bigg| s_0 = s \right].
 \]

- **Problem:** find policy π with maximum value for all states.
Policy Evaluation

Analysis of policy value:

\[V_\pi(s) = \mathbb{E} \left[\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t)) \right] \bigg| s_0 = s. \]

\[= \mathbb{E}[r(s, \pi(s))] + \gamma \mathbb{E} \left[\sum_{t=0}^{+\infty} \gamma^t r(s_{t+1}, \pi(s_{t+1})) \right] \bigg| s_0 = s. \]

\[= \mathbb{E}[r(s, \pi(s))] + \gamma \mathbb{E}[V_\pi(\delta(s, \pi(s)))] . \]

Bellman equations (system of linear equations):

\[V_\pi(s) = \mathbb{E}[r(s, \pi(s))] + \gamma \sum_{s'} \Pr[s'|s, \pi(s)] V_\pi(s') . \]
Bellman Equation - Existence and Uniqueness

- **Notation:**
 - transition probability matrix $P_{s,s'} = \Pr[s'|s, \pi(s)]$.
 - value column matrix $V = V_\pi(s)$.
 - expected reward column matrix: $R = \mathbb{E}[r(s, \pi(s))]$.

- **Theorem:** for a finite MDP, Bellman’s equation admits a unique solution given by

 $$V_0 = (I - \gamma P)^{-1} R.$$
Bellman Equation - Existence and Uniqueness

Proof: Bellman’s equation rewritten as

\[V = R + \gamma PV. \]

- \(P \) is a stochastic matrix, thus,

\[\| P \|_\infty = \max_s \sum_{s'} |P_{ss'}| = \max_s \sum_{s'} \Pr[s'|s, \pi(s)] = 1. \]

- This implies that \(\| \gamma P \|_\infty = \gamma < 1 \). The eigenvalues of \(P \) are all less than one and \((I - \gamma P)\) is invertible.

Notes: general shortest distance problem (MM, 2002).
Optimal Policy

Definition: policy π^* with maximal value for all states $s \in S$.

- **value of π^* (optimal value):**

 $$\forall s \in S, V_{\pi^*}(s) = \max_{\pi} V_{\pi}(s).$$

- **optimal state-action value function:** expected return for taking action a at state s and then following optimal policy.

 $$Q^*(s, a) = E[r(s, a)] + \gamma E[V^*(\delta(s, a))]$$

 $$= E[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s' | s, a] V^*(s').$$
Optimal Values - Bellman Equations

- **Property**: the following equalities hold:

\[
\forall s \in S, \quad V^*(s) = \max_{a \in A} Q^*(s, a).
\]

- **Proof**: by definition, for all \(s \), \(V^*(s) \leq \max_{a \in A} Q^*(s, a) \).

 - If for some \(s \) we had \(V^*(s) < \max_{a \in A} Q^*(s, a) \), then maximizing action would define a better policy.

- Thus,

\[
V^*(s) = \max_{a \in A} \left\{ E[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s'|s, a] V^*(s') \right\}.
\]
This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem
Known Model

- **Setting**: environment model known.
- **Problem**: find optimal policy.
- **Algorithms**:
 - value iteration.
 - policy iteration.
 - linear programming.
Value Iteration Algorithm

\[\Phi(V)(s) = \max_{a \in A} \left\{ E[r(s, a)] + \gamma \sum_{s' \in S} Pr[s'|s, a]V(s') \right\}. \]

\[\Phi(V) = \max_\pi \{ R_\pi + \gamma P_\pi V \}. \]

ValueIteration(V_0)

1. \(V \leftarrow V_0 \quad \triangleright \text{V}_0 \text{ arbitrary value} \)
2. while \(\|V - \Phi(V)\| \geq \frac{(1-\gamma)\epsilon}{\gamma} \) do
3. \(V \leftarrow \Phi(V) \)
4. return \(\Phi(V) \)
VI Algorithm - Convergence

Theorem: for any initial value V_0, the sequence defined by $V_{n+1} = \Phi(V_n)$ converge to V^*.

Proof: we show that Φ is γ-contracting for $\| \cdot \|_\infty$ existence and uniqueness of fixed point for Φ.

