Foundations of Machine Learning Learning with Infinite Hypothesis Sets

Mehryar Mohri
Courant Institute and Google Research mohri@cims.nyu.edu

Motivation

- With an infinite hypothesis set H, the error bounds of the previous lecture are not informative.
- Is efficient learning from a finite sample possible when H is infinite?
- Our example of axis-aligned rectangles shows that it is possible.
- Can we reduce the infinite case to a finite set? Project over finite samples?
- Are there useful measures of complexity for infinite hypothesis sets?

This lecture

- Rademacher complexity
- Growth Function
- VC dimension
- Lower bound

Empirical Rademacher Complexity

- Definition:
- G family of functions mapping from set Z to $[a, b]$.
- sample $S=\left(z_{1}, \ldots, z_{m}\right)$.
- $\sigma_{i} \mathrm{~s}$ (Rademacher variables): independent uniform random variables taking values in $\{-1,+1\}$.

$$
\widehat{\mathfrak{R}}_{S}(G)=\underset{\boldsymbol{\sigma}}{\mathrm{E}}[\sup _{g \in G} \frac{1}{m} \underbrace{\left[\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{m}
\end{array}\right] \cdot\left[\begin{array}{c}
g\left(z_{1}\right) \\
\vdots \\
g\left(z_{m}\right)
\end{array}\right]}_{\text {correlation with random noise }}]=\underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g\left(z_{i}\right)\right] .
$$

Rademacher Complexity

- Definitions: let G be a family of functions mapping from Z to $[a, b]$.
- Empirical Rademacher complexity of G :

$$
\widehat{\mathfrak{R}}_{S}(G)=\underset{\sigma}{\mathrm{E}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g\left(z_{i}\right)\right],
$$

where σ_{i} s are independent uniform random variables taking values in $\{-1,+1\}$ and $S=\left(z_{1}, \ldots, z_{m}\right)$.

- Rademacher complexity of G :

$$
\mathfrak{R}_{m}(G)=\underset{S \sim D^{m}}{\mathrm{E}}\left[\widehat{\mathfrak{R}}_{S}(G)\right] .
$$

Rademacher Complexity Bound

(Koltchinskii and Panchenko, 2002)

- Theorem: Let G be a family of functions mapping from Z to $[0,1]$. Then, for any $\delta>0$, with probability at least $1-\delta$, the following holds for all $g \in G$:

$$
\begin{aligned}
& \mathrm{E}[g(z)] \leq \frac{1}{m} \sum_{i=1}^{m} g\left(z_{i}\right)+2 \mathfrak{R}_{m}(G)+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} . \\
& \mathrm{E}[g(z)] \leq \frac{1}{m} \sum_{i=1}^{m} g\left(z_{i}\right)+2 \widehat{\mathfrak{R}}_{S}(G)+3 \sqrt{\frac{\log \frac{2}{\delta}}{2 m}} .
\end{aligned}
$$

- Proof:Apply McDiarmid's inequality to

$$
\Phi(S)=\sup _{g \in G} \mathrm{E}[g]-\widehat{\mathrm{E}}_{S}[g] .
$$

- Changing one point of S changes $\Phi(S)$ by at most $\frac{1}{m}$.

$$
\begin{aligned}
\Phi\left(S^{\prime}\right)-\Phi(S) & =\sup _{g \in G}\left\{\mathrm{E}[g]-\widehat{\mathrm{E}}_{S^{\prime}}[g]\right\}-\sup _{g \in G}\left\{\mathrm{E}[g]-\widehat{\mathrm{E}}_{S}[g]\right\} \\
& \leq \sup _{g \in G}\left\{\left\{\mathrm{E}[g]-\widehat{\mathrm{E}}_{S^{\prime}}[g]\right\}-\left\{\mathrm{E}[g]-\widehat{\mathrm{E}}_{S}[g]\right\}\right\} \\
& =\sup _{g \in G}\left\{\widehat{\mathrm{E}}_{S}[g]-\widehat{\mathrm{E}}_{S^{\prime}}[g]\right\}=\sup _{g \in G} \frac{1}{m}\left(g\left(z_{m}\right)-g\left(z_{m}^{\prime}\right)\right) \leq \frac{1}{m} .
\end{aligned}
$$

