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Motivation

Some computational learning questions

• What can be learned efficiently?

•  What is inherently hard to learn?

• A general model of learning? 

Complexity

• Computational complexity: time and space.

• Sample complexity: amount of training data 
needed to learn successfully.

• Mistake bounds: number of mistakes before 
learning successfully.
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This lecture

PAC Model

Sample complexity, finite H, consistent case

Sample complexity, finite H, inconsistent case
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Definitions and Notation

   : set of all possible instances or examples, e.g., 
the set of all men and women characterized by 
their height and weight.

                  : the target concept to learn; can be 
identified with its support                      .

   : concept class, a set of target concepts   .

   : target distribution, a fixed probability 
distribution over   . Training and test examples are 
drawn according to   .
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Definitions and Notation

   : training sample.

   : set of concept hypotheses, e.g., the set of all 
linear classifiers. 

The learning algorithm receives sample    and 
selects a hypothesis     from    approximating   .
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Errors

True error or generalization error of    with 
respect to the target concept   and distribution    : 

Empirical error: average error of    on the training 
sample   drawn according to distribution   ,

Note: 
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PAC Model

PAC learning: Probably Approximately Correct 
learning.

Definition: concept class    is PAC-learnable if there 
exists a learning algorithm   such that:

• for all                         and all distributions   ,

• for samples   of size                          for a 
fixed polynomial.
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Remarks

Concept class    is known to the algorithm.

Distribution-free model: no assumption on   .

Both training and test examples drawn      .

Probably: confidence      .

Approximately correct: accuracy      .

Efficient PAC-learning:   runs in time                   . 

What about the cost of the representation of       ?
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PAC Model - New Definition

Computational representation:

• cost for        in       .

• cost for        in               .

Extension: running time.
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Example - Rectangle Learning

Problem: learn unknown axis-aligned rectangle R 
using as small a labeled sample as possible.

Hypothesis: rectangle R’. In general, there may be 
false positive and false negative points.

R

R’
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Example - Rectangle Learning

Simple method: choose tightest consistent 
rectangle R’ for a large enough sample. How large 
a sample? Is this class PAC-learnable?

What is the probability that             ?

R

R’
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Example - Rectangle Learning

Fix       and assume             (otherwise the result 
is trivial).

Let                 be four smallest rectangles along 
the sides of    such that             .       
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Example - Rectangle Learning

Errors can only occur in        . Thus (geometry), 

Therefore, 
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Example - Rectangle Learning

Set        to match the upper bound:

Then, for                , with probability at least       ,
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Notes

Infinite hypothesis set, but simple proof.

Does this proof readily apply to other similar 
concepts classes?

Geometric properties:

• key in this proof.

• in general non-trivial to extend to other classes, 
e.g., non-concentric circles (see HW2, 2006).
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This lecture

PAC Model

Sample complexity, finite H, consistent case

Sample complexity, finite H, inconsistent case
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Learning Bound for Finite H - 
Consistent Case

Theorem: let    be a finite set of functions from    
to         and    an algorithm that for any target 
concept        and sample   returns a consistent 
hypothesis    :                . Then, for any       , with 
probability at least       ,
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Learning Bound for Finite H - 
Consistent Case

Proof: for any        , define                              . We 
want to prove that, with high probability, if    is 
consistent, then it has low error:
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Remarks

The algorithm can be ERM if problem realizable.

Error bound linear in    and only logarithmic in   .

           is the number of bits used for the 
representation of   .

Bound is loose for large     .

Uninformative for infinite     .
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Conjunctions of Boolean Literals

Example for       .
Algorithm: start with                                and rule 
out literals incompatible with positive examples.
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Problem: learning class     of conjunctions of 
boolean literals with at most    variables (e.g.,     
for       ,                  ).

Algorithm: choose   consistent with   . 

• Since                    , sample complexity:

• Computational complexity: polynomial, since 
algorithmic cost per training example is 
in       .

Conjunctions of Boolean Literals
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This lecture

PAC Model

Sample complexity, finite H, consistent case

Sample complexity, finite H, inconsistent case
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No        is a consistent hypothesis.

The typical case in practice: difficult problems, 
complex concept class.

But, inconsistent hypotheses with a small number 
of errors on the training set can be useful.

Need a more powerful tool: Hoeffding’s inequality.

Inconsistent Case
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Hoeffding’s Inequality

Corollary: for any       and any hypothesis                   
the following inequalities holds:

Combining these one-sided inequalities yields
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Application to Learning Algorithm?

Can we apply that bound to the hypothesis     
returned by our learning algorithm when training 
on sample   ?

No, because     is not a fixed hypothesis, it depends 
on the training sample. Note also that                  
is not a simple quantity such as         .

Instead, we need a bound that holds simultaneously 
for all hypotheses        , a uniform convergence 
bound.
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Generalization Bound - Finite H

Theorem: let    be a finite hypothesis set, then, for 
any        , with probability at least       , 

Proof: By the union bound, 
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Remarks

Thus, for a finite hypothesis set, whp,

Error bound in           (quadratically worse).

           can be interpreted as the number of bits 
needed to encode   .

Occam’s Razor principle (theologian William of 
Occam): “plurality should not be posited without 
necessity”.
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Occam’s Razor

Principle formulated by controversial theologian 
William of Occam: “plurality should not be posited 
without necessity”, rephrased as “the simplest 
explanation is best”;

• invoked in a variety of contexts, e.g., syntax. 
Kolmogorov complexity can be viewed as the 
corresponding framework in information theory.

• here, to minimize true error, choose the most 
parsimonious explanation (smallest     ). 

• we will see later other applications of this 
principle.
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Lecture Summary

   is PAC-learnable if                                            ,

Learning bound, finite    consistent case:

Learning bound, finite    inconsistent case:

How do we deal with infinite hypothesis sets?
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Problem: each        defined by   boolean features. 
Let    be the set of all subsets of   .

Question: is    PAC-learnable?

Sample complexity:    must contain   . Thus,

It can be proved that    is not PAC-learnable, it 
requires an exponential sample size.

Universal Concept Class
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k-Term DNF Formulae

Definition: expressions of the form                with 
each term    conjunctions of boolean literals with 
at most    variables.

Problem: learning k-term DNF formulae.

Sample complexity:                      Thus, polynomial 
sample complexity

Time complexity: intractable if              : the class 
is then not efficiently PAC-learnable (proof by 
reduction from graph 3-coloring). But, a strictly 
larger class is!
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k-CNF Expressions

Definition: expressions                   of arbitrary 
length  with each term    a disjunction of at most   
boolean attributes.

Algorithm: reduce problem to that of learning 
conjunctions of boolean literals.        new variables:

• the transformation is a bijection;

• effect of the transformation on the distribution 
is not an issue: PAC-learning allows any 
distribution    .
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k-Term DNF Terms and  
k-CNF Expressions

Observation: any k-term DNF formula can be 
written as a k-CNF expression. By associativity,

• Example:

• But, in general converting a k-CNF (equiv. to a 
k-term DNF) to a k-term DNF is intractable.

Key aspects of PAC-learning definition:

• cost of representation of concept  .

• choice of hypothesis set   .
35

(u1 � u2 � u3) ⇥ (v1 � v2 � v3) =
�3

i,j=1(ui ⇥ vj).

H

c

k�

i=1

ui,1 � · · · � ui,ni =
�

j1�[1,n1],...,jk�[1,nk]

u1,j1 � · · · � uk,jk .