- for any $s \in S$, let $a^*(s)$ be the maximizing action defining $\Phi(V)(s)$. Then, for $s \in S$ and any U,

$$
\Phi(V)(s) - \Phi(U)(s) \leq \Phi(V)(s) - \left(E[r(s, a^*(s))] + \gamma \sum_{s' \in S} \Pr[s' | s, a^*(s)] U(s') \right) \\
= \gamma \sum_{s' \in S} \Pr[s' | s, a^*(s)] [V(s') - U(s')] \\
\leq \gamma \sum_{s' \in S} \Pr[s' | s, a^*(s)] \|V - U\|_\infty = \gamma \|V - U\|_\infty.
$$
Complexity and Optimality

- **Complexity**: convergence in \(O(\log \frac{1}{\epsilon}) \). Observe that

\[
\| V_{n+1} - V_n \|_\infty \leq \gamma \| V_n - V_{n-1} \|_\infty \leq \gamma^n \| \Phi(V_0) - V_0 \|_\infty.
\]

Thus, \(\gamma^n \| \Phi(V_0) - V_0 \|_\infty \leq \frac{(1 - \gamma)\epsilon}{\gamma} \Rightarrow n = O\left(\log \frac{1}{\epsilon} \right) \).

- **\(\epsilon \)-Optimality**: let \(V_{n+1} \) be the value returned. Then,

\[
\| V^* - V_{n+1} \|_\infty \leq \| V^* - \Phi(V_{n+1}) \|_\infty + \| \Phi(V_{n+1}) - V_{n+1} \|_\infty
\]

\[
\leq \gamma \| V^* - V_{n+1} \|_\infty + \gamma \| V_{n+1} - V_n \|_\infty.
\]

Thus,

\[
\| V^* - V_{n+1} \|_\infty \leq \frac{\gamma}{1 - \gamma} \| V_{n+1} - V_n \|_\infty \leq \epsilon.
\]
VI Algorithm - Example

\[V_{n+1}(1) = \max \left\{ 2 + \gamma \left(\frac{3}{4} V_n(1) + \frac{1}{4} V_n(2) \right), 2 + \gamma V_n(2) \right\} \]

\[V_{n+1}(2) = \max \left\{ 3 + \gamma V_n(1), 2 + \gamma V_n(2) \right\}. \]

For \(V_0(1) = -1, V_0(2) = 1, \gamma = 1/2, V_1(1) = V_1(2) = 5/2. \)

But, \(V^*(1) = 14/3, V^*(2) = 16/3. \)
Policy Iteration Algorithm

\textbf{PolicyIteration}(\pi_0)

1. \pi \leftarrow \pi_0 \quad \triangleright \ \pi_0 \text{ arbitrary policy}

2. \pi' \leftarrow \text{NIL}

3. while (\pi \neq \pi') do

4. \quad V \leftarrow V_\pi \quad \triangleright \text{policy evaluation: solve } (I - \gamma P_\pi)V = R_\pi.

5. \quad \pi' \leftarrow \pi

6. \quad \pi \leftarrow \arg\max_\pi \{R_\pi + \gamma P_\pi V\} \quad \triangleright \text{greedy policy improvement.}

7. return \pi
PI Algorithm - Convergence

Theorem: let \((V_n)_{n \in \mathbb{N}} \) be the sequence of policy values computed by the algorithm, then,

\[
V_n \leq V_{n+1} \leq V^*.
\]

Proof: let \(\pi_{n+1} \) be the policy improvement at the \(n \)th iteration, then, by definition,

\[
R_{\pi_{n+1}} + \gamma P_{\pi_{n+1}} V_n \geq R_{\pi_n} + \gamma P_{\pi_n} V_n = V_n.
\]

- therefore, \(R_{\pi_{n+1}} \geq (I - \gamma P_{\pi_{n+1}}) V_n \).
- note that \((I - \gamma P_{\pi_{n+1}})^{-1}\) preserves ordering:

\[
X \geq 0 \Rightarrow (I - \gamma P_{\pi_{n+1}})^{-1} X = \sum_{k=0}^{\infty} (\gamma P_{\pi_{n+1}})^k X \geq 0.
\]
- thus, \(V_{n+1} = (I - \gamma P_{\pi_{n+1}})^{-1} R_{\pi_{n+1}} \geq V_n \).
Notes

- Two consecutive policy values can be equal only at last iteration.
- The total number of possible policies is $|A|^{|S|}$, thus, this is the maximal possible number of iterations.
 - best upper bound known $O\left(\frac{|A|^{|S|}}{|S|}\right)$.
Initial policy: \(\pi_0(1) = b, \pi_0(2) = c\).