- Thus, by McDiarmid's inequality, with probability at least $1-\frac{\delta}{2}$

$$
\Phi(S) \leq \underset{S}{\mathrm{E}}[\Phi(S)]+\sqrt{\frac{\log \frac{2}{j}}{2 m}} .
$$

- We are left with bounding the expectation.
- Series of observations:

$$
\begin{aligned}
\underset{S}{\mathrm{E}}[\Phi(S)] & =\underset{S}{\mathrm{E}}\left[\sup _{g \in G} \mathrm{E}[g]-\widehat{\mathrm{E}}_{S}(g)\right] \\
& =\underset{S}{\mathrm{E}}\left[\sup _{g \in G} \mathrm{E}\left[\widehat{\mathrm{E}}_{S^{\prime}}(g)-\widehat{\mathrm{E}}_{S}(g)\right]\right] \\
\text { (sub-add. of sup) } & \leq \underset{S, S^{\prime}}{\mathrm{E}}\left[\sup _{g \in G} \widehat{\mathrm{E}}_{S^{\prime}}(g)-\widehat{\mathrm{E}}_{S}(g)\right] \\
& =\underset{S, S^{\prime}}{\mathrm{E}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m}\left(g\left(z_{i}^{\prime}\right)-g\left(z_{i}\right)\right)\right] \\
\text { (swap } \left.z_{i} \text { and } z_{i}^{\prime}\right) & =\underset{\sigma, S, S^{\prime}}{\mathrm{E}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(g\left(z_{i}^{\prime}\right)-g\left(z_{i}\right)\right)\right] \\
\text { (sub-additiv. of sup) } & \leq \underset{\sigma, S^{\prime}}{\mathrm{E}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g\left(z_{i}^{\prime}\right)\right]+\underset{\sigma, S}{\mathrm{E}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m}-\sigma_{i} g\left(z_{i}\right)\right] \\
& =2 \underset{\sigma, S}{\mathrm{E}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g\left(z_{i}\right)\right]=2 \mathfrak{R}_{m}(G) .
\end{aligned}
$$

- Now, changing one point of S makes $\widehat{\mathfrak{R}}_{S}(G)$ vary by at most $\frac{1}{m}$. Thus, again by McDiarmid's inequality, with probability at least $1-\frac{\delta}{2}$,

$$
\mathfrak{R}_{m}(G) \leq \widehat{\mathfrak{R}}_{\mathcal{S}}(G)+\sqrt{\frac{\log \frac{2}{\delta}}{2 m}} .
$$

Thus, by the union bound, with probability at least $1-\delta$,

$$
\Phi(S) \leq 2 \widehat{\mathfrak{R}}_{S}(G)+3 \sqrt{\frac{\log \frac{2}{\delta}}{2 m}}
$$

Loss Functions - Hypothesis Set

- Proposition: Let H be a family of functions taking values in $\{-1,+1\}, G$ the family of zero-one loss functions of $H: G=\left\{(x, y) \mapsto 1_{h(x) \neq y}: h \in H\right\}$. Then,

$$
\mathfrak{R}_{m}(G)=\frac{1}{2} \mathfrak{R}_{m}(H) .
$$

- Proof: $\mathfrak{R}_{m}(G)=\underset{S, \sigma}{\mathrm{E}}\left[\sup _{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} 1_{h\left(x_{i}\right) \neq y_{i}}\right]$

$$
\begin{aligned}
& =\underset{S, \sigma}{\mathrm{E}}\left[\sup _{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \frac{1}{2}\left(1-y_{i} h\left(x_{i}\right)\right)\right] \\
& =\underbrace{\frac{1}{2} \underset{S, \sigma}{\mathrm{E}}\left[\sup _{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\right]}_{=0}+\frac{1}{2} \underset{S, \sigma}{\mathrm{E}}\left[\sup _{h \in H} \frac{1}{m} \sum_{i=1}^{m}-\sigma_{i} y_{i} h\left(x_{i}\right)\right] \\
& =\frac{1}{2} \underset{S, \sigma}{\mathrm{E}}\left[\sup _{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h\left(x_{i}\right)\right] .
\end{aligned}
$$