Evaluation:
\[
V_{\pi_0}(1) = 1 + \gamma V_{\pi_0}(2) \\
V_{\pi_0}(2) = 2 + \gamma V_{\pi_0}(2).
\]

Thus,
\[
V_{\pi_0}(1) = \frac{1 + \gamma}{1 - \gamma} \quad V_{\pi_0}(2) = \frac{2}{1 - \gamma}.
\]
VI and PI Algorithms - Comparison

- **Theorem:** let \((U_n)_{n \in \mathbb{N}}\) be the sequence of policy values generated by the VI algorithm, and \((V_n)_{n \in \mathbb{N}}\) the one generated by the PI algorithm. If \(U_0 = V_0\), then,

\[
\forall n \in \mathbb{N}, \quad U_n \leq V_n \leq V^*.
\]

- **Proof:** we first show that \(\Phi\) is monotonic. Let \(U\) and \(V\) be such that \(U \leq V\) and let \(\pi\) be the policy such that \(\Phi(U) = R_\pi + \gamma P_\pi U\). Then,

\[
\Phi(U) \leq R_\pi + \gamma P_\pi V \leq \max_{\pi'}\{R'_\pi + \gamma P'_\pi V\} = \Phi(V).
\]
VI and PI Algorithms - Comparison

- The proof is by induction on n. Assume $U_n \leq V_n$, then, by the monotonicity of Φ,
 $$U_{n+1} = \Phi(U_n) \leq \Phi(V_n) = \max_\pi \{ R_\pi + \gamma P_\pi V_n \}.$$

- Let π_{n+1} be the maximizing policy:
 $$\pi_{n+1} = \arg\max_\pi \{ R_\pi + \gamma P_\pi V_n \}.$$

- Then,
 $$\Phi(V_n) = R_{\pi_{n+1}} + \gamma P_{\pi_{n+1}} V_n \leq R_{\pi_{n+1}} + \gamma P_{\pi_{n+1}} V_{n+1} = V_{n+1}.$$
Notes

- The PI algorithm converges in a smaller number of iterations than the VI algorithm due to the optimal policy.

- But, each iteration of the PI algorithm requires computing a policy value, i.e., solving a system of linear equations, which is more expensive to compute than an iteration of the VI algorithm.
Primal Linear Program

LP formulation: choose $\alpha(s) > 0$, with $\sum_s \alpha(s) = 1$.

$$\min_V \sum_{s \in S} \alpha(s) V(s)$$

subject to $\forall s \in S, \forall a \in A, V(s) \geq E[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s'|s, a] V(s')$.

Parameters:

- **number rows:** $|S||A|$.
- **number of columns:** $|S|$.
Dual Linear Program

- **LP formulation:**
 \[
 \max_x \sum_{s \in S, a \in A} \mathbb{E}[r(s, a)] x(s, a)
 \]

 subject to \(\forall s \in S, \sum_{a \in A} x(s', a) = \alpha(s') + \gamma \sum_{s \in S, a \in A} \Pr[s'|s, a] x(s', a) \)

 \(\forall s \in S, \forall a \in A, x(s, a) \geq 0. \)

- **Parameters:** more favorable number of rows.
 - **number rows:** \(|S|\).
 - **number of columns:** \(|S||A|\).
This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem
Problem

- Unknown model:
 - transition and reward probabilities not known.
 - realistic scenario in many practical problems, e.g., robot control.

- Training information: sequence of immediate rewards based on actions taken.

- Learning approaches:
 - model-free: learn policy directly.
 - model-based: learn model, use it to learn policy.
How do we estimate reward and transition probabilities?

- use equations derived for policy value and Q-functions.
- but, equations given in terms of some expectations.
- instance of a stochastic approximation problem.
Stochastic Approximation

Problem: find solution of $x = H(x)$ with $x \in \mathbb{R}^N$ while

• $H(x)$ cannot be computed, e.g., H not accessible;
• i.i.d. sample of noisy observations $H(x_i) + w_i$, available, $i \in [1, m]$, with $E[w] = 0$.

Idea: algorithm based on iterative technique:

\[
x_{t+1} = (1 - \alpha_t)x_t + \alpha_t[H(x_t) + w_t]
= x_t + \alpha_t[H(x_t) + w_t - x_t].
\]

• more generally $x_{t+1} = x_t + \alpha_t D(x_t, w_t)$.
Mean Estimation

Theorem: Let X be a random variable taking values in $[0, 1]$ and let x_0, \ldots, x_m be i.i.d. values of X. Define the sequence $(\mu_m)_{m \in \mathbb{N}}$ by

$$
\mu_{m+1} = (1 - \alpha_m) \mu_m + \alpha_m x_m \quad \text{with } \mu_0 = x_0.
$$

Then, for $\alpha_m \in [0, 1]$, with $\sum_{m \geq 0} \alpha_m = +\infty$ and $\sum_{m \geq 0} \alpha_m^2 < +\infty$,

$$
\mu_m \xrightarrow{\text{a.s.}} \mathbb{E}[X].
$$
Proof

Proof: By the independence assumption, for \(m \geq 0 \),
\[
\text{Var}[\mu_{m+1}] = (1 - \alpha_m)^2 \text{Var}[\mu_m] + \alpha_m^2 \text{Var}[x_m]
\]
\[
\leq (1 - \alpha_m) \text{Var}[\mu_m] + \alpha_m^2.
\]

- We have \(\alpha_m \to 0 \) since \(\sum_{m \geq 0} \alpha_m^2 < +\infty \).
- Let \(\epsilon > 0 \) and suppose there exists \(N \in \mathbb{N} \) such that for all \(m \geq N \), \(\text{Var}[\mu_m] \geq \epsilon \). Then, for \(m \geq N \),
\[
\text{Var}[\mu_{m+1}] \leq \text{Var}[\mu_m] - \alpha_m \epsilon + \alpha_m^2,
\]
which implies \(\text{Var}[\mu_{m+N}] \leq \text{Var}[\mu_N] - \epsilon \sum_{n=N}^{m+N} \alpha_n + \sum_{n=N}^{m+N} \alpha_n^2 \),
contradicting \(\text{Var}[\mu_{m+N}] \geq 0 \).
Mean Estimation

• Thus, for all \(N \in \mathbb{N} \) there exists \(m_0 \geq N \) such that \(\text{Var}[\mu_{m_0}] < \epsilon \). Choose \(N \) large enough so that \(\forall m \geq N, \alpha_m \leq \epsilon \). Then,
\[
\text{Var}[\mu_{m_0+1}] \leq (1 - \alpha_{m_0}) \epsilon + \epsilon \alpha_{m_0} = \epsilon.
\]

• Therefore, \(\mu_m \leq \epsilon \) for all \(m \geq m_0 \) (\(L_2 \) convergence).
Notes

- special case: $\alpha_m = \frac{1}{m}$.
 - Strong law of large numbers.
- Connection with stochastic approximation.
TD(0) Algorithm

■ **Idea:** recall Bellman’s linear equations giving V

\[
V_\pi(s) = E[r(s, \pi(s)] + \gamma \sum_{s'} \Pr[s'|s, \pi(s)]V_\pi(s') \\
= E_{s'}[r(s, \pi(s)) + \gamma V_\pi(s')|s].
\]

■ **Algorithm:** temporal difference (TD).

- sample new state s'.
- **update:** α depends on number of visits of s.

\[
V(s) \leftarrow (1 - \alpha)V(s) + \alpha[r(s, \pi(s)) + \gamma V(s')] \\
= V(s) + \alpha[r(s, \pi(s)) + \gamma V(s') - V(s)].
\]

temporal difference of V values
TD(0) Algorithm

TD(0)

1. \(V \leftarrow V_0 \triangleright \text{initialization.} \)
2. \(\text{for } t \leftarrow 0 \text{ to } T \text{ do} \)
3. \(s \leftarrow \text{SELECTSTATE}() \)
4. \(\text{for each step of epoch } t \text{ do} \)
5. \(r' \leftarrow \text{REWARD}(s, \pi(s)) \)
6. \(s' \leftarrow \text{NEXTSTATE}(\pi, s) \)
7. \(V(s) \leftarrow (1 - \alpha)V(s) + \alpha[r' + \gamma V(s')] \)
8. \(s \leftarrow s' \)
9. \(\text{return } V \)
Q-Learning Algorithm

- **Idea:** assume deterministic rewards.

\[
Q^*(s, a) = E[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s' | s, a] V^*(s')
\]

\[
= E[r(s, a) + \gamma \max_{a'} Q^*(s', a')]
\]

- **Algorithm:** \(\alpha \in [0, 1]\) depends on number of visits.