Generalization Bounds - Rademacher

- Corollary: Let H be a family of functions taking values in $\{-1,+1\}$. Then, for any $\delta>0$, with probability at least $1-\delta$, for any $h \in H$,

$$
\begin{aligned}
& R(h) \leq \widehat{R}(h)+\Re_{m}(H)+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} . \\
& R(h) \leq \widehat{R}(h)+\widehat{\Re}_{S}(H)+3 \sqrt{\frac{\log \frac{2}{\delta}}{2 m}} .
\end{aligned}
$$

Remarks

- First bound distribution-dependent, second datadependent bound, which makes them attractive.
- But, how do we compute the empirical Rademacher complexity?
- Computing $\mathrm{E}_{\sigma}\left[\sup _{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h\left(x_{i}\right)\right]$ requires solving ERM problems, typically computationally hard.
- Relation with combinatorial measures easier to compute?

This lecture

- Rademacher complexity
- Growth Function
- VC dimension
- Lower bound

Growth Function

- Definition: the growth function $\Pi_{H}: \mathbb{N} \rightarrow \mathbb{N}$ for a hypothesis set H is defined by
$\forall m \in \mathbb{N}, \Pi_{H}(m)=\max _{\left\{x_{1}, \ldots, x_{m}\right\} \subseteq X}\left|\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{m}\right)\right): h \in H\right\}\right|$.
- Thus, $\Pi_{H}(m)$ is the maximum number of ways m points can be classified using H.

Massart's Lemma

(Massart, 2000)

- Theorem: Let $A \subseteq \mathbb{R}^{m}$ be a finite set, with $R=\max _{x \in A}\|x\|_{2}$, then, the following holds:

$$
\underset{\sigma}{\mathrm{E}}\left[\frac{1}{m} \sup _{x \in A} \sum_{i=1}^{m} \sigma_{i} x_{i}\right] \leq \frac{R \sqrt{2 \log |A|}}{m}
$$

\square Proof: $\exp \left(t \underset{\sigma}{\mathrm{E}}\left[\sup _{x \in A} \sum_{i=1}^{m} \sigma_{i} x_{i}\right]\right) \leq \underset{\sigma}{\mathrm{E}}\left(\exp \left[t \sup _{x \in A} \sum_{i=1}^{m} \sigma_{i} x_{i}\right]\right) \quad$ (Jensen's ineq.)

$$
=\underset{\sigma}{\mathrm{E}}\left(\sup _{x \in A} \exp \left[t \sum_{i=1}^{m} \sigma_{i} x_{i}\right]\right)
$$

$$
\leq \sum_{x \in A} \underset{\sigma}{\mathrm{E}}\left(\exp \left[t \sum_{i=1}^{m} \sigma_{i} x_{i}\right]\right)=\sum_{x \in A} \prod_{i=1}^{m} \underset{\sigma}{\mathrm{E}}\left(\exp \left[t \sigma_{i} x_{i}\right]\right)
$$

$$
(\text { Hoeffding's ineq. }) \leq \sum_{x \in A}\left(\exp \left[\frac{\sum_{i=1}^{m} t^{2}\left(2\left|x_{i}\right|\right)^{2}}{8}\right]\right) \leq|A| e^{\frac{t^{2} R^{2}}{2}}
$$

- Taking the log yields:

$$
\underset{\sigma}{\mathrm{E}}\left[\sup _{x \in A} \sum_{i=1}^{m} \sigma_{i} x_{i}\right] \leq \frac{\log |A|}{t}+\frac{t R^{2}}{2}
$$

- Minimizing the bound by choosing $t=\frac{\sqrt{2 \log |A|}}{R}$ gives

$$
\underset{\sigma}{\mathrm{E}}\left[\sup _{x \in A} \sum_{i=1}^{m} \sigma_{i} x_{i}\right] \leq R \sqrt{2 \log |A|} .
$$

Growth Function Bound on Rad. Complexity

- Corollary: Let G be a family of functions taking values in $\{-1,+1\}$, then the following holds:

$$
\Re_{m}(G) \leq \sqrt{\frac{2 \log \Pi_{G}(m)}{m}} .
$$

- Proof:

$$
\begin{aligned}
\widehat{\Re}_{S}(G) & =\underset{\sigma}{\mathrm{E}}\left[\sup _{g \in G} \frac{1}{m}\left[\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{m}
\end{array}\right] \cdot\left[\begin{array}{c}
g\left(z_{1}\right) \\
\vdots \\
g\left(z_{m}\right)
\end{array}\right]\right] \\
& \leq \frac{\sqrt{m} \sqrt{2 \log \left|\left\{\left(g\left(z_{1}\right), \ldots, g\left(z_{m}\right)\right): g \in G\right\}\right|}}{m} \quad \text { (Massart's Lemma) } \\
& \leq \frac{\sqrt{m} \sqrt{2 \log \Pi_{G}(m)}}{m}=\sqrt{\frac{2 \log \Pi_{G}(m)}{m}} .
\end{aligned}
$$

Generalization Bound - Growth Function

- Corollary: Let H be a family of functions taking values in $\{-1,+1\}$. Then, for any $\delta>0$, with probability at least $1-\delta$, for any $h \in H$,

$$
R(h) \leq \widehat{R}(h)+\sqrt{\frac{2 \log \Pi_{H}(m)}{m}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} .
$$

- But, how do we compute the growth function? Relationship with the VC-dimension (VapnikChervonenkis dimension).

This lecture

- Rademacher complexity
- Growth Function
- VC dimension
- Lower bound

VC Dimension

(Vapnik \& Chervonenkis, 1968-1971;Vapnik, 1982, 1995, 1998)

- Definition: the VC-dimension of a hypothesis set H is defined by

$$
\operatorname{VCdim}(H)=\max \left\{m: \Pi_{H}(m)=2^{m}\right\} .
$$

- Thus, the VC-dimension is the size of the largest set that can be fully shattered by H.
- Purely combinatorial notion.

Examples

- In the following, we determine the VC dimension for several hypothesis sets.
- To give a lower bound d for $\operatorname{VCdim}(H)$, it suffices to show that a set S of cardinality d can be shattered by H.
- To give an upper bound, we need to prove that no set S of cardinality $d+1$ can be shattered by H, which is typically more difficult.

Intervals of The Real Line

- Observations:
- Any set of two points can be shattered by four intervals

- No set of three points can be shattered since the following dichotomy " + - +" is not realizable (by definition of intervals):

$$
+ \text { - + }
$$

- Thus, $\operatorname{VCdim}($ intervals in $\mathbb{R})=2$.

Hyperplanes

Observations:

- Any three non-collinear points can be shattered:

- Unrealizable dichotomies for four points:

- Thus, VCdim(hyperplanes in $\left.\mathbb{R}^{d}\right)=d+1$.

Axis-Aligned Rectangles in the Plane

- Observations:
- The following four points can be shattered:

- No set of five points can be shattered: label negatively the point that is not near the sides.

- Thus, $\mathrm{VCdim}($ axis-aligned rectangles $)=4$.

Convex Polygons in the Plane

Observations:

- $2 d+1$ points on a circle can be shattered by a d-gon:

|positive points| < |negative points|

|positive points| > |negative points|
- It can be shown that choosing the points on the circle maximizes the number of possible dichotomies. Thus, VCdim (convex d-gons) $=2 d+1$. Also, VCdim(convex polygons) $=+\infty$.

Sine Functions

- Observations:
- Any finite set of points on the real line can be shattered by $\{t \mapsto \sin (\omega t): \omega \in \mathbb{R}\}$.
- Thus, VCdim(sine functions) $=+\infty$.

Sauer's Lemma

(Vapnik \& Chervonenkis, 1968-1971; Sauer, 1972)