 - sample new state \(s'\).

 - update:

\[
Q(s, a) \leftarrow \alpha Q(s, a) + (1 - \alpha)[r(s, a) + \gamma \max_{a' \in A} Q(s', a')].
\]
Q-Learning Algorithm

(Watkins, 1989; Watkins and Dayan 1992)

Q-Learning(π)

1. $Q \leftarrow Q_0 \triangleright$ initialization, e.g., $Q_0 = 0$.
2. for $t \leftarrow 0$ to T do
3. $s \leftarrow \text{SelectState}()$
4. for each step of epoch t do
5. $a \leftarrow \text{SelectAction}(\pi, s) \triangleright$ policy π derived from Q, e.g., ϵ-greedy.
6. $r' \leftarrow \text{Reward}(s, a)$
7. $s' \leftarrow \text{NextState}(s, a)$
8. $Q(s, a) \leftarrow Q(s, a) + \alpha [r' + \gamma \max_a' Q(s', a') - Q(s, a)]$
9. $s \leftarrow s'$
10. return Q
Can be viewed as a stochastic formulation of the value iteration algorithm.

Convergence for any policy so long as states and actions visited infinitely often.

How to choose the action at each iteration? Maximize reward? Explore other actions? Q-learning is an off-policy method: no control over the policy.
Policies

- Epsilon-greedy strategy:
 - with probability $1 - \epsilon$ greedy action from s;
 - with probability ϵ random action.

- Epoch-dependent strategy (Boltzmann exploration):
 - $\tau_t \to 0$: greedy selection.
 - larger τ_t : random action.

\[p_t(a|s, Q) = \frac{e^{\frac{Q(s,a)}{\tau_t}}}{\sum_{a' \in A} e^{\frac{Q(s,a')}{\tau_t}}} , \]
Convergence of Q-Learning

Theorem: consider a finite MDP. Assume that for all \(s \in S \) and \(a \in A \), \(\sum_{t=0}^{\infty} \alpha_t(s, a) = \infty \), \(\sum_{t=0}^{\infty} \alpha_t^2(s, a) < \infty \) with \(\alpha_t(s, a) \in [0, 1] \). Then, the Q-learning algorithm converges to the optimal value \(Q^* \) (with probability one).

- **note**: the conditions on \(\alpha_t(s, a) \) impose that each state-action pair is visited infinitely many times.
SARSA: On-Policy Algorithm

SARSA(\(\pi\))

1. \(Q \leftarrow Q_0 \quad \triangleright\) initialization, e.g., \(Q_0 = 0\).
2. \textbf{for} \(t \leftarrow 0\) \textbf{to} \(T\) \textbf{do}
3. \hspace{1em} \(s \leftarrow \text{SELECTSTATE()}\)
4. \hspace{1em} \(a \leftarrow \text{SELECTACTION}(\pi(Q), s) \quad \triangleright\) policy \(\pi\) derived from \(Q\), e.g., \(\epsilon\)-greedy.
5. \hspace{1em} \textbf{for} each step of epoch \(t\) \textbf{do}
6. \hspace{2em} \(r' \leftarrow \text{REWARD}(s, a)\)
7. \hspace{2em} \(s' \leftarrow \text{NEXTSTATE}(s, a)\)
8. \hspace{2em} \(a' \leftarrow \text{SELECTACTION}(\pi(Q), s') \quad \triangleright\) policy \(\pi\) derived from \(Q\), e.g., \(\epsilon\)-greedy.
9. \hspace{2em} \(Q(s, a) \leftarrow Q(s, a) + \alpha_t(s, a)[r' + \gamma Q(s', a') - Q(s, a)]\)
10. \hspace{2em} \(s \leftarrow s'\)
11. \hspace{2em} \(a \leftarrow a'\)
12. \textbf{return} \(Q\)
Notes

- Differences with Q-learning:
 - two states: current and next states.
 - maximum reward for next state not used for next state, instead new action.