- Theorem: let H be a hypothesis set withVCdim $(H)=d$ then, for all $m \in \mathbb{N}$,

$$
\Pi_{H}(m) \leq \sum_{i=0}^{d}\binom{m}{i}
$$

- Proof: the proof is by induction on $m+d$. The statement clearly holds for $m=1$ and $d=0$ or $d=1$. Assume that it holds for $(m-1, d-1)$ and ($m-1, d$).
- Fix a set $S=\left\{x_{1}, \ldots, x_{m}\right\}$ with $\Pi_{H}(m)$ dichotomies and let $G=H_{\mid S}$ be the set of concepts H induces by restriction to S.
- Consider the following families over $S^{\prime}=\left\{x_{1}, \ldots, x_{m-1}\right\}$:

$$
\begin{aligned}
& G_{1}=G_{\mid S^{\prime}} G_{2}=\left\{g^{\prime} \subseteq S^{\prime}:\left(g^{\prime} \in G\right) \wedge\left(g^{\prime} \cup\left\{x_{m}\right\} \in G\right)\right\} . \\
& \qquad \begin{array}{|c|c|c|c|c|}
\hline x_{1} & x_{2} & \cdots & x_{m-1} & x_{m} \\
\hline 1 & 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 1 & 0 & 1 \\
\hline & 1 \\
\hline 0 & 1 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 \\
\hline \cdots & \cdots & \cdots & \cdots & \cdots \\
\hline
\end{array}
\end{aligned}
$$

- Observe that $\left|G_{1}\right|+\left|G_{2}\right|=|G|$.
- Since VCdim $\left(G_{1}\right) \leq d$, by the induction hypothesis,

$$
\left|G_{1}\right| \leq \Pi_{G_{1}}(m-1) \leq \sum_{i=0}^{d}\binom{m-1}{i}
$$

- By definition of G_{2}, if a set $Z \subseteq S^{\prime}$ is shattered by G_{2}, then the set $Z \cup\left\{x_{m}\right\}$ is shattered by G. Thus,

$$
\operatorname{VCdim}\left(G_{2}\right) \leq \operatorname{VCdim}(G)-1=d-1
$$

and by the induction hypothesis,

$$
\left|G_{2}\right| \leq \Pi_{G_{2}}(m-1) \leq \sum_{i=0}^{d-1}\binom{m-1}{i}
$$

- Thus, $|G| \leq \sum_{i=0}^{d}\binom{m-1}{i}+\sum_{i=0}^{d-1}\binom{m-1}{i}$

$$
=\sum_{i=0}^{d}\binom{m-1}{i}+\binom{m-1}{i-1}=\sum_{i=0}^{d}\binom{m}{i} .
$$

Sauer's Lemma - Consequence

- Corollary: let H be a hypothesis set with $\operatorname{VCdim}(H)=d$ then, for all $m \geq d$,

$$
\begin{aligned}
& \Pi_{H}(m) \leq\left(\frac{e m}{d}\right)^{d}=O\left(m^{d}\right) . \\
& \begin{aligned}
\sum_{i=0}^{d}\binom{m}{i} & \leq \sum_{i=0}^{d}\binom{m}{i}\left(\frac{m}{d}\right)^{d-i} \\
& \leq \sum_{i=0}^{m}\binom{m}{i}\left(\frac{m}{d}\right)^{d-i} \\
& =\left(\frac{m}{d}\right)^{d} \sum_{i=0}^{m}\binom{m}{i}\left(\frac{d}{m}\right)^{i} \\
& =\left(\frac{m}{d}\right)^{d}\left(1+\frac{d}{m}\right)^{m} \leq\left(\frac{m}{d}\right)^{d} e^{d} .
\end{aligned}
\end{aligned}
$$

Remarks

- Remarkable property of growth function:
- either $\operatorname{VCdim}(H)=d<+\infty$ and $\Pi_{H}(m)=O\left(m^{d}\right)$
- or $\operatorname{VCdim}(H)=+\infty \quad$ and $\Pi_{H}(m)=2^{m}$.

Generalization Bound - VC Dimension

- Corollary: Let H be a family of functions taking values in $\{-1,+1\}$ with VC dimension d. Then, for any $\delta>0$, with probability at least $1-\delta$, for any $h \in H$,

$$
R(h) \leq \widehat{R}(h)+\sqrt{\frac{2 d \log \frac{e m}{d}}{m}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} .
$$

- Proof: Corollary combined with Sauer's lemma.
- Note:The general form of the result is

$$
R(h) \leq \widehat{R}(h)+O\left(\sqrt{\frac{\log (m / d)}{(m / d)}}\right)
$$

Comparison - StandardVC Bound

(Vapnik \& Chervonenkis, 197।;Vapnik, 1982)