- SARSA: name derived from sequence of updates.
TD(\(\lambda\)) Algorithm

Idea:

- TD(0) or Q-learning only use immediate reward.
- use multiple steps ahead instead, for \(n\) steps:
 \[
 R^n_t = r_{t+1} + \gamma r_{t+2} + \ldots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n})
 \]
 \[
 V(s) \leftarrow V(s) + \alpha (R^n_t - V(s)).
 \]
- TD(\(\lambda\)) uses
 \[
 R^\lambda_t = (1 - \lambda) \sum_{n=0}^{\infty} \lambda^n R^n_t.
 \]

Algorithm:

\[
V(s) \leftarrow V(s) + \alpha (R^\lambda_t - V(s)).
\]
TD(\(\lambda\)) Algorithm

TD(\(\lambda\))()

1. \(V \leftarrow V_0 \triangleright \text{initialization.}\)
2. \(e \leftarrow 0\)
3. for \(t \leftarrow 0\) to \(T\) do
4. \(s \leftarrow \text{SELECTSTATE}()\)
5. for each step of epoch \(t\) do
6. \(s' \leftarrow \text{NEXTSTATE}(\pi, s)\)
7. \(\delta \leftarrow r(s, \pi(s)) + \lambda V(s') - V(s)\)
8. \(e(s) \leftarrow \lambda e(s) + 1\)
9. for \(u \in S\) do
10. if \(u \neq s\) then
11. \(e(u) \leftarrow \gamma \lambda e(u)\)
12. \(V(u) \leftarrow V(u) + \alpha \delta e(u)\)
13. \(s \leftarrow s'\)
14. return \(V\)
TD-Gammon

(Tesauro, 1995)

- Large state space or costly actions: use regression algorithm to estimate Q for unseen values.

- **Backgammon:**
 - large number of positions: 30 pieces, 24-26 locations,
 - large number of moves.

- **TD-Gammon:** used neural networks.
 - non-linear form of TD(λ), 1.5M games played,
 - almost as good as world-class humans (master level).
This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem
Multi-Armed Bandit Problem

(Robbins, 1952)

Problem: gambler must decide which arm of a N-slot machine to pull to maximize his total reward in a series of trials.

- stochastic setting: N lever reward distributions.
- adversarial setting: reward selected by adversary aware of all the past.
Applications

- Clinical trials.
- Adaptive routing.
- Ads placement on pages.
- Games.
Multi-Armed Bandit Game

- For \(t = 1 \) to \(T \) do

 - adversary determines outcome \(y_t \in Y \).
 - player selects probability distribution \(p_t \) and pulls lever \(I_t \in \{1, \ldots, N\} \), \(I_t \sim p_t \).
 - player incurs loss \(L(I_t, y_t) \) (adversary is informed of \(p_t \) and \(I_t \)).

- **Objective:** minimize regret

\[
\text{Regret}(T) = \sum_{t=1}^{T} L(I_t, y_t) - \min_{i=1,\ldots,N} \sum_{t=1}^{T} L(i, y_t).
\]
Player is informed only of the loss (or reward) corresponding to his own action.

Adversary knows past but not action selected.

Stochastic setting: loss \((L(1, y_t), \ldots, L(N, y_t))\) drawn according to some distribution \(D = D_1 \otimes \cdots \otimes D_N\). Regret definition modified by taking expectations.

Exploration/Exploitation trade-off: playing the best arm found so far versus seeking to find an arm with a better payoff.
Notes

- Equivalent views:
 - special case of learning with partial information.
 - one-state MDP learning problem.

- Simple strategy: \(\varepsilon\)-greedy: play arm with best empirical reward with probability \(1 - \varepsilon_t \), random arm with probability \(\varepsilon_t \).
Exponentially Weighted Average

- **Algorithm**: Exp3, defined for $\eta, \gamma > 0$ by

\[
p_{i,t} = (1 - \gamma) \frac{\exp \left(- \eta \sum_{s=1}^{t-1} \hat{l}_{i,t} \right)}{\sum_{i=1}^{N} \exp \left(- \eta \sum_{s=1}^{t-1} \hat{l}_{i,t} \right)} + \frac{\gamma}{N},
\]

with $\forall i \in [1, N], \hat{l}_{i,t} = \frac{L(I_t,y_t)}{p_{I_t,t}} 1_{I_t=i}$.