- Theorem: Let H be a family of functions taking values in $\{-1,+1\}$ with VC dimension d. Then, for any $\delta>0$, with probability at least $1-\delta$, for any $h \in H$,

$$
R(h) \leq \widehat{R}(h)+\sqrt{\frac{8 d \log \frac{2 e m}{d}+8 \log \frac{4}{\delta}}{m}} .
$$

- Proof: Derived from growth function bound

$$
\operatorname{Pr}[|R(h)-\widehat{R}(h)|>\epsilon] \leq 4 \Pi_{H}(2 m) \exp \left(-\frac{m \epsilon^{2}}{8}\right)
$$

This lecture

- Rademacher complexity
- Growth Function
- VC dimension
- Lower bound

VCDim Lower Bound - Realizable Case

(Ehrenfeucht et al., 1988)

- Theorem: let H be a hypothesis set with VCdimension $d>1$. Then, for any learning algorithm L,

$$
\exists D, \exists f \in H, \operatorname{Pr}_{S \sim D^{m}}\left[R_{D}\left(h_{S}, f\right)>\frac{d-1}{32 m}\right] \geq 1 / 100
$$

- Proof: choose D such that L can do no better than tossing a coin for some points.
- Let $X=\left\{x_{0}, x_{1}, \ldots, x_{d-1}\right\}$ be a set fully shattered. For any $\epsilon>0$, define D with support X by

$$
\underset{D}{\operatorname{Pr}}\left[x_{0}\right]=1-8 \epsilon \quad \text { and } \quad \forall i \in[1, d-1], \underset{D}{\operatorname{Pr}}\left[x_{i}\right]=\frac{8 \epsilon}{d-1} .
$$

- We can assume without loss of generality that L makes no error on x_{0}.
- For a sample S, let \bar{S} denote the set of its elements falling in $X_{1}=\left\{x_{1}, \ldots, x_{d-1}\right\}$ and let \mathcal{S} be the set of samples of size m with at most $(d-1) / 2$ points in X_{1}.
- Fix a sample $S \in \mathcal{S}$. Using $|X-\bar{S}| \geq(d-1) / 2$,

$$
\begin{aligned}
\underset{f \sim U}{\mathrm{E}}\left[R_{D}\left(h_{S}, f\right)\right] & =\sum_{f} \sum_{x \in X} 1_{h(x) \neq f(x)} \operatorname{Pr}[x] \operatorname{Pr}[f] \\
& \geq \sum_{f} \sum_{x \notin \bar{S}} 1_{h(x) \neq f(x)} \operatorname{Pr}[x] \operatorname{Pr}[f] \\
& =\sum_{x \notin \bar{S}}\left(\sum_{f} 1_{h(x) \neq f(x)} \operatorname{Pr}[f]\right) \operatorname{Pr}[x] \\
& =\frac{1}{2} \sum_{x \notin \bar{S}} \operatorname{Pr}[x] \geq \frac{1}{2} \frac{d-1}{2} \frac{8 \epsilon}{d-1}=2 \epsilon .
\end{aligned}
$$

- Since the inequality holds for all $S \in \mathcal{S}$, it also holds in expectation: $\mathrm{E}_{S, f \sim U}\left[R_{D}\left(h_{S}, f\right)\right] \geq 2 \epsilon$. This implies that there exists a labeling f_{0} such that $\mathrm{E}_{S}\left[R_{D}\left(h_{S}, f_{0}\right)\right] \geq 2 \epsilon$.
- Since $\operatorname{Pr}_{D}\left[X-\left\{x_{0}\right\}\right] \leq 8 \epsilon$, we also have $R_{D}\left(h_{S}, f_{0}\right) \leq 8 \epsilon$. Thus,
- Collecting terms $\operatorname{in} \operatorname{Pr}_{S \in \mathcal{S}}\left[R_{D}\left(h_{S}, f_{0}\right) \geq \epsilon\right]$, we obtain:

$$
\operatorname{Pr}_{S \in \mathcal{S}}\left[R_{D}\left(h_{S}, f_{0}\right) \geq \epsilon\right] \geq \frac{1}{7 \epsilon}(2 \epsilon-\epsilon)=\frac{1}{7} .
$$

- Thus, the probability over all samples S (not necessarily in \mathcal{S}) can be lower bounded as

$$
\operatorname{Pr}_{S}\left[R_{D}\left(h_{S}, f_{0}\right) \geq \epsilon\right] \geq \operatorname{Pr}_{S \in \mathcal{S}}\left[R_{D}\left(h_{S}, f_{0}\right) \geq \epsilon\right] \operatorname{Pr}[\mathcal{S}] \geq \frac{1}{7} \operatorname{Pr}[\mathcal{S}] .
$$

- This leads us to seeking a lower bound for $\operatorname{Pr}[\mathcal{S}]$. The probability that more than $(d-1) / 2$ points be drawn in a sample of size m verifies the Chernoff bound for any $\gamma>0$:

$$
1-\operatorname{Pr}[\mathcal{S}]=\operatorname{Pr}\left[S_{m} \geq 8 \epsilon m(1+\gamma)\right] \leq e^{-8 \epsilon m \frac{\gamma^{2}}{3}}
$$

- Thus, for $\epsilon=(d-1) /(32 m)$ and $\gamma=1$,

$$
\operatorname{Pr}\left[S_{m} \geq \frac{d-1}{2}\right] \leq e^{-(d-1) / 12} \leq e^{-1 / 12} \leq 1-7 \delta
$$

for $\delta \leq .01$. Thus, $\operatorname{Pr}[\mathcal{S}] \geq 7 \delta$ and

$$
\operatorname{Pr}_{S}\left[R_{D}\left(h_{S}, f_{0}\right) \geq \epsilon\right] \geq \delta .
$$

Agnostic PAC Model

- Definition: concept class C is PAC-learnable if there exists a learning algorithm L such that:
- for all $c \in C, \epsilon>0, \delta>0$, and all distributions D,

$$
\operatorname{Pr}_{S \sim D}\left[R\left(h_{S}\right)-\inf _{h \in H} R(h) \leq \epsilon\right] \geq 1-\delta,
$$

- for samples S of size $m=\operatorname{poly}(1 / \epsilon, 1 / \delta)$ for a fixed polynomial.

VCDim Lower Bound - Non-Realizable Case

(Anthony and Bartlett, 1999)

- Theorem: let H be a hypothesis set with VC dimension $d>1$. Then, for any learning algorithm L,
$\exists D$ over $X \times\{0,1\}$,

$$
\operatorname{Pr}_{S \sim D^{m}}\left[R_{D}\left(h_{S}\right)-\inf _{h \in H} R_{D}(h)>\sqrt{\frac{d}{320 m}}\right] \geq 1 / 64 .
$$

- Equivalently, for any learning algorithm, the sample complexity verifies

$$
m \geq \frac{d}{320 \epsilon^{2}} .
$$

References

- Martin Anthony, Peter L. Bartlett. Neural network learning: theoretical foundations. Cambridge University Press. 1999.
- Anselm Blumer,A. Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension.Journal of the ACM (JACM),Volume 36, Issue 4, 1989.
- A. Ehrenfeucht, David Haussler, Michael Kearns, Leslie Valiant. A general lower bound on the number of examples needed for learning. Proceedings of Ist COLT. pp. I39-I54, I988.
- Koltchinskii, Vladimir and Panchenko, Dmitry. Empirical margin distributions and bounding the generalization error of combined classifiers. The Annals of Statistics, 30(I), 2002.
- Pascal Massart. Some applications of concentration inequalities to statistics.Annales de la Faculte des Sciences de Toulouse, IX:245-303, 2000.
- N. Sauer. On the density of families of sets.Journal of Combinatorial Theory (A), 13:145-147, 1972.

References

- Vladimir N.Vapnik. Estimation of Dependences Based on Empirical Data. Springer, 1982.
- Vladimir N.Vapnik. The Nature of Statistical Learning Theory. Springer, I995.
- Vladimir N.Vapnik. Statistical Learning Theory.Wiley-Interscience, New York, 1998.
- Vladimir N.Vapnik and Alexey Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow (in Russian). 1974.
- Vladimir N.Vapnik and Alexey Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Prob. and its Appl., vol. 16, no. 2, pp. 264-280, 1971.