- **Guarantee**: expected regret of

\[
O(\sqrt{NT \log N}).
\]
Exponentially Weighted Average

Proof: similar to the one for the Exponentially Weighted Average with the additional observation that:

$$E[\hat{l}_{i,t}] = \sum_{i=1}^{N} p_{i,t} \frac{L(I_{t},y_{t})}{p_{I_{t},t}} 1_{I_{t}=i} = L(i, y_{t}).$$
References

References

Appendix
Stochastic Approximation

Problem: find solution of $x = H(x)$ with $x \in \mathbb{R}^N$ while

- $H(x)$ cannot be computed, e.g., H not accessible;
- i.i.d. sample of noisy observations $H(x_i) + w_i$, available, $i \in [1, m]$, with $\mathbb{E}[w] = 0$.

Idea: algorithm based on iterative technique:

$$x_{t+1} = (1 - \alpha_t)x_t + \alpha_t[H(x_t) + w_t]$$

$$= x_t + \alpha_t[H(x_t) + w_t - x_t].$$

- more generally $x_{t+1} = x_t + \alpha_tD(x_t, w_t)$.
Supermartingale Convergence

Theorem: let X_t, Y_t, Z_t be non-negative random variables such that $\sum_{t=0}^{\infty} Y_t < \infty$. If the following condition holds: $\mathbb{E}\left[X_{t+1} | \mathcal{F}_t\right] \leq X_t + Y_t - Z_t$, then,

- X_t converges to a limit (with probability one).
- $\sum_{t=0}^{\infty} Z_t < \infty$.
Convergence Analysis

Convergence of $x_{t+1} = x_t + \alpha_t D(x_t, w_t)$, with history \mathcal{F}_t defined by

$$
\mathcal{F}_t = \{(x_{t'})_{t' \leq t}, (\alpha_{t'})_{t' \leq t}, (w_{t'})_{t' < t}\}.
$$

Theorem: let $\Psi : x \rightarrow \frac{1}{2} \|x - x^*\|_2^2$ for some x^* and assume that

- $\exists K_1, K_2 : E\left[\|D(x_t, w_t)\|_2^2 \mid \mathcal{F}_t\right] \leq K_1 + K_2 \Psi(x_t)$;
- $\exists c : \nabla \Psi(x_t)^\top E\left[D(x_t, w_t) \mid \mathcal{F}_t\right] \leq -c \Psi(x_t)$;

$\alpha_t > 0, \sum_{t=0}^{\infty} \alpha_t = \infty, \sum_{t=0}^{\infty} \alpha_t^2 < \infty$.

Then, $x_t \overset{\text{a.s.}}{\rightarrow} x^*$.
Convergence Analysis

Proof: since Ψ is a quadratic function,

$$
\Psi(x_{t+1}) = \Psi(x_t) + \nabla \Psi(x_t)^\top (x_{t+1} - x_t) + \frac{1}{2} (x_{t+1} - x_t)^\top \nabla^2 \Psi(x_t) (x_{t+1} - x_t).
$$

Thus,

$$
\mathbb{E} \left[\Psi(x_{t+1}) | \mathcal{F}_t \right] = \Psi(x_t) + \alpha_t \nabla \Psi(x_t)^\top \mathbb{E} \left[D(x_t, w_t) | \mathcal{F}_t \right] + \frac{\alpha_t^2}{2} \mathbb{E} \left[\|D(x_t, w_t)\|^2 | \mathcal{F}_t \right]
$$

$$
\leq \Psi(x_t) - \alpha_t c \Psi(x_t) + \frac{\alpha_t^2}{2} (K_1 + K_2 \Psi(x_t))
$$

$$
= \Psi(x_t) + \frac{\alpha_t^2 K_1}{2} - \left(\alpha_t c - \frac{\alpha_t^2 K_2}{2} \right) \Psi(x_t).
$$

By the supermartingale convergence theorem, $\Psi(x_t)$ converges and $\sum_{t=0}^{\infty} \left(\alpha_t c - \frac{\alpha_t^2 K_2}{2} \right) \Psi(x_t) < \infty$.

Since $\alpha_t > 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$, $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$, $\Psi(x_t)$ must converge to 0.